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ABSTRACT Considering a rapidly increasing seaborne trade and drastic climate changes due to emissions,
produced by oceangoing vessels and container handling equipment, marine container terminal operators not
only have to improve effectiveness of their operations to serve the increasing demand, but also to account
for the environmental impact associated with the terminal operations. This paper proposes a novel mixed
integer mathematical model for the berth scheduling problem, which minimizes the total service cost of
vessels, including the total carbon dioxide emission cost due to container handling. The latter pollutant is
a primary greenhouse gas that causes global warming. A Hybrid Evolutionary Algorithm, which deploys a
set of local search heuristics, is developed to solve the problem. Computational experiments showcase that
the optimality gap of the proposed solution algorithm does not exceed 1.61%. It is further shown that the
application of additional local search heuristics allows efficient discovery of promising solutions throughout
the search process. Results from numerical experiments also indicate that changes in the carbon dioxide
emission cost may significantly affect the design of berth schedules. The developed mathematical model
and the proposed solution algorithm can thus be adopted as effective planning tools by the marine container
terminal operators and improve the environmental sustainability of the terminal operations.

INDEX TERMS Marine container terminals, carbon dioxide emissions, vessel service cost, evolutionary
computation, hybrid algorithms.

I. INTRODUCTION
The international seaborne trade plays a critical role for the
global economy. The volumes of the international seaborne
trade have been constantly growing since 2009 and reached
approximately 10.05 billion tons in 2015, which is a 27.9%
increase as compared to the 2009 international seaborne trade
volumes [1]. Considering such a rapid growth of the seaborne
trade, marine container terminal (MCT) operators must focus
on optimizing their operations [2]–[6] in order to meet the
growing demand and provide timely service of the arriving
vessels. The sequence of operations for handling import con-
tainers at the MCT can be described as follows. The import
containers are delivered to the MCT by vessels. Once a given
vessel is moored, the on-shore quay cranes start unloading
the import containers. Then, those containers are placed on
the internal transport vehicles (e.g., yard trucks, automated
guided vehicles, straddle carries, etc.), which further transfer
the containers to the dedicated area of the marshaling yard.

Once the import containers are delivered by the internal trans-
port vehicles to the assigned yard blocks of the marshaling
yard, the gantry cranes unload the containers. The drayage
trucks, entering the MCT via the dedicated gate, pick up
the import containers and deliver them to the customers.
A reverse sequence of operations is applicable for handling
the export containers.

Enhancing the terminal operations is one of the primary
goals for the MCT operators, but it cannot be achieved at
the expense of the environment. Some of the studies, con-
ducted to date, not only focused on improving effectiveness
of the MCT operations to meet the growing demand, but
also accounted for the negative environmental externalities
due to container transport and handling. Golias et al. [7]
proposed a berth scheduling policy, aiming to minimize the
total late departure of vessels and indirectly decrease the
fuel consumption (and hence the associated emissions) by
vessels in the idle mode. Alvarez et al. [8] presented a
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hybrid simulation-optimization approach for assessing poten-
tial advantages from the new berth scheduling policies and
liner shipping contracts, taking into consideration the fuel
consumption by vessels arriving at the MCT. Esmer et al. [9]
developed a simulationmodel for the TurkishMCT, aiming to
reduce the environmental damage due to container handling
operations. Golias et al. [10] formulated the berth scheduling
problem (BSP), which minimized not only the total service
time and delayed departures of vessels, but also the total
fuel consumption and emissions, produced by vessels when
sailing to the next port of call. Lang and Veenstra [11] pre-
sented a simulation-based optimization model to schedule
vessel arrivals at the MCT, aiming to reduce the total fuel
consumption of approaching vessels, the total diversion cost
for non-handling containers, and the total vessel late depar-
ture cost. Du et al. [12] presented a bi-objective BSP, where
the first objective minimized the total vessel late departures,
while the second one aimed to minimize the total fuel con-
sumption by vessels that were sailing to a given port of call.
Wang et al. [13] developed an alternative solution approach
to the problem, studied by Du et al. [12], where the static
quadratic outer approximation method was used instead of
the mixed integer second order cone programming model.
Chen et al. [14] presented a methodology for improving the
gate operations at theMCT, aiming to reduce the waiting time
of drayage trucks and emissions produced by idling truck
engines.

Several papers developed models to decrease the energy
consumption by the MCT handling equipment, which
could be further extended towards the reduction of emis-
sions produced. Chang et al. [15] proposed an integrated
berth allocation and quay crane scheduling model, aim-
ing to minimize the total deviation between the actual and
desired berthing positions, the total vessel late departure
penalty, and the total energy consumption by quay cranes.
He et al. [16] formulated a bi-objective model for scheduling
yard trucks, shared among multiple MCTs, where the first
objective aimed to minimize the total overflowed workloads,
while the second one minimized the total yard truck energy
consumption. He et al. [17] proposed a yard crane scheduling
model, where the first objectiveminimized the total task com-
pletion delay, while the second one aimed to minimize the
total energy consumption associated with completion of all
the tasks. He et al. [18] presented a mathematical formulation
for the integrated internal truck, yard crane, and quay crane
scheduling problem. The first objective aimed to minimize
the total delayed vessel departures, while the second one
minimized the total transportation energy consumption.

This study focuses on modeling the BSP, which aims
to identify the assignment of arriving vessels to the MCT
berthing positions and determine the sequence of vessels
that will be served at each berthing position. The review
of the MCT literature shows that some of the BSP models,
developed in the past, captured the emission production by
the arriving vessels; however, none of the models directly
accounted for the emission production due to container

handing in berth scheduling. To fill the latter gap in the state-
of-the-art this study proposes a novel mixed integer BSP
model, which minimizes the total vessel service cost, includ-
ing the carbon dioxide (CO2) emission cost due to container
handling. A Hybrid Evolutionary Algorithm, which applies
a set of local search heuristics, is developed to solve the
proposed mathematical model. Reduction of CO2 emissions
throughout the container handling process is crucial, as CO2
is a primary greenhouse gas that causes global warming [19].
The latter concern is considered as of a high importance,
taking into account the existing predictions of the average
global temperatures to rise by up to 5.8 ◦C by the year
of 2100 [20]. The remainder of the paper is organized in
the following order. Section II provides a detailed prob-
lem description, while Section III presents the mathematical
formulation. Section IV discusses the main features of the
proposed solution approach, while Section V presents a set
of numerical experiments that were performed in order to
assess effectiveness of the developed solution approach and
the berth scheduling model. The last section discusses the
main findings and outlines the future research avenues.

II. PROBLEM DESCRIPTION
This paper studies the BSP at a typical MCT that has a
discrete berth layout, where the MCT wharf is divided into
a set of berths. Only one vessel can be handled at each
berth at the time. The latter MCT configuration has been
widely used in the berth scheduling literature published to
date [21], [22]. Let V = {1, . . . ,m} be a set of vessels,
which request service at the MCT, and B = {1, . . . , n} be
a set of available MCT berths. The dynamic case is adopted
in this study for vessel arrivals, where the MCT operator
has the information regarding the expected arrival time for
each vessel. It is assumed that the arrival times of vessels are
deterministic; therefore, the uncertainty that may be caused
by changes in the weather conditions, unexpected delays in
service at the preceding ports of call, alterations in vessel
schedules, and other factors is not captured in this study. The
vessels, arriving for service at the MCT, are towed by push
boats to their assigned berths. If a given vessel arrives at the
port, but the assigned berth is not available (e.g., the berth is
being occupied by another vessel), the push boats will tow
that vessel to a dedicated waiting area (Fig. 1). This study
assumes that a waiting cost cWTv , v ∈ V (USD per hour) will
be imposed to the MCT operator. The latter assumption can
be justified by the fact that an increasing number of vessels in
the waiting area may result in congestion at the MCT seaside,
which shall further cause delays for vessels that enter and
leave the MCT.

Loading and unloading of containers at each MCT berth
is performed by the quay cranes. This study assumes that
safety distances between vessels, served at the MCT berths,
and safety distances between the quay cranes are maintained.
The liner shipping companies have contractual agreements
with theMCT operator, according to which theMCT operator
is able to provide a set of handling rates H = {1, . . . , k}

8132 VOLUME 5, 2017



M. A. Dulebenets et al.: Minimizing Carbon Dioxide Emissions Due to Container Handling at Marine Container Terminals

FIGURE 1. Seaside operations at the MCT.

for the vessel service. A handling productivity hpvbh, v ∈ V ,
b ∈ B, h ∈ H , generally estimated in twenty-foot equivalent
units (TEUs) per hour, is associated with each handling rate.
A handling cost cHTvh , v ∈ V , h ∈ H (USD per TEU) for serv-
ing a given vessel is assumed to increase, if a handling rate
with a higher productivity is requested. Furthermore, selec-
tion of handling rates with higher handling productivities by
the liner shipping companies will require the MCT operator
to deploy more handling equipment for service of vessels,
which will increase the total amount of emissions produced
due to container handling. This study models production of
the CO2 emissions, which are computed based on the total
amount of containers to be handled NCv, v ∈ V (TEUs) and
the associated CO2 emission factor EFvbh, v ∈ V , b ∈ B,
h ∈ H (tons of CO2 per TEU). The latter methodology was
adopted based on the available literature [23], [24].

The MCT operator has to perform a preliminary allocation
of vessels to berths, scheduling of handling resources, and
assignment of containers to specific storage areas based on
the expected vessel arrival times and the handling rates, nego-
tiated with the liner shipping companies. If due to changes in
the preliminary berth schedule a vessel is diverted from its
originally assigned berth (i.e., ‘‘preferred berth’’) for service
at another berth, the handling productivity for the requested
handling rate is assumed to decrease. The latter assumption
can be supported by the fact that the distance, traveled by the
internal transport vehicles to the dedicated storage area from
the other MCT berths, is generally larger than the travel dis-
tance from the ‘‘preferred berth’’. The vessel handling time
HT v, v ∈ V (hours) is calculated based on the actual handling

productivity and the total amount of containers to be handled
for that vessel. The vessel handling time uncertainty (which
may be caused by changes in scheduling of the internal trans-
port vehicles, breakdowns in handling equipment, terminal
congestion, etc.) is not captured in this paper.

The liner shipping companies have to account for the vessel
handling time at ports of call in design of their schedules [22].
This study assumes that the requested departure time RDv,
v ∈ V (hours) is negotiated between a given liner shipping
company and the MCT operator for each vessel. A vessel
late departure penalty cLDv , v ∈ V (USD per hour) will be
incurred by the MCT operator for violation of the requested
vessel departure times. The main objective of the BSP studied
herein is to design a cost-effective berth schedule, which will
minimize the total service cost of vessels calling at the MCT,
including the total vessel handling cost, the total waiting
cost, the total vessel late departure penalty, and the total CO2
emission cost.

III. MATHEMATICAL MODEL
This section defines the notations that will be further used
throughout the paper and presents a mixed integer mathemat-
ical model for the discrete dynamic green berth scheduling
problem (GBSP).

A. NOTATIONS
Sets:

V = {1, . . . ,m} set of vessels to be served at the MCT
B = {1, . . . , n} set of berths available at the MCT
H = {1, . . . , k} set of handling rates available at

the MCT
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Decision Variables:

xvb, v ∈ V , b ∈ B =1 if vessel v is assigned for
service at berth b
(=0 otherwise)

svv, v, v ∈ V , v 6= v =1 if vessel v is assigned for
service at the same berth
immediately after vessel v
(=0 otherwise)

f v, v ∈ V =1 if vessel v is served as the
first vessel at the given berth
(=0 otherwise)

lv, v ∈ V =1 if vessel v is served as the
last vessel at the given berth
(=0 otherwise)

zvbh, v ∈ V , b ∈ B, h ∈ H =1 if handling rate h is
selected for service of vessel
v at berth b (=0 otherwise)

Auxiliary Variables:

ST v, v ∈ V start time of service for vessel v (hours)
HT v, v ∈ V handling time of vessel v (hours)
WT v, v ∈ V waiting time of vessel v (hours)
LDv, v ∈ V hours of late departure for vessel v (hours)
CO2v , v ∈ V total amount of CO2 emissions produced

from serving vessel v (tons)

Parameters:

ATv, v ∈ V expected arrival time of
vessel v (hours)

NCv, v ∈ V number of containers to be
handled for vessel v (TEUs)

hpvbh, v ∈ V , b ∈ B, h ∈ H handling productivity for
vessel v at berth b under
handling rate h (TEUs/hour)

RDv, v ∈ V requested departure time for
vessel v (hours)

EFvbh, v ∈ V , b ∈ B, h ∈ H CO2 emission factor for
vessel v served at berth b
under handling rate h
(tons of CO2/TEU)

cHTvh , v ∈ V , h ∈ H handling cost for vessel v
under handling rate h
(USD/TEU)

cWTv , v ∈ V waiting cost for vessel v
(USD/hour)

cLDv , v ∈ V penalty for late departure of

vessel v (USD/hour)

cCO2 CO2 emission cost

(USD/ton)

M large positive number

B. MIXED INTEGER MATHEMATICAL MODEL
The discrete dynamic green berth scheduling prob-
lem (GBSP) can be formulated as a mixed integer program-
ming model as follows.

GBSP: Green Berth Scheduling Problem

min[
∑
v∈V

∑
b∈B

∑
h∈H

(NCvcHTvh zvbh)+
∑
v∈V

(WT vcWTv )+

+

∑
v∈V

(LDvcLDv )+
∑
v∈V

(CO2vc
CO2 )] (1)

Subject to:

∑
b∈B

xvb = 1∀v ∈ V (2)∑
b∈B

∑
h∈H

zvbh = 1∀v ∈ V (3)

zvbh ≤ xvb∀v ∈ V , b ∈ B, h ∈ H (4)

f v +
∑
v∈V 6=v

svv = 1∀v ∈ V (5)

lv +
∑
v∈V 6=v

svv = 1∀v ∈ V (6)

f v + f v ≤ 3− xvb − xvb∀v, v ∈ V , v 6= v, b ∈ B (7)

lv + lv ≤ 3− xvb − xvb∀v, v ∈ V , v 6= v, b ∈ B (8)

svv − 1 ≤ xvb − xvb ≤ 1− svv∀v, v ∈ V , v 6= v, b ∈ B (9)

ST v ≥ ATv∀v ∈ V (10)

HT v =
∑
b∈B

∑
h∈H

(
NCv
hpvbh

)zvbh∀v ∈ V (11)

ST v ≥ ST v +HT v −M (1− svv)∀v, v ∈ V , v 6= v (12)

WT v ≥ ST v − ATv∀v ∈ V (13)

LDv ≥ ST v +HT v − ATv∀v ∈ V (14)

CO2v = NCv
∑
b∈B

∑
h∈H

EFvbhzvbh∀v ∈ V (15)

xvb, svv, f v, lv, zvbh ∈ {0, 1}∀v, v ∈ V , v 6= v, b ∈ B,

h ∈ H (16)

NCv ∈ N (17)

ST v,HT v,WT v,LDv,CO2v ,ATv, hpvbh,RDv,EFvbh, c
HT
vh ,

cWTv , cLDv , cCO2 ,M ∈ R+∀v ∈ V , b ∈ B, h ∈ H (18)

In GBSP the objective function minimizes the total ves-
sel service cost, which includes the following components:
(a) the total vessel handling cost; (b) the total vessel waiting
cost; (c) the total vessel late departure cost; and (d) the total
CO2 emission cost due to container handling. Constraints
set (2) guarantees that each vessel, arriving at the MCT,
should be served at one of the MCT berths. Constraints
set (3) ensures that one handling rate should be selected by
the MCT operator for service of a given vessel. Constraints
set (4) indicates that service of a vessel under the selected
handling rate should be performed at the assignedMCT berth.
Constraints set (5) ensures that a given vessel, calling for
service at MCT, can be either served first or after the other
vessel, assigned to the same MCT berth. Constraints set (6)
indicates that a given vessel, calling for service at MCT, can
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be either served last or before the other vessel, assigned to
the same MCT berth. Constraints set (7) states that only one
vessel will be served first at the givenMCT berth. Constraints
set (8) guarantees that only one vessel will be served last at
the given MCT berth. Constraints set (9) states that a given
vessel may be served after another vessel only if both vessels
are scheduled for service at the same MCT berth. Constraints
set (10) indicates the service of each vessel can begin only
after its arrival at the MCT. Constraints set (11) computes the
handing time of each vessel at the assigned MCT berth under
the selected handling rate. Constraints set (12) calculates the
start time of service for each one of the vessels to be served at
the MCT. Constraints set (13) computes the waiting time for
each one of the vessels to be served at the MCT. Constraints
set (14) estimates the hours of late departure for each one
of the vessels to be served at the MCT. Constraints set (15)
computes the total amount of CO2 emissions produced as a
result of serving a given vessel due to container handling.
Constraints sets (16)-(18) show the nature of all parameters
and variables of the GBSP mathematical model.

IV. SOLUTION APPROACH
The GBSP mathematical model may be reduced to the
unrelated machine scheduling problem [25]. The machine
scheduling problems have the NP-hard complexity; there-
fore, the exact optimization algorithms will not be able to
obtain solutions for the realistic size problem instances of
theGBSPmathematical model within a reasonable computa-
tional time. To address the latter drawback this study proposes
a Hybrid Evolutionary Algortihm (HEA) for solving the
GBSP mathematical model. As opposed to canonical EAs,
which primarily apply stochastic search operators without
considering any feedback from the search and performing
any local search within the promising domains, the proposed
HEA deploys two types of local search heuristics. The first
local search heuristic is applied at the population initialization
stage, while the second one is executed after performing the
HEA operations (i.e., crossover and mutation). Hybridization
of the algorithms via deployment of local search heuristics
generally allows more efficient exploration and exploitation
of the problem search space, enhancing the objective function
values at termination of the algorithm, and improving the
algorithmic convergence patterns [26]. The major steps of the
proposed HEA are shown in Fig. 2.

The required data structures for the HEA variables are
initialized in step 0. Next, the HEA algorithm generates the
chromosomes for the initial population using a local search
heuristic in step 1. The fitness function values are computed
for each one of chromosomes of the initial population in
step 2. Then, the HEA algorithm begins an iterative process,
where the parent chromosomes are selected in step 3. The
offspring chromosomes are produced via the HEA operations
in step 4. Furthermore, in step 4 the HEA algorithm deploys a
custom operator to repair the infeasible offspring, generated
as a result of the HEA operations, and a local search heuris-
tic to improve fitness of the offspring chromosomes. Next,

FIGURE 2. The main steps of the HEA algorithm.

the fitness function values are calculated for the offspring
chromosomes in step 5. The survivor selection procedure is
performed in step 6. The iterative process is stopped by the
HEA algorithm, when the termination criterion is achieved.
At termination the HEA algorithm returns the best discovered
solution, which represents the vessel to berth to handling
rate assignment with the lowest possible vessel service cost.
A comprehensive description of each algorithmic step is pro-
vided next.

A. REPRESENTATION OF CHROMOSOMES
This study uses a three-dimensional integer chromosome to
represent the vessel to berth to handling rate assignment
(i.e., solution for the GBSP mathematical model). Fig. 3
demonstrates an example of a chromosome, where we
observe that 9 vessels request service at the MCT, which
has 2 berths. Vessels ‘‘2’’, ‘‘4’’, ‘‘5’’, ‘‘7’’, and ‘‘9’’
are scheduled for service at berth ‘‘1’’ of the MCT
(in that specific service order) under handling rates ‘‘2’’,
‘‘2’’, ‘‘1’’, ‘‘1’’, and ‘‘4’’ respectively, while vessels ‘‘1’’,
‘‘3’’, ‘‘6’’, and ‘‘8’’ are scheduled for service at berth ‘‘2’’
of the MCT (in that specific service order) under handling
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FIGURE 3. An example of a chromosome.

rates ‘‘3’’, ‘‘3’’, ‘‘1’’, and ‘‘2’’ respectively. Each chromo-
some is composed of gene arrays. Specifically, each gene
array includes three genes, representing berth, vessel, and
handling rate. Note that the length of a chromosome remains
the same throughout evolution of the HEA algorithm and is
defined by the number of vessels calling for service at the
MCT (i.e., |V |).

B. INITIALIZATION OF CHROMOSOMES
AND POPULATION
Canonical EAs primarily rely on chromosomes and initial
populations that are generated randomly [26]. Stochastic
chromosome initialization operators allowmaintaining diver-
sity of the initial population, but in the meantime may gener-
ate infeasible and low quality individuals. To avoid the latter
shortcoming, the proposed HEA algorithm relies on a local
search heuristic for the chromosome initialization, which is
based on the Green First Come First Served Policy (GFCFS).
The GFCFS heuristic is an extension of the FCFS policy,
which has been widely used in the BSP literature [22], [27].
Unlike a typical FCFS heuristic, the GFCFS policy makes
an assumption regarding the handling rate, selected by the
MCT operator for service of the arriving vessels. Specifically,
the GFCFS heuristic choses the handling rate with the lowest
productivity for each vessel, calling for service at the MCT,
to reduce production of CO2 emissions due to container
handling. Let V S be a set of vessels that are sorted based on
their arrival times; BAb be the time when berth b is idle for
the first time in the given planning horizon; and FT v be the
finish service time of vessel v. The major steps of the GFCFS
heuristic are demonstrated in Pseudocode 1 (P-1).

The necessary data structures are generated in step 1. Then,
all vessels that call for service at the MCT are sorted based
on their times of arrival in the ascending order in step 2.
Next, GFCFS starts an iterative process (steps 4-13). GFCFS
identifies the first available berth in step 5. The handling rate
with the lowest handling productivity is selected in step 6.
Then, GFCFS assigns a vessel to the first available berth for
service under the selected handling rate in step 7. The start
service time for a vessel is estimated in step 8, while the
vessel handling time is computed in step 9. The finish time of
a vessel service is calculated in step 10, while the procedure
updates the berth availability in step 11. The GFCFS heuristic
stops the iterative process, once the initial vessel to berth to
handling rate assignment is determined.

The advantage of using GFCFS for the chromosome and
population initialization within the proposed HEA is that it
will guarantee feasibility and acceptable quality of the indi-
viduals. However, GFCFS is deterministic. The population,
initialized using GFCFS only, will have identical individ-
uals, which will negatively affect the population diversity.

P-1 Green First Come First Served Policy (GFCFS)
GFCFS(V ,B,H ,ATv,NCv, hpvbh)
in: V = {1, . . . ,m}- set of vessels; B = {1, . . . , n}- set of
berths; H = {1, . . . , k}- set of handling rates; ATv- arrival
time of vessel v; NCv- number of containers to be handled
for vessel v; hpvbh- handling productivity of vessel v at
berth b under handling rate h
out: zvbh- vessel to berth to handling rate assignment
1:|V S

| ← m; |BA| ← n; |zvbh| ← n · m · k; |ST | ←
m; |FT | ← m
2: V S

← Sort(V ,AT )
3: v← 1
4: for all v ∈ V S do
5: b← argminb(BAb)
6: h← argminh(hpvbh)
7: zvbh← 1
8: ST v← max(ATv,BAb)
9: HT v←

∑
b∈B

∑
h∈H

( NCvhpvbh
)zvbh

10: FT v← ST v +HT v
11: BAb← FT v
12: v← v+ 1
13: end for
14: return zvbh

To ensure diversity of the initial population half of the HEA
population will be initialized using GFCFS, while the rest
of the HEA population will be initialized randomly. The
HEA population size (PopSize) will be determined as a result
of the parameter tuning analysis (details are presented in
section V.B of the paper). Size of the population is assumed
to remain fixed throughout the HEA evolution.

C. PARENT SELECTION
The parent selection step plays an important role in the EA
evolution, as it determines a subset of individuals from the
population that will be able to participate in the EA opera-
tions and produce the offspring chromosomes. The proposed
HEA deploys the roulette wheel selection (which is also
known as a fitness proportionate selection)mechanism for the
identification of parent chromosomes, which is widely used
in canonical Genetic Algorithms [26]. The roulette wheel
selection is a stochastic selection procedure, which assumes
that a probability of a given individual to become a parent
is proportional to its fitness. For a detailed description of
the roulette wheel selection mechanism this study refers to
Eiben and Simth [26].

D. HEA OPERATIONS
Once the parent chromosomes are identified, the HEA algo-
rithm applies three operators to produce the offspring at
a given generation, including the following: 1) crossover
operator; 2) mutation operator; and 3) hybrid operator.
A detailed description of those operators is provided in
sections IV.D.1- IV.D.3 of the paper.
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1) CROSSOVER
For the chromosome representation, adopted in this
study (Fig. 3), typical crossover operators (e.g., one-point
crossover, uniform crossover, multi-point crossover, etc.)
may generate the infeasible offspring, where vessels will be
assigned for service several times. However, there are certain
special crossover operators (e.g., order crossover, partially
mapped crossover), which will be able to produce the feasible
offspring for the adopted type of chromosomes. The proposed
HEA deploys the order crossover operator. An example of the
crossover operation is illustrated in Fig. 4.

FIGURE 4. An example of a crossover operation.

In the provided example two parent chromosomes are ran-
domly selected from the population. Then, a segment of the
chromosome (the segment length is determined randomly)
from the first parent is copied to the first offspring chromo-
some. In the considered example arrays of genes with vessels
‘‘5’’, ‘‘8’’, ‘‘9’’, ‘‘2’’, and ‘‘3’’ are copied from the first parent
to the first offspring chromosome. Next, the order crossover
operator selects the gene arrays with missing vessels from
the second parent and copies them to the first offspring
chromosome. In the considered example arrays of genes
with vessels ‘‘4’’, ‘‘7’’, ‘‘1’’, and ‘‘6’’ are copied from the
second parent to the first offspring chromosome. The second
offspring is created in a similar fashion.

The probability of randomly selected parent chromosomes
to undergo a crossover operation is defined by parame-
ter CrosProb. The CrosProb value will be set as a result
of the parameter tuning analysis (details are presented in
section V.B of the paper). Note that the mutation operation
will be still performed for a pair of parent chromosomes that
do not undergo the crossover operation.

2) MUTATION
After application of the order crossover operator the devel-
oped HEA deploys a custom mutation operator. A large
variety of mutation operators have been implemented in
EAs, including bit flipping, floating point, scramble, insert,
invert, swap, etc. [26]. Many BSP studies rely on the swap
mutation due to its effectiveness [7], [10]. However, for the
proposed chromosome representation the swap mutation will

be effective for altering the genes with vessel values, but may
cause shortcomings when changing the genes with berth and
handling rate values. Specifically, by swapping genes with
berth or handling rate values, the swap mutation operator
will not be able to discover any other potential values for the
berth or handling rate. For instance, if vessels ‘‘1’’ and ‘‘2’’
are served under handling rates ‘‘3’’ and ‘‘4’’ respectively,
the swap mutation operator will assign handling rate ‘‘4’’
for vessel ‘‘1’’, while handling rate ‘‘3’’ will be assigned for
vessel ‘‘2’’. Hence, the other handling rate alternatives (e.g.,
handling rates ‘‘1’’, ‘‘2’’, etc.) will never be considered.

The latter drawback can be addressed by applying the
floating point mutation operator for altering the genes with
berth and handling rate values, which changes berth and
handling rate values based on pre-specified lower and upper
bounds (and rounds the generated random value to the near-
est integer). The custom mutation operator, developed in
this study, applies the swap mutation for altering the genes
with vessel values and the floating point mutation for the
genes with berth and handling rate values. The main steps
of the mutation operation procedure are demonstrated in
Pseudocode 2 (P-2).

The data structure for the mutated offspring is initialized in
step 1. Then, the procedure enters the loop (steps 3-17), where
for each offspring chromosome functionGenerRandVal gen-
erates a random integer value, ranging from ‘‘1’’ to ‘‘3’’.
Next, if the generated random value is equal to ‘‘1’’, the muta-
tion operator applies the floating point mutation to the genes
with berth values of the offspring chromosome (step 8). If the
generated random value is equal to ‘‘2’’, the mutation opera-
tor applies the swap mutation to the genes with vessel values
of the offspring chromosome (step 10). If the generated ran-
dom value is equal to ‘‘3’’, the mutation operator applies the
floating point mutation to the genes with handling rate values
of the offspring chromosome (step 12). The procedure termi-
nates once each one of the offspring chromosomes has been
mutated. The number of genes mutated for each offspring
chromosome is determined by the mutation rate (MutRate).
The MutRate value will be set as a result of the parameter
tuning analysis (details are presented in section V.B of the
paper).

An example of a mutation operation is demonstrated
in Fig. 5, where we observe that vessels ‘‘9’’ and ‘‘1’’, orig-
inally scheduled at berths ‘‘1’’ and ‘‘2’’, switch their berth
assignments. Furthermore, vessel ‘‘4’’, originally assigned
for service at berth ‘‘1’’ is diverted for service at berth ‘‘2’’;
whereas vessel ‘‘8’’, originally assigned for service at berth
‘‘2’’, is diverted for service at berth ‘‘1’’. The handling rates
for vessels ‘‘7’’ and ‘‘3’’ are updated from ‘‘1’’ and ‘‘3’’ to
‘‘2’’ and ‘‘4’’ respectively. A total of six genes have been
mutated in the considered example (i.e.,MutRate = 6).

3) HEA OPERATIONS HYBRIDIZATION
Both crossover and mutation operators are stochastic and
do not consider any specific properties of the GBSP
mathematical model. An additional operator was encoded
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P-2Mutation Operation
Mutation(Offspringgen,MutRate)
in: Offspringgen- offspring produced by crossover at gen-
eration gen;MutRate - mutation rate
out: Offspringgen- mutated offspring at generation gen
1: |Offspringgen| ← |Offspringgen|
2: i← 1
3: for all i ∈ Offspringgen do
4: j← 1
5: while j ≤ MutRate do
6: RandVal ← GenerRandVal
7: if RandVal = 1 then
8: Offspringberthgeni ← Float(Offspringberthgeni )
9: else if RandVal = 2 then
10: Offspringvesselgeni ← Swap(Offspringvesselgeni )
11: else if RandVal = 3 then
12: Offspringrategeni ← Float(Offspringrategeni )
13: end if
14: j← j+ 1
15: end while
16: i← i+ 1
17: end for
18: return Offspringgen

FIGURE 5. An example of a mutation operation.

within the developed HEA algorithm to refine the vessel to
berth to handling rate assignment after performing crossover
and mutation operations. Note that the problem of optimal
vessel to berth assignment at the MCT for the offspring chro-
mosomes, generated using crossover and mutation operators,
is a typical BSPwith theNP-hard complexity that will require
a substantial computational time. However, selection of the
optimal handling rates for service of vessels can be reduced
to a typical assignment problem, which will require less
computational efforts. The problem of the optimal handling
rate selection for service of vessels calling at the MCT is
a relaxation of the GBSP mathematical model (that will be
referred to as GBSP-R) and is formulated as follows.
InGBSP-R the objective function (19) minimizes the total

vessel service cost. Constraints set (20) indicates that one
handling rate should be selected for service of a given vessel.
Constraints set (21) ensures that service of a vessel under the
selected handling rate should be performed at the assigned
MCT berth. Constraints set (22) guarantees that service of

GBSP-R: Reduced Green Berth Scheduling Problem

min[
∑
v∈V

∑
b∈B

∑
h∈H

(NCvcHTvh zvbh)+
∑
v∈V

(WT vcWTv )+

+

∑
v∈V

(LDvcLDv )+
∑
v∈V

(CO2vc
CO2 )] (19)

Subject to:

∑
b∈B

∑
h∈H

zvbh = 1∀v ∈ V (20)

zvbh ≤ xvb∀v ∈ V , b ∈ B, h ∈ H (21)

ST v ≥ ATv∀v ∈ V (22)

HT v =
∑
b∈B

∑
h∈H

(
NCv
hpvbh

)zvbh∀v ∈ V (23)

ST v ≥ ST v +HT v −M (1− svv)∀v, v ∈ V , v 6= v (24)

WT v ≥ ST v − ATv∀v ∈ V (25)

LDv ≥ ST v +HT v − ATv∀v ∈ V (26)

CO2v = NCv
∑
b∈B

∑
h∈H

EFvbhzvbh∀v ∈ V (27)

xvb, svv, zvbh ∈ {0, 1}∀v, v ∈ V , v 6= v, b ∈ B, h ∈ H (28)

NCv ∈ N (29)

ST v,HT v,WT v,LDv,CO2v ,ATv, hpvbh,RDv,EFvbh, c
HT
vh ,

cWTv , cLDv , cCO2 ,M ∈ R+∀v ∈ V , b ∈ B, h ∈ H (30)

a given vessel can begin only after its arrival at the MCT.
Constraints sets (23)-(27) estimate handling time, start ser-
vice time, waiting time, hours of late departure, and CO2
emission production respectively for each vessel. Constraints
sets (28)-(30) show the nature of all parameters and vari-
ables of theGBSP-Rmathematical model. Unlike theGBSP
mathematical model, where the vessel to berth assignment
and the vessel service order are determined using decision
variables xvb, v ∈ V , b ∈ B and svv, v, v ∈ V , v 6= v
respectively, the GBSP-R mathematical model assumes that
the vessel to berth assignment and the vessel service order
are already known and determined by crossover and mutation
operators (hence, xvb, v ∈ V , b ∈ B and svv, v, v ∈ V , v 6= v
are declared as parameters).

The GBSP-R mathematical model can be solved
using commercial mixed integer programming optimization
solvers (e.g., CPLEX) for realistic size problem instances
within an acceptable computational time. However, solving
GBSP-R for each individual in the population at each gener-
ation may negatively affect the time complexity of the HEA
algorithm. To avoid an increase in the HEA time complexity
the optimal handling rate for each vessel will be determined
by solving the GBSP-R mathematical model only for a
subset of individuals in the population (�) and after pre-
specified number of generations (Gen�). The local search
heuristic, which determines the optimal handling rate for a
randomly selected subset of the offspring chromosomes in the
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HEA population after pre-specified number of generations,
will be further referred to as the Optimal Handling Rate
Selection (OHRS) heuristic. The main steps of the OHRS
heuristic are demonstrated in Pseudocode 3 (P-3).

P-3 Optimal Handling Rate Selection (OHRS) Heuristic
OHRS(InData,Offspringgen, �,Gen�)
in: InData- input parameter values for theGBSP-Rmodel;
Offspringgen- offspring at generation gen; �- subset of
the offspring selected for improvement; Gen�- number of
generations after each improvement
out: Offspringgen- updated offspring at generation gen
1: |Offspringgen| ← |Offspringgen|
2: genaux ← 1
3: if gen = genaux then
4: i← 1
5: for all i ∈ Offspringgen do
6: if Offspringgeni ∈ � then
7: Offspringrategeni←GBSP−R(InData,

Offspringrategeni )
8: end if
9: i← i+ 1
10: end for
11: genaux ← genaux + Gen�

12: end if
13: return Offspringgen

The data structure for the updated offspring is initialized
in step 1, while the first generation for refining the han-
dling rate assignment (genaux) is set to 1 in step 2. Next, if
gen = genaux the ORHS heuristic starts an iterative pro-
cess (steps 5-10), where the optimal handling rate is deter-
mined only for a subset of the offspring individuals (�) by
solving the GBSP-R mathematical model (step 7). The next
generation for refining the handling rate assignment is reset
in step 11. The OHRS heuristic is continuously executed
every Gen� generations within the HEA algorithm until the
HEA convergence criterion is met. Values of � and Gen�

parameters and will be determined as a result of the parameter
tuning analysis, and details will be discussed in section V.B
of the paper.

E. REPAIRING INFEASIBLE INDIVIDUALS
The HEA mutation operator may produce the infeasible indi-
viduals throughout evolution of the algorithm. Fig. 6 illus-
trates an example of an infeasible offspring chromosome,
where the service order of vessels at berth ‘‘1’’ is disrupted
by vessels ‘‘4’’ and ‘‘5’’ that are assigned for service at
berth ‘‘2’’.

Infeasible individuals represent erroneous solutions for the
GBSPmathematical model and have to be altered in order to
avoid the genetic drift [26] and ensure feasibility of the final
solution at convergence. An additional operator was designed
within the proposed HEA algorithm to repair the infeasible
chromosomes. The key steps, required for the repairing oper-

FIGURE 6. An example of a repairing operation.

ation, are demonstrated in Pseudocode 4 (P-4).

P-4 Repairing Operation
Repair(Offspringgen)
in: Offspringgen- offspring produced by the mutation oper-
ator at generation gen
out: Offspringgen- repaired offspring at generation gen
1: |8| ← |Offspringgen|
2: i← 1
3: for all i ∈ Offspringgen do
4: 8i← Sortberth(Offspringgeni )
5: i← i+ 1
6: end for
7: Offspringgen← 8

8: return Offspringgen

A temporary data structure for storing the repaired off-
spring chromosomes (8) is initialized in step 1. Then,
the repairing operator starts an iterative process (steps 3-6),
where for every offspring chromosome the gene arrays are
sorted based on the assigned berth, and then the updated
offspring chromosome is copied to the temporary data struc-
ture. The process continues until every infeasible individual is
repaired. Next, the repairing operator replaces the infeasible
offspring chromosomes with the repaired ones in step 7.
Fig. 6 shows an example of a repairing operation, where the
gene arrays with vessels ‘‘4’’ and ‘‘5’’ are shifted to the group
of gene arrays that correspond to berth ‘‘2’’. The latter allows
obtaining a feasible vessel service order at berth ‘‘1’’. The
repairing operator is applied within the developed HEA to
each infeasible offspring after deployment of the mutation
operator.

F. FITNESS FUNCTION
The fitness function of the developed HEA algorithm was
assumed to be equal to the objective function of the GBSP
mathematical model (i.e., the total vessel service cost) with-
out deployment of any additional scaling mechanisms [26].

G. SURVIVOR SELECTION
The survivor selection aims to identify the offspring chro-
mosomes from the current population that will become can-
didate parents in the consecutive generation. This study
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applies a generational survivor selection mechanism, which
assumes that all offspring chromosomes from the current
population are allowed to become potential parents in the
consecutive generation. The generational survivor selection
mechanism has been widely deployed in canonical Genetic
Algorithms and Genetic Programming [26].

H. TERMINATION CRITERION
The developed HEA algorithm will be terminated after a
pre-specified number of generations (GenLast ). The value of
GenLast will be selected based on preliminary runs of the
HEA algorithm, and details are presented in section V.B of
the paper.

V. NUMERICAL EXPERIMENTS
A number of numerical experiments were conducted in this
study to evaluate effectiveness of the proposed HEA algo-
rithm and the developed berth scheduling model. The com-
putational effectiveness of the developed HEA algorithm was
assessed based on a comparative analysis against the fol-
lowing algorithms: 1) typical EA, which does not apply any
local search heuristics; 2) hybrid EA, which applies only the
GFCFS heuristic for the population initialization but does not
apply theOHRS heuristic after theHEAoperations (this algo-
rithm will be referred to as HEA-1); and 3) hybrid EA, which
applies only the OHRS heuristic after the HEA operations but
does not apply the GFCFS heuristic for the population ini-
tialization (this algorithm will be referred to as HEA-2). All
of the developed algorithms (i.e., EA, HEA-1, HEA-2, and
HEA) were coded in MATLAB 2016a [28]. The numerical
experiments were performed a Dell Intel(R) CoreTMi7 Pro-
cessor with 32 GB of RAM. The GBSP-R mathematical
model was coded in General Algebraic Modeling System
- GAMS [29] and solved using CPLEX within the OHRS
heuristic (used by the HEA-2 and HEA algorithms). This
section of the paper provides a detailed description of the con-
ducted numerical experiments, including the following major
steps: 1) input data description; 2) parameter tuning analysis;
3) optimality gap estimation; 4) comprehensive comparison
of the algorithms; and 5) analysis of the managerial insights.

A. INPUT DATA DESCRIPTION
The available MCT operations literature was primarily used
to generate the numerical data for computational experiments
in this study [30]–[39]. The adopted values for parameters
of the GBSP mathematical model are presented in Table 1.
A total of three MCT berthing availability cases were con-
sidered in this study, including the following: (1) 2 berths;
(2) 4 berths; and (3) 6 berths. The interarrival time of vessels
at the MCT was modeled using the exponential distribution
with an average of 2 hours [32], [33]. The container demand
for each vessel calling at the MCT was set as follows: NCv =
U [500; 2,000]∀v ∈ V (TEUs), where U – is a notation used
to define the uniformly distributed pseudorandom numbers.
It was assumed that the MCT operator could provide a total
of four handling rates to the liner shipping companies. The

TABLE 1. Input data.

handling productivities for corresponding handling rates at
the ‘‘preferred berth’’ hpvb∗vh∀v ∈ V , b∗v ∈ B, h ∈ H
(where b∗v – is the ‘‘preferred berth’’ for vessel v) were set to
[120; 150; 180; 210] TEUs/hour respectively. The ‘‘preferred
berth’’ for each vessel was determined based on the FCFS
policy.

The handling productivity for vessel v at berth b under han-
dling rate h was calculated as follows: hpvbh = hpvb∗vh · (1−
U [0.1; 0.2] · |b∗v−b|)∀v ∈ V , b, b∗v ∈ B, h ∈ H (TEUs/hour).
The latter formula accounts for decreasing productivity under
the requested handling rate if a vessel is not scheduled for
service at its ‘‘preferred berth’’ [21]. The requested vessel
departure time was set based on the vessel arrival time and the
vessel handling time (assuming that the vessel will be served
at the ‘‘preferred berth’’).

Based on the available literature the CO2 emission factor
for the base handling productivity (h∗ = 180 TEUs/hour)
was set to EFvbh∗ = 0.01729∀v ∈ V , b ∈ B, h∗ ∈ H (tons of
CO2/TEU) [23], [24]. The CO2 emission factors for handling
rates with the other handling productivities were computed in
relation to the base handling productivity as follows: EFvbh =
EFvbh∗ ·

hpvbh
180 · (1 + U [0.1; 0.2] · |b∗v − b|)∀v ∈ V , b,

b∗v ∈ B, h, h∗ ∈ H (tons of CO2/TEU). The latter formula
allows capturing an increasing CO2 emission production due
to increasing handling productivity (i.e., the MCT operator
will be required to deploy more handling equipment for
service of a vessel, which will increase the CO2 emissions
produced) and/or additional container transfer time to the
marshaling yard in case if a vessel is not scheduled for service
at its ‘‘preferred berth’’ (i.e., additional container transfer
timewill increase theCO2 emissions produced by the internal
transport vehicles).

The vessel handling cost was set as follows: cHTvh =
hpvb∗v h
180 ·

U [500; 750]∀v ∈ V , b∗v ∈ B, h ∈ H (USD/TEU) [37]. The
latter formula accounts for an increasing handling cost for
requesting a handling rate with a higher handling productiv-
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TABLE 2. Parameter tuning analysis summary.

ity. The vessel waiting and late departure costs were generated
as follows: cWTv = U [1,000; 2,000]∀v ∈ V (USD/hour)
and cLDv = U [5,000; 10,000]∀v ∈ V (USD/hour) [36].
The CO2 emission cost was set to 32 (USD/ton) [23], [24].
A total of 60 problem instances were developed based on
the generated numerical data by varying the number of ves-
sels calling for service at MCT and the berthing availability
at MCT. The generated problem instances were subdivided
into the following groups: 1) small size problem instances
(SP1-SP30) with the number of vessels changing from
11 to 20 with an increment of one vessel for each one of the
berthing availability cases; 2) realistic size problem instances
(RP1-RP30) with the number of vessels changing from 45 to
90 with an increment of five vessels for each one of the
berthing availability cases. Results from the conducted com-
putational experiments are reported in sections V.B-V.E of the
paper.

B. PARAMETER TUNING
A parameter tuning analysis was conducted in this study
to determine the values of parameters for each one of the
developed solution algorithms. A factorial design methodol-
ogy [40] was implemented for the parameter tuning analysis
in this study. According to the factorial design methodol-
ogy, each algorithm has a number of parameters, which are
generally referred to as ‘‘factors’’, and each parameter has
a set of candidate values, which are generally referred to as
‘‘levels’’. Five problem instances were selected at random
from the developed large size problem instances (LP1-LP30),
which were described in section V.A. Each algorithm was
assumed to have four candidate values for each parame-
ter (which corresponds to a 4k factorial design with 4 levels
and k factors). Each one of the developed algorithms was
executed 10 times for each parameter combination. Hence,

a total of 4k · repl · inst experimental runs (where repl –
is the number of replications [repl = 10]; inst – is the
number of instances [inst = 5]) were undertaken for each one
of the developed algorithms. The parameter tuning analysis
results are presented in Table 2, where the following data
are provided for each algorithm: (1) algorithm; (2) parameter
of a given algorithm; (3) description of a given parameter;
(4) considered candidate values; and (5) selected parameter
value (based on a tradeoff between the solution quality at
convergence and the recorded computational time).

Computational experiments also demonstrated that there
was no substantial change in the objective function value after
∼3,000 generations for each one of the algorithms. Therefore,
the termination criterion was set to GenLast = 3,000 genera-
tions (for the EA, HEA-1, HEA-2, and HEA algorithms).

C. OPTIMALITY GAP ESTIMATION
The first set of numerical experiments aimed to estimate
the optimality gaps for the developed solution algorithms in
order to compare the objective function values, suggested
by the algorithms, against the optimal ones. The GBSP
mathematical model was coded in GAMS [29] and then
solved using CPLEX for all the small size problem instances
(SP1-SP30). Themaximum allowable CPLEX computational
time was limited to 2 hours, while 0.1% was adopted for
the CPLEX relative optimality gap value. All of the devel-
oped algorithms were launched for the considered small size
problem instances. The optimality gap analysis results are
shown in Table 3, which provides the following information:
(1) instance number; (2) number of vessels requesting service
at MCT (i.e., |V |); (3) MCT berthing availability (i.e., |B|);
(4) optimal objective function value, identified by CPLEX;
(5) CPLEX computational time; (6) objective function values
for the EA, HEA-1, HEA-2, and HEA algorithms (aver-
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TABLE 3. Optimality gap analysis results.

age over 10 replications); (7) optimality gap, estimated as
1i = (Fi − F∗)/F∗, where F∗– is the optimal objective
function value, identified by CPLEX; Fi – is the objective
function value, identified by algorithm i (i = EA,HEA − 1,
HEA − 2,HEA); and (8) computational time for the EA,
HEA-1, HEA-2, and HEA algorithms (average over
10 replications).

Results from the optimality gap analysis showcase that
for certain problem instances CPLEX was not able to obtain
the optimal solution within 2 hours (i.e., instances SP24,
SP26, SP27, SP28, SP29, and SP30). The latter finding
can be explained by the NP-hard complexity of the GBSP
mathematical model. The maximum optimality gap values
comprised 4.13%, 2.37%, 2.68%, and 1.61% for the EA,
HEA-1, HEA-2, and HEA algorithms respectively. The lat-
ter results demonstrate accuracy of the developed solution
algorithms. Smaller optimality gaps were generally recorded
for the HEA algorithm. The computational time, required to
solve the small size problem instances, averaged on 32.53 sec,
33.22 sec, 43.34 sec, and 46.30 sec for the EA, HEA-1,
HEA-2, and HEA algorithms respectively.

D. COMPREHENSIVE COMPARISON OF THE ALGORITHMS
The second set of numerical experiments focused on a
comprehensive comparative analysis of the developed solu-
tion algorithms for the realistic size problem instances
(RP1-RP30). Each one of the considered algorithms (i.e., EA,
HEA-1, HEA-2, and HEA) was executed for all the generated
realistic size problem instances, described in section V.A
of the paper. Results of the conducted analysis are summa-
rized in Table 4, including the following data: (1) instance
number; (2) number of vessels requesting service at MCT
(i.e., |V |); (3) MCT berthing availability (i.e., |B|); (4) the

objective function value, identified by the GFCFS heuristic
(i.e., starting solution for the HEA-1 and HEA algorithms);
(5) objective function values for each algorithm (average over
10 replications); and (6) computational time values for each
algorithm (average over 10 replications).

Computational experiments indicate that deployment of
the GFCFS heuristic at the population initialization stage
is more advantageous for the search process as compared
to deployment of the OHRS heuristic after application of
the crossover and mutation operators. The latter finding is
supported by the fact that the HEA-1 algorithm suggests
solutions with superior objective function values as opposed
to the HEA-2 algorithm for all the generated realistic size
problem instances.

Moreover, the developed HEA consistently outperforms
the EA, HEA-1, and HEA-2 algorithms in terms of the
objective function values. The objective function value, pro-
vided at convergence of the HEA algorithm, was on average
11.3%, 3.2%, and 7.7% lower as compared to the objective
function values, suggested by the EA, HEA-1, and HEA-2
algorithms respectively. Hence, deployment of both GFCFS
and OHRS heuristics (applied within the HEA algorithm)
is more advantageous for exploration and exploitation of
the promising domains of the search space as compared
to deployment of either GFCFS only (applied within the
HEA-1 algorithm) or OHRS only (applied within the
HEA-2 algorithm). The worst performance was demon-
strated by the EA algorithm, which solely relied on
the stochastic search operators (i.e., crossover and muta-
tion) without applying any local search. The compu-
tational time of the EA, HEA-1, HEA-2, and HEA
algorithms averaged on 1.71 min, 1.73 min, 1.78 min,
and 1.91 min respectively. Therefore, application of addi-
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TABLE 4. Comparative analysis results.

tional local search heuristics within the HEA-1, HEA-2, and
HEA algorithms did not substantially influence their time
complexity.

Along with the objective function and computational time
values, the algorithmic convergence patterns were recorded
for each problem instance and each replication. Results are
illustrated in Fig. 7 for the first replication of each algorithm
for problem instances RP19-RP30 (i.e., 12 out of 30 problem
instances with the largest size). The convergence patterns
are shown only for the first replication, as they did not
fluctuate substantially from one replication to another for
each one of the developed solution algorithms. The con-
vergence pattern analysis results indicate that the random
population initialization (applied within the EA and HEA-2
algorithms) drastically worsens the quality of the initial
solutions. On the other hand, deployment of the GFCFS
heuristic (applied within the HEA-1 and HEA algorithms)
allows the search to begin within the promising domains,
which have solutions with higher fitness values. Furthermore,
application of the ORHS heuristic allows refining solutions
produced by the stochastic search operators, which further
allows HEA discovering solutions with higher fitness func-
tion values as compared to HEA-1 throughout the search
process.

E. ANALYSIS OF THE MANAGERIAL INSIGHTS
The third set of numerical experiments was conducted to
demonstrate how the developed mathematical model could
be used to draw important managerial insights. A total
of 220 scenarios were developed by changing the CO2 emis-
sion cost from 32 USD/ton (base case) to 640 USD/ton with
an increment of 32 USD/ton and increasing the late arrival
penalty from 100% (base case) to 200% with an increment
of 10% for each vessel calling at the MCT. The analysis
was performed for the problem instance with the largest
size (RP30). The HEA algorithm was executed for each one
of the CO2 emission cost - late vessel arrival penalty sce-
narios. Results are presented in Fig. 8, where the following
information is provided for each scenario: (1) total vessel
service cost; (2) total vessel late departures; and (3) total CO2
emissions produced due to container handling. Note that the
average vessel late arrival penalty was estimated as follows:
cLD = (

∑
v∈V

cLDv )/|V |.

It can be observed that a simultaneous increase
of the CO2 emission cost and the late vessel arrival
penalties may increase the total vessel service cost by
1.93 million USD as compared to the base case total
vessel service cost (for CO2 = 32 USD/ton and
cLD = 7,640 USD/hour).
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FIGURE 7. Convergence patterns of the developed algorithms.

Furthermore, an increase in the average vessel late depar-
ture penalty from 7,640 USD/hour to 15,300 USD/hour
reduced the total vessel late arrival hours from 47.1 hours to

34.8 hours for the base case CO2 emission cost value (CO2 =

32 USD/ton). In the meantime, an increase in the CO2
emission cost from 32 USD/ton to 640 USD/ton reduced
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FIGURE 8. Managerial insights.

the total CO2 emission production from 2,274.1 tons to
2,153.4 tons for the base case average vessel late arrival
penalty value (cLD = 7,640 USD/hour). Hence, the devel-
oped mathematical model can assist the MCT operator with
construction of efficient berth schedules, improving the envi-
ronmental sustainability of the MCT operations, evaluation
of various CO2 taxation polices, and analysis of various
agreements with the liner shipping companies (i.e., how the
MCT operator should alter the berth schedule if the liner
shipping company increases costs associated with vessel late
departures, waiting time, etc.).

VI. CONCLUSIONS AND FUTURE RESEARCH EXTENSIONS
Considering a substantial increase in the international
seaborne trade volumes, the marine container terminal oper-
ators have to enhance effectiveness of the operations in order
to handle the growing demand. In the meantime, negative
environmental externalities have to be accounted for in man-
agement of the terminal operations. This study proposed a
mixed integer mathematical model for the berth scheduling

problem, where the objective function minimized the total
vessel service cost, including the carbon dioxide emission
cost due to container handling. Due to the NP-hard complex-
ity of the presented mathematical model the Hybrid Evolu-
tionary Algorithm was developed to solve the realistic size
problem instances within an acceptable computational time.
Unlike typical stochastic search algorithms, the proposed
algorithm deployed a set of local search heuristics to facilitate
exploration and exploitation of the search space. Results
for the conducted numerical experiments indicated that the
optimality gap of the developed Hybrid Evolutionary Algo-
rithm did not exceed 1.61%. Moreover, application of local
search heuristics allowed the proposed solution algorithm
an efficient discovering of good quality solutions without a
substantial increase in the computational time. The analysis
of managerial insights indicated that the carbon dioxide emis-
sion cost might significantly affect the design of berth sched-
ules. Therefore, the presented mathematical model and the
developed solution approach may assist the marine container
terminal operators with designing the cost-effective berth
schedules and improving the environmental sustainability of
the terminal operations.

The avenues for the future research include the following:
(1) application of the exact optimization algorithms within
the proposed Green First Come First Served heuristic at the
chromosome initialization stage; (2) deployment of the alter-
native crossover operators (e.g., partially mapped crossover);
(3) application of the alternative survivor selection mecha-
nism; (4) evaluation of new termination criteria for the solu-
tion algorithm; (5) application of scaling mechanisms for the
fitness function; (6) evaluation of the alternative container
handling equipment types and their effects on the environ-
mental sustainability of the terminal operations; and (7) mod-
eling the other pollutants, produced by container handling
equipment.
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