
Received March 17, 2017, accepted April 9, 2017, date of publication April 12, 2017, date of current version May 17, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2693376

SDUDP: A Reliable UDP-Based Transmission
Protocol Over SDN
MING-HUNG WANG1, (Student Member, IEEE), LUNG-WEN CHEN2,
PO-WEN CHI3, (Member, IEEE), AND CHIN-LAUNG LEI1
1Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
2MediaTek Inc., Hsinchu 30078, Taiwan
3Arcadyan Technology Corporation, Hsinchu 30071, Taiwan

Corresponding author: Ming-Hung Wang (d00921027@ntu.edu.tw)

This work was supported by the Ministry of Science and Technology, Taiwan, under Grant MOST 104-2221-E-002-099-MY3.

ABSTRACT The recent rapid development of Web technology, multimedia content, and interactive data
has considerably expanded the size of the Internet transmissions. Benefiting from the paradigm-shifting
technology of software defined networking (SDN), the administrators are now able to easily manage network
flows by customizing flow rules over SDN. Inspired by this, we propose a UDP-based reliable transmission
framework to improve efficiency of transmission control protocol (TCP) transmission on an SDN-enabled
network. Themain idea of our framework is to convert the TCP transmission intoUDP packets to decrease the
overhead during communications, such as handshaking, acknowledgment, and header overhead while using
TCP. To guarantee reliability, we have leveraged the power of SDN to designate packets under our protocol
to flow in predefined routes and monitor them to avoid possible packet loss. Our proposal is composed of
a series of designs and implementations, including the packet format transformations, packet buffering, and
retransmissionmechanisms on switches. For users, this means that they are transmitting data with TCP, while
the overhead of the TCP traffic is reduced significantly through a reliable and lightweight UDP transmission
mechanism on the SDN-enabled network. Our evaluation results show that our framework provides a more
efficient bandwidth usage and guarantees the reliability of packets as in TCP transmissions.

INDEX TERMS TCP improvement, reliable UDP, SDN, OpenFlow.

I. INTRODUCTION
In recent years, network bandwidth has become a crucial
issue for both Internet service providers as well as content
providers. For example, the increasing amount of multime-
dia content has occupied a large portion of available net-
work capacity. However, most of the content is transmitted
using TCP [1] as its genuine features, such as the slow
start, the bandwidth probing, and the congestion control
provide reliability during communication. Meanwhile, the
overhead of TCP packet headers and ACK messages remains
a major issue as it consumes more bandwidth and time than
UDP transmissions [2].

Recently, Software DefinedNetworking (SDN) [3]–[8] has
emerged as a more efficient new technology for managing
both wired and wireless networks, as it decouples data and
control planes and provides a centralized management infras-
tructure. SDN enables administrators to conduct lightweight
monitoring and management of large-scale networks. For
instance, SDN can provide offloading the traffic on specific
routes through setting a series of flow routes for a certain

service. In addition, the centralized management infrastruc-
ture can help network administrators with monitoring the
status of a network and enable them to conduct instant actions
when issues appear.

Motivated by the capabilities of SDN, this paper leverages
the strength of SDN and UDP and proposes an enhanced
transmission infrastructure. In our design, neither host has
to be fundamentally changed. Rather, we implement our
design on the SDN controller and the SDN switches to pro-
vide a reliable and efficient transmission. Through experi-
ments, we have evaluated the effectiveness of our framework
compared to TCP transmissions at many aspects such as
the average load of switches in terms of bytes and num-
ber of packets. The results demonstrate that our framework
outperforms TCP in different network environments and
settings.

To sum up, our research achieves the following goals:
1) Decrease transmission overhead. We modify the

transmission of TCP transmission by converting
TCP packets into UDP packets among the SDN.

5904
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017



M.-H. Wang et al.: SDUDP: Reliable UDP-Based Transmission Protocol Over SDN

FIGURE 1. Three types of reliable UDP schemes. The gray blocks are used
to indicate the modification parts of different scheme types.

Headers are simplified and acknowledgment packets
are significantly reduced.

2) Guarantee transmission reliability. To retain TCP
transmission reliability, our framework leverages the
SDN function tomonitor the packet flow of the network
and retransmit packets while detecting packet loss.

3) Maximize data frame utilization. We propose a
mechanism of packet accumulation to maximize the
utilization of each data frame sent to the network.

This paper is organized as follows. Section 2 reviews
the related works about reliable transmission using non-
TCPmechanisms. Section 3 introduces the proposed SDUDP
framework and includes details of components and designs.
Section 4 presents our evaluation results and analyses, and
in addition provides system performances and compares and
contrasts them from different angles. Finally, Section 5 draws
the conclusions and suggests future work on this subject.

II. RELATED WORKS
A. RELIABLE UDP
Reliable UDP is a long-investigated topic in networks.
Compared to TCP, UDP is a lightweight transport protocol
and is suitable for fast and efficient transmission without
guarantees. However, sometimes users may encounter slight
overhead for some additional features, like reliability. To
leverage the strength of both protocols, many reliable UDP
works have been proposed. These works can be divided into
three types; transport layer modification, application layer
modification, and middle layer modification (see Figure 1).

The first type of reliable UDP modifies the transport
layer. That is, this approach changes the UDP’s header
and its behavior. In 1999 Cisco proposed the representative
RELIABLE UDP PROTOCOL (RUDP) [9], which adds
six additional bytes on a header for the acknowledgment,
the retransmission, and the checksum. Although these added
mechanisms are similar to TCP, the overhead is decreased.
Note that RUDP is not currently a formal standard. Another
example is DTLS [10]–[12]. DTLS is a secure protocol for
datagram transmission instead of the transport layer. How-
ever, it provides a suitable example to see how UDP could
deal with the reordering and packet loss issues. The advantage

of this kind of approach is that the new UDP protocol can
serve existing applications with more features. The trade-off
is that users can only communicate with those who have the
same transport layer protocol.

The second approach moves the works for reliability
from the transport layer to the application layer. In 2002,
He et al. proposed RBUDP (Reliable Blast UDP) [13] for
QoS-enabled networks. They used TCP and UDP simultane-
ously with TCP used for signaling and UDP for data traffic.
The TCP connection exchanged the data transfer status for
ensuring reliability and QoS while the UDP channel, which
has higher bandwidth, made data transfer more efficient.
SABUL [14], which was proposed in 2003, is another similar
approach for congestion control. Finally, Tsunami [15] is
an approach which replaces sliding window by inter-packet
delay adjustment for rate control. The advantage of these
schemes is that the network stack remains unchanged and
that therefore these approaches can be ported to almost all
systems. The problem is that existing applications need to be
patched and re-implemented.

The third approach builds a middle layer between the
transport layer and the application layer. In 2007, Gu and
Grossman proposed the UDT (UDP-based data transfer) [16]
framework. This framework creates a UDT socket layer by
providing applications with a new set of socket APIs while
internally using OSI socket APIs. The reliability and conges-
tion control mechanisms are implemented in this new socket
layer. RUFC [17] is another framework that similarly creates
a middle layer. What makes it different is that its middle layer
can accept different policies for different applications. Thus,
RUFC makes it possible to customize policies for application
optimization. The obvious benefit of this design is that it can
be applied directly to existing UDP. However, applications
need to use another set of socket APIs. Another problem is
that this type of approach adds a new layer which will cost
extra overhead for data bypass.

Unfortunately, all of the above schemes are end-to-end
solutions, meaning that in order to implement them, existing
protocols need to be modified, no matter whether the mod-
ified part is in the transport layer, the application layer or
between these two layers. In the real world that the TCP/IP
has been well deployed, making it almost impossible to
replace the transport layer of all hosts. Therefore, normal
users cannot enjoy the benefits of reliable UDP. To fill in
this gap this work imitates TCP behavior in UDP with SDN
support so that users can setup a TCP connection while
actually it is a UDP transmission in the network. This work
is totally network-realized and is transparent to users.1

B. SPLIT TCP
The split TCP [18], [19] constructs TCP proxies in the mid-
dle of transmission to enable packet buffering upon receipt

1Transparency here does not mean that users do not know they are using
this service but means that they do not modify the network protocol stack on
their computers.

VOLUME 5, 2017 5905



M.-H. Wang et al.: SDUDP: Reliable UDP-Based Transmission Protocol Over SDN

FIGURE 2. The proposed SDUDP transmission framework.

and transmission rate control. Benefiting from the buffering,
dropped packets can be recovered from the most recent node.
In addition, the rate control feature addresses the potential
congestion through controlling rates of inter-proxy segments.
Recent scholars [20], [21] have focused on improving the
split-TCP concept and applied it to wireless network envi-
ronments. SDUDP similarly leverages the concept of adding
Retransmission Engines during the path. However, the major
difference between SDUDP and the previous works of split
TCP is that SDUDP leverages the power of SDN to monitor
the IP Identification field for packet loss detection. Once
SDUDP finds packet drop events according to the discontin-
uous value in Identification fields, the retransmission engine
will start retransmission as soon as possible; thus, there is no
need to wait for a timeout in order to start retransmission.

C. RELIABLE COMMUNICATION IN SDN
Although SDN has been adopted in improving network com-
munication and management by previous scholars [22]–[25],
not so many researches exist about achieving traffic
reliability. The reason is that SDN is commonly treated as
an infrastructure and reliability is usually guaranteed through
end-to-end approaches, like discussed in the previous sub-
section. However, in multicast scenarios, SDN does play an
important role in maintaining reliability. To deal with this
issue previous scholars proposed the File Multicast Transport
Protocol (FMTP) in [26]–[28], which uses in-sequence deliv-
ery on VLAN [29] to detect packet loss.

FMTP has one serious limitation, though, which is that its
deployment requires VLAN support. Since VLAN is a layer-
2 technology, it is impossible to apply it to communications
over multiple networks.2 To address this problem, our work
makes use of IP information instead of VLAN information,

2Undoubtedly, by VPN technologies, multiple networks can be integrated
as one local area network and VLAN can be used in this case.

which renders our approach usable across multiple networks.
Besides, FMTP needs to be deployed both on senders and
receivers instead of only on the SDN controller. That is, all
drawbacks discussed in the previous subsection also stand
here. As stated before, our method requires nothing changed
on each host. To provide reliability we only implement our
framework on the SDN controller and the SDN switches.

III. PROPOSED FRAMEWORK
A. OVERVIEW
Figure 2 shows our proposed framework. In the figure, each
switch represents an enhanced SDN switch, meaning that it
possesses SDN switch capabilities, and our proposed engines.
Edge Switches consist of the TCP Engine, the Retransmis-
sion Engine, and the Packet Sending Engine; while other
SDN switches are enabled with the Retransmission Engines.
Figure 3 shows the design of the Edge Switch.

As in Figure 3, the Edge Switch, the TCP Engine, and
the Retransmission Engine take over two tasks: 1) transform
packets from TCP to UDP (on sender side) and UDP to TCP
(on receiver side) for transmission, and; 2) guarantee the
reliability of transmission without using sequence numbers
and ACK messages.

The TCP Engine is responsible for maintaining informa-
tion of TCP connections between hosts, and furthermore, for
transforming packets from the TCP format to the UDP format
and from the UDP to the TCP format. The Retransmission
Engine is designed for detecting and dealing with packet loss
events through the Identification [30], [31] field of pack-
ets in the IP layer. To ensure that the packets sent to/from
the TCP Engine can pass through the switches with the
Retransmission Engine, we have deployed pre-defined flow
rules [32], [33] in these switches to fix the path of these pack-
ets. Through the cooperation between these engines and the
pre-defined flows, our framework guarantees sequentiality
and reliability of data. Consequently, data can be transmitted

5906 VOLUME 5, 2017



M.-H. Wang et al.: SDUDP: Reliable UDP-Based Transmission Protocol Over SDN

FIGURE 3. Scenarios in Edge Switches (sender side and receiver side).

through UDP over the network, which implies that our frame-
work transmits packets with shorter headers and no ACK
messages.

The following describes a sample transmission scenario
of our framework. Given two hosts, Host 1 and Host 2.
Host 1 likes to transmit data via a TCP connection to
Host 2. Between Host 1 and Host 2, there are two near-
est switches, we call these the ‘‘Edge Switches’’ and
denoted them as Edge Switch A and Edge Switch B.
Before the transmission starts, the initiation of the connec-
tion should set flow rules to establish a pre-defined route
between the two switches to guarantee a fixed route for the
connection.

In the fixed route, the Edge Switches will first deliver
all the TCP packets that belong to the connection to the
TCP Engine implemented in Edge Switch A. Then the TCP
engine will decapsulate the TCP packet, retrieve the data,
encapsulate them as UDP packets, and send them to Host 2.
According to the pre-defined flows, the packets between
Edge Switch A and Edge Switch B are then transmitted on
a fixed path. Through this fixed path we assure that packets
are transmitted orderly. Even though some packets may be
lost during transmission, in our design the switches with
the Retransmission Engine on the fixed path will detect and
retransmit the lost packets.

The following six steps describe the establishment of com-
munication:

1) SYN message sent by Host 1. Once TCP Engine in
Edge Switch A (the one we call TCP Engine A) identi-
fies a SYN message (from Host 1) that Host 1 wants to

establish a TCP connection with Host 2, TCP Engine
A starts the following procedure.

2) Exchange information of Host 1 and 2. Once TCP
Engine A retrieves the information of Host 1 from SYN
messages, such as the MAC address and the IP address,
Edge Switch A encapsulates the essential information
into a connection creation message and sends it to Edge
Switch B through the Retransmission Engine.

3) Connection between the two hosts and Edge
Switches. When Edge Switch B receives the connec-
tion creation message, it uses the information from the
message to forge an SYN message. This SYN mes-
sage is almost the same as the one received by Edge
Switch A. The only differences are the ‘‘sequence
number’’ and ‘‘time-stamp’’. Edge Switch B uses its
own sequence number and time-stamp in this SYN
message. This SYNmessage will be sent to Host 2, and
as the genuine TCP, Host 2 will reply an SYN-ACK
message to ‘‘Host 1’’, but actually this packet will be
forwarded to Edge Switch B.

4) Imitate TCP interactions with the two hosts. After
Edge Switch B has replied an ACK message to the
SYN-ACK message, a TCP connection is success-
fully established between Edge Switch B and Host 2.
However, for Host 2, there is no difference in this
design, as Host 2 believes it communicates with Host 1
using a TCP connection. If the TCP connection has
been established correctly, Edge Switch B will send the
information of Host 2 to Edge Switch A. Otherwise,
Edge Switch Bwill send a connection failedmessage to

VOLUME 5, 2017 5907



M.-H. Wang et al.: SDUDP: Reliable UDP-Based Transmission Protocol Over SDN

FIGURE 4. A scenario of TCP Engine in TCP-UDP transformation.

Edge SwitchA. In the case of a success TCP connection
establishment, Edge Switch A will receive a message
from Edge Switch B, which includes the information
about Host 2. Edge Switch A then uses the information
except for the sequence number and the time-stamp,
to forge an SYN-ACK message and send it to Host 1.
Similar to the situation at Edge Switch B, a TCP con-
nection now has been established between Host 1 and
Edge Switch A. Similarly, in the perspective of Host 1,
it believes that a TCP connection is established between
Host 1 and Host 2. After the above procedure, an estab-
lishment of SDUDP connection has been completed
between Host 1 and Host 2.

5) Data transmission fromHost 1 to the network.Next,
we address the transmission of actual data that Host 1
wants to send to Host 2. After the TCP handshake,
Host 1 will send data to Host 2 through Edge Switch A,
and Edge Switch A will keep acting like Host 2. Thus,
Edge Switch A will buffer the data and send ACKmes-
sages back to Host 1. Interactions between Host 1 and
Edge Switch A are the same as in a TCP connection.
Edge Switch A will not buffer the data for a long time,
because it will send this data to Edge Switch B. Once
the data has been sent into the network, our framework
guarantees the sequentiality and reliability through the
switches with retransmission functions implemented in
switches on the transmission path. To sum up, Edge
Switch A sends the data and other switches on the route
will make sure that the data arrives reliably at Edge
Switch B in sequence and without loss. We describe
the reliable mechanism transmission on the Retrans-
mission Engine part in Section III-B2.

6) Data receiving from the network toHost 2.While the
data arrives at Edge Switch B in sequence without any
loss, Edge Switch B sends data to Host 2 according to
the packet sequence via normal TCP mechanism.

The above is a typical procedure of data transmission from
Host 1 to Host 2 under our framework. Benefiting from the
centralized structure of SDN, in our design the controller
saves detailed settings of the framework, including flow

rules, buffer size on switches, and other related metrics. The
controller exchanges messages and settings on switches via
OpenFlow.

B. ENHANCED SDN SWITCH ARCHITECTURE
This section describes in detail the proposed major designs of
the TCP Engine, the Retransmission Engine, and the Packet
Sending Engine.

1) TCP ENGINE
The TCP Engine handles three main tasks: 1) maintenance
of the TCP connections between hosts and Edge Switches;
2) decapsulation of TCP packets and encapsulation to UDP
packets before sending to the network; 3) transforming
UDP packets into TCP format before sending them to the
destination host. As our design follows the current trans-
mission protocol for the hosts, the TCP Engine maintains
TCP connections with hosts. In addition, TCP Engines trans-
form packet format during transmission in our framework.
In our design, only Edge Switches need to be deployed in
combination with the TCP Engine. In other words, switches
other than Edge Switches can support our design only
through the function of the Retransmission Engine. This
design offloads the efforts of deploying the TCP engine
in every switch. A scenario of TCP Engine in TCP-UDP
transformation is shown in Figure 4. The TCP Engine in
the figure is composed of 1) TCP Engine Control Module,
2) UDP Packet Preparation Module, and 3) TCP Connec-
tion Module. The following describes details about these
components:
• TCP Engine Control Module. The TCP Engine Con-
trol Module handles the creation/termination of the
TCP Connection Module and the communication with
other switches in our framework. As all the TCP pack-
ets from a host will be delivered to the Edge Switch
with TCP Engine, the control module retrieves these
packets and analyzes the packet metadata. As in Fig-
ure 2, when a SYN message packet is sent from Host 1
and received by Edge Switch A, and the corresponding
TCP connection is not established, the control module

5908 VOLUME 5, 2017



M.-H. Wang et al.: SDUDP: Reliable UDP-Based Transmission Protocol Over SDN

creates a new TCP Connection Module for the TCP
connection. The control module then encapsulates the
essential information (e.g., the MAC address, the IP
address, and the port number.) into a control message
and send it to Edge Switch B which is nearest to the
destination host (Host 2). Control modules also use con-
trol messages to negotiate an exclusive port for the TCP
connection. As shown in Figure 2, the TCP connection
of Host 1 and Host 2 uses port 49200. Consequently,
once the control module in Edge Switch B receives
packets that are sent to port 49200, it is able to identify
that these packets are belonging to the connection of
Host 1 andHost 2 and delivers them to the corresponding
TCP Connection Module immediately.
On the other side, when the control module in Edge
Switch B receives the control message from Edge
Switch A, it creates a TCP Connection Module for
Host 1 and Host 2. It starts sending SYN messages to
Host 2 and waits for a SYN-ACK message. Once the
TCP handshake has been completed, the control module
sends a control message with essential information back
to Edge Switch A.
As the control module in Edge Switch B delivers the
essential information of Host 2 to the TCP Connection
Module of Host 1 and Host 2 at Edge Switch A, the
control module of Edge Switch A sends a SYN-ACK
message to Host 1, completing the handshake procedure.
Data from Host 1 is delivered to the TCP Connection
Module of Host 1 and Host 2 at Edge Switch A. Up to
now, the main task of the control module for establishing
the connection has finished. It handles the creation of the
TCP ConnectionModule and communication with other
switches.
When terminating a connection, the corresponding
TCP Connection Module notifies the control module to
terminate the connection. Then the control module in
Edge Switch A sends a control message to Edge Switch
B to notify the termination of the TCP connection. The
exclusive ports for Host 1 and Host 2 are also released.

• TCP Connection Module. The TCP Connection Mod-
ule handles the TCP connection with the hosts. It guar-
antees that data is received intact from the host and is
sent to the destination host properly. Also, the TCP Con-
nectionModule maintains essential information, such as
the MAC address, the IP address and the port number of
Host 1 and Host 2.
The main tasks of the TCP Connection Module are
data forwarding and interactions with hosts. While inter-
acting with hosts, the TCP Connection Module has to
implement complete and correct TCP mechanisms in
order to guarantee the integrity of the data. Once the
data is received correctly, the TCP Connection Module
forwards the data to the Packet Sending Module for
transmission to Edge Switch B.
For UDP packets transmitted to Edge Switch B, the
TCP Connection Module collects them according to

their connection information; next, the TCP Connection
Module transforms the orderly UDP packets into TCP
format and send to the Packet Sending Module to for-
ward the packets to the destination host (Host 2).
In addition to the above-mentioned functions, to improve
transmission efficiency, we have designed the packet
accumulation function on it. Packets are delivered in
PDU (Protocol Data Unit) [34] at the IP layer; even
though the size of a packet at the IP layer could be greater
than 1.5 KB, when it is delivered to the data link layer,
the packet will be fragmented into smaller sizes that
fit the MTU (Maximum Transmission Unit, generally
1500 bytes) [35] of a frame (PDU at data link layer).
However, if the packet size is smaller than 1.5 KB, it will
still be sent in a single frame. This means that, if the
packet size is smaller than 1.5 KB, some space would
remain underutilized in such frames. To solve this issue
and improve transmission efficiency, in our framework,
when sending packets, instead of sending a packet that
is smaller than 1.5 KB, our framework accumulates data
until its size exceeds 1.4 KB (about 0.1 KB are left
for the header field), after which we send the packet.
Through this design, we seek to optimize the utilization
of the packets (frames) that are sent into the network.

• UDPPacket PreparationModule.Asmentioned in the
previous section, the UDP Packet Preparation Module
receives packets that contain onlyUDP headers and data.
In other words, the UDP Packet Preparation Module has
to add the network layer and the data link layer headers
for these packets. Since these UDP packets are used to
transmit data between two Edge Switches, the switch’s
information of the network layer and the data link layer
are added to headers.
In this module, we use the identification fields at the
network layer of IPv4 and IPv6 to help monitor the
sequentiality of our transmission. In IPv4, the Identifi-
cation field is a 16-bit and necessary field when form-
ing packets. In IPv6, the Identification field is a 32-bit
and optional field when forming packets. Identification
is primarily used for reassembling and identifying the
group of fragments of a single IP datagram. In our
design, for the purpose of synchronizing switches with
the TCP Engine in SDN, the initial value of the Identi-
fication field is set to zero. Then the value in the Identi-
fication field of the next frames in a single connection
will increase by one. Once the middle switches find
the value in the Identification field is not in order, the
system considers there is a packet loss and starts the
retransmission procedure as soon as possible.
Once the packets are prepared, they will be sent to the
Retransmission Engine. Note that when the Retransmis-
sion Engine has received complete UDP packets from
the TCP Engine, they will notify the TCP Engine to clear
the buffered packets to avoid large buffer requirement in
the TCP Engine. In short, the UDP Packet Preparation
Module’s tasks are to aggregate packets from different

VOLUME 5, 2017 5909



M.-H. Wang et al.: SDUDP: Reliable UDP-Based Transmission Protocol Over SDN

TCP connections and to add complete headers to them.
Then the UDP Preparation Module delivers the packets
to the Retransmission Engine.

2) RETRANSMISSION ENGINE
To guarantee that UDP packets are sent to switch B reliably
before the packets are delivered to the network, these UDP
packets need to be buffered for retransmission request if
packet loss is detected. In our design, the Retransmission
Engine handles this task.

As mentioned above, our framework detects whether
packet loss occurs or not based on the Identification field
at the IP layer meta field. Similar to the pre-defined flows
in switches in our framework, the packet transmission path
between Edge Switch A and Edge Switch B is fixed. If the
identification values of incoming packets are sequential, there
should be no packet loss, and the switch will notify the previ-
ous switch which is deployed with the Retransmission Engine
to clear the buffer. Otherwise, packet loss should occur.When
packet loss is detected, the Retransmission Engine identifies
the identification values of themissing packets and then sends
a retransmission request to the previous switch.

FIGURE 5. Retransmission procedure of Retransmission
Engines in switches.

Figure 5 demonstrates a retransmission scenario. There
are three switches with Retransmission Engines on the route
between Edge Switch A and B, which are denoted as
Switch 1, 2 and 3. Once Switch 2 detects a packet loss
on Packet #90 (90 is the value in the Identification field),
it sends a retransmission message (through UDP) to request
Switch 1 to retransmit Packet #90 and start a timer. The
timer is used for sending retransmission request messages
periodically while waiting for retransmitted packets, because
the message could also be lost on the way to Switch 1. Before
receiving retransmitted packets from Switch 1, Switch 2 sim-
ply waits and buffers packets; it does not forward any packets
to Switch 3. At the same time, when Switch 1 receives the
retransmission request from Switch 2, it will retransmit the
packets requested by Switch 2 as soon as possible. When
Switch 2 has received all the missing packets, it will arrange
these packets accordingly based on their Identification values
and then forward them to Switch 3. Meanwhile, Switch 2 will

notify Switch 1 to clear the requested and the previous packets
(packet ID <= 90) in Switch 1’s buffer to avoid large buffer-
ing on Retransmission Engines. Through this mechanism, the
reliability during packet transmission is guaranteed. Note that
since the deployment of the Retransmission Engine to every
switch costs a certain amount of effort, the installing of the
engine in every switch is optional. Further detailed evaluation
results are described in Section IV-E.

3) PACKET SENDING ENGINE
The Packet Sending Module handles most of the packet
transmissions in our design. The module aggregates packets
from the TCP Engine Control Module, the TCP Connec-
tion Module, the UDP Packet Preparation Module, and the
Retransmission Engine. After aggregation it sends all packets
into the network.

C. IMPLEMENTATION NOTE
Our design uses Scapy [36] as the tool to achieve packet
manipulation. In order to make Host 1 and Host 2 not observe
any difference as the TCP connection under our infrastruc-
ture, the TCPEngine in Edge SwitchA has to add headers that
contain not only the IP address but also the MAC address of
Host 2. To achieve this, Scapy uses raw sockets to manipulate
and encapsulate packets.

IV. EVALUATION
We conducted our experiments on virtual machines of the
Linux server with an Intel Core i7-6700 CPU, which is a
quad-core processor at 3.40 GHz, and with 8 GB of physical
memory. We used Linux version 3.19.0-25-generic, Open-
Flow [37] version 1.0, Mininet [38] version 2.3.0, and Scapy
version 2.2.0. All programs were implemented in Python,
with Scapy library. In our experiments, Host 1 is the client
to send data toward Host 2. They use TCP socket in Python
to transmit files, a total size of 3,000 KB, at the rate of about
100 KB/sec.

We measure the performance using two important metrics
in our experiments, including the number of packets used
to transmit the file and the total number of bytes of these
packets. From these two metrics, we compare the improve-
ment of our framework with TCP connections.

A. EXPERIMENT SCENARIOS AND SETTINGS
In this experiment, one sample scenario (5 switches) is shown
in Figure 6; Host 1 andHost 2want to establish a TCP connec-
tion to transmit data. Edge Switch A and B are deployed with
TCP Engines and Retransmission Engines. Other switches
are deployed with Retransmission Engines only. We set
up 4 different scales of network, respectively consisting of
5, 7, 9, 11, and 13 switches. Among the SDN, each link has a
20 ms delay and a designated loss rate. To imitate different
network conditions, our experiment set up five settings of
loss rate, 0.00%, 0.25%, 0.50%, 0.75% and 1.00%. For each
experiment, we set a fixed loss rate to every link in the
network.

5910 VOLUME 5, 2017



M.-H. Wang et al.: SDUDP: Reliable UDP-Based Transmission Protocol Over SDN

FIGURE 6. Scenario of the experiment (5 switches).

TABLE 1. 5 filesets used for experiment.

Next, we investigate whether different file sizes will influ-
ence the load of switches either in TCP transmission and
under our framework. In this experiment, Host 1 sends a 4 dif-
ferent filesets to Host 2, as shown in Table 1. The size of each
fileset is 3,000 KB in total and consists of a different number
of files with different sizes. We set the file sizes at 0.5KB,
1KB, 10KB, 100KB or 1,000KB to validate the performance
of our design in different data transmission scenarios.

In every combination of settings, we conduct an experi-
ment of data transmission via our proposed framework and
via TCP. The results are shown in Figure 7 and Figure 8. The
experiment results conducted using our framework are shown
in solid lines, and those under TCP in dot-dash lines. The
different colors of the lines represent the different file sets we
used. We conduct every experiment for 10 rounds and present
the average value and 95% confidence interval in the figure.
Figure 7 presents the average load of each switch in terms of
number of bytes; Figure 8 presents the average load of each
switch in terms of packets. In the normal TCP connection
scenario, we use normal switches without TCP Engines and
Retransmission Engines, while the two Engines are enabled
when conducting the experiment under our framework.

B. OVERALL COMPARISON WITH TRADITIONAL TCP
Figure 7 and Figure 8 present the results and shows that
our proposal significantly outperforms the TCP transmission
in both bytes and packets used for transmission with every
fileset and link loss rate. In Figure 9, we demonstrate that

SDUDP significantly outperforms TCP while the link delay
is set to 1 ms (9 switches). From the results, the average load
of each switch in SDUDP smoothly increases with the rising
loss rate. On the contrary, the TCP transmission requires a
larger number of bytes while the loss rates rise. Figure 8
shows that transmission via the TCP protocol requires much
more packets while the file size is small (0.5KB). Since one
TCP packet normally carries about 1400 bytes of data, when
the file size is small as in file set A, we observe that some TCP
packet carry merely 500 bytes of data. Therefore, to complete
the data transmission, transmitting data through TCP requires
more packets and bytes than through our design.

A noticeable phenomenon that occurs in TCP transmission
is that the average load of each switch descendswith the rising
loss rate. To figure out the reason, we use Wireshark [39] to
observe the condition of packets during data transmission.
Our observations show that when loss rate is 0.00%, most
of the packets are at an average size of about 1,500 bytes.
However, when the loss rate rises, Host 2 sends TCP window
update messages to Host 1 for upgrading its window size to
bigger ones after packet losses occur. We did not observe any
TCP window update message when the loss rate was 0.00%.
However, after the TCP window updates messages, Host 1
begins to send some packets at the size about 3,000 bytes
since it realizes that Host 2’s window size is large enough
for buffering packets. Thus, when there is a higher loss rate,
Host 1 transmits data more efficient through larger packets.
In other words, the transmission is finished using fewer pack-
ets and that is one possible reason that why the average load
(in terms of packets) of switches descends as the loss rate
rises. Nevertheless, our framework still outperforms TCP in
all aspects.

C. DIFFERENT NUMBER OF SWITCHES
Figure 7 and Figure 8 present our design’s experiment
results and compares them to TCP in different network

VOLUME 5, 2017 5911



M.-H. Wang et al.: SDUDP: Reliable UDP-Based Transmission Protocol Over SDN

FIGURE 7. Average load (in terms of bytes) of different numbers of switches.

FIGURE 8. Average load (in terms of packets) of different numbers of switches.

environments. Each sub-figure indicates the load under dif-
ferent numbers of switches. From the results shown in
Figure 7, the average load increases with more switches

between Host 1 and Host 2, as in Table 2. The results could
be attributed to the fact that the host-to-host loss rate becomes
higher when the number of links between Host 1 and Host 2

5912 VOLUME 5, 2017



M.-H. Wang et al.: SDUDP: Reliable UDP-Based Transmission Protocol Over SDN

FIGURE 9. Average load of different numbers of switches in different link delay (l ms and 20 ms, 9 switches).

TABLE 2. Host-to-host loss rates of different link loss rates and different
switches of the path (calculated by inclusion-exclusion principle).

increases. Thus, packets loss and retransmissions happen
more frequently while the scale of the network becomes
larger.

From Figure 8, as described in the previous section,
we may observe that when the loss rate rises, normal TCP
transmits data with larger packets. Therefore, our system
achieves a larger improvement at loss rate of 0.00% than at
other loss rates. A noticeable phenomenon is that the average
load (in terms of packets) gradually increases when the loss
rates come higher than 0.25% with seven, nine, and eleven
switches. The reason is most likely that as the number of
switches increases, the actual loss rate between Host 1 and
Host 2 also increases. In other words, TCP transmission sends
more packets for retransmission and acknowledgment.

D. EFFECTS OF PACKET ACCUMULATION FUNCTION
In SDUDP we design the packet accumulation function
to improve the utilization of the packets that are sent

into the network. To evaluate the advantage of the design,
we conduct another experiment to compare the packet usage
of transmitting files in TCP, in SDUDP with/without the
packet accumulation function, under a 5-switch network
scenario.

Figure 10 demonstrates the packet usage while transmit-
ting under TCP, SDUDP with the packet accumulation func-
tion, and SDUDP without the packet accumulation function.
From the results, the packet accumulation function benefits
SDUDP to reduce more than 20% of packet usage while
transmitting 0.5 KB files. For larger files, the improvement
is about 11-14%. Furthermore, SDUDP still outperforms
TCP even if the packet accumulation function is disabled.
Considering that more packets would consume an increasing
amount of the computing and bandwidth resource for header
fields and packet encapsulation, in SDUDP, we use the packet
accumulation function to decrease such overhead on switches
and engines.

E. PLACEMENT OF SWITCHES WITH THE
RETRANSMISSION ENGINE
In previous experiments, we deployed the Retransmission
Engine in every switch on the network. However, deploy-
ing such a function on every switch is time and effort
consuming. To understand the effectiveness of the deploy-
ment on the loading of switches, we conducted another

VOLUME 5, 2017 5913



M.-H. Wang et al.: SDUDP: Reliable UDP-Based Transmission Protocol Over SDN

FIGURE 10. Packet transmitted in TCP, SDUDP with the packet
accumulation function, and SDUDP without the packet accumulation
function (5 switches).

experiment to investigate the performance of partially deploy-
ing Retransmission Engines on switches.

In this experiment, there are nine switches in total (includ-
ing Edge Switch A and Edge Switch B), and the switches
are labeled from 1 to 9; switch 1 is Edge Switch A, and
switch 9 is Edge Switch B. There are three scenarios in this
experiments, including 1) deploying Retransmission Engines
on all the switches, 2) on odd-numbered switches, and 3) on
the 1st, 5th, and 9th switches. In these experiments, we use a
fileset D which contains 30 files; each file is 100 KB.

From the results, when we deploy fewer switches with the
Retransmission Engine, the average load of each of the nine
switches increases at about 1.1-1.3% (link loss rate= 1.0%).
Let us take case 1 (Retransmission Engine on every switch)
and 3 (Retransmission Engine on the 1st, 5th, 9th switch)
as an example. In case 1, the retransmission requests and
retransmitted packets are transmitted through two neighbor
switches. For example, when packets loss occurs between
switch 2 and 3, retransmission requests and retransmitted
packets occur only between these two switches at a loss rate
of 1.00%. In case 3, retransmission requests and retransmitted
packets exist between switch 1 and switch 5 at a loss rate
of 3.94%. In other words, switch 1 to 5 have to suffer the
load of retransmitting packets at a higher loss rate. That is
the reason why switches of case 3 require more packet/byte
loading than in case 1.

In a practical scenario, deploying fewer switches with
the Retransmission Engine implies lower cost; however, the
average load of individual switches will slightly increase.
Therefore, the trade-off between cost and load of switches
should be determined. For example, deployment of more
switches with a Retransmission Engine can be considered on

FIGURE 11. Time consumption for transmitting 3,000KB file through TCP
and SDUDP (with different link delay).

a network in a bad environment; the contrary could be an
option in a more stable network environment, such as a wired
network.

F. TIME CONSUMPTION
According to our design, SDUDP avoids long waiting time
for retransmissions comparing with TCP. To evaluate the
advantage of the fast retransmission mechanism in SDUDP,
we measure the total time for transmitting 3,000 KB files
(0.5 KB and 10 KB for each file). We set the setting of the
SDN as follows: 10 Mbps for the link bandwidth; 9 switches
for the transmission route; 1 ms and 20 ms for the link delay
between switches; and 1% for the link loss rate.

As the results shown in Figure 11, we find that SDUDP
could significantly reduce the time consumption of trans-
mitting files while the network latency is high. The results
imply that benefiting from the fast retransmission mechanism
implemented in the retransmission engines of SDUDP, our
design is more suitable for the network environments with
high latency or encountering more transmission errors.

G. SUMMARY
To sum up, our proposed framework achieves great improve-
ment in comparison to normal TCP. When the loss rate
rises, TCP transmission suffers much more overhead than
our framework owing to the high latency and ineffi-
cient retransmission mechanisms in TCP. Our framework,
contrarily, provides an efficient retransmission mechanism.
When it comes to the placement of switches with Retrans-
mission Engine, loss rate should be considered to achieve a
balance between cost and load of switches.

V. CONCLUSION AND FUTURE WORKS
This paper proposes a novel reliable transmission framework.
In comparison to TCP transmissions, our design leverages
UDP packets to offload the transmission overhead of TCP
headers and acknowledgments. In addition, we leverage flow

5914 VOLUME 5, 2017



M.-H. Wang et al.: SDUDP: Reliable UDP-Based Transmission Protocol Over SDN

rules on SDN to ensure that packets under our proposed
framework will pass through predefined routes, in the pro-
cess achieving transmission reliability through Retransmis-
sion (if packets are lost) Engines. Furthermore, in order to
utilize each packet (frame) sent in to the network to the fullest,
our framework accumulates packets (data) to better utilize the
bandwidth, especially when transmitting a large number of
small packets. Due to this mechanism, we have measured at
least a 10%-30% improvement in the aspect of average load
(in terms of packets) of switches.

The contributions of this study can be summarized as
follows:

1) Packets are transmitted in the primitive UDP format,
which contains no sequence numbers or other complex
transport layer header fields. Consequently, the over-
head of the long header is reduced.

2) Reliability of packets is guaranteed by our proposed
engines deployed in SDN switches. ACK messages are
not needed in our framework, which means that the
bandwidth for ACK messages is saved.

3) Our design accumulates underutilized smaller pack-
ets before sending them, reducing the amount of total
packets required while transmitting small files over the
network.

4) Our design leverages the power of SDN to detect packet
loss events according to Identification field values.
By the design, a retransmission procedure could start
as soon as possible rather than waiting for a timeout as
in TCP.

Although our proposed framework is based on SDN, our
framework can easily be deployed to a larger network, e.g.,
a campus network. This is because the engines in switches
can exist independent as a node in WAN. The edge node
(TCP engine) aggregates TCP connections and transmits data
to middle nodes with Retransmission Engines. Furthermore,
our design is especially suitable for a network with high
latency and for real-time applications while the network
transmission errors often occur, as we significantly reduce the
required time for starting retransmissions. In SDUDP, it can
be checked whether packets were lost on the way of transmis-
sion instead of on arrival at the destination host. Once packets
are lost, retransmission can take place immediately by middle
nodes with engines rather than by hosts through waiting for
TCP timeouts or receiving duplicate ACK messages.

However, some issues remain to be addressed to improve
the capability and availability of our design. 1) Porting on
other platforms. To extend the use of our design, methods
need to be found to implement the framework on other
platforms such as Open VSwitch’s kernel datapath or Open-
Flow Data Plane Abstraction [40]. 2) The TCP-UDP packet
transformation can be accelarated. In our current implemen-
tation, packet manipulation takes place at the application
layer, after which data is sent directly at data link layer
through Scapy (raw socket). However, while the number
of packets increases, the overhead may degrade switches

performance. We consider if the transformation process of
the packet format from TCP to UDP can be performed and
accelerated by a hardware device, it would be more efficient
and reliable. 3) Handling TLS in our design. As our design
uses UDP packets to transmit data over the network, how
to guarantee the security and meet the standard of TLS is
a worthy question of investigation left for future research.
4) Evaluation of SDUDP on physical devices. Even though
we have conducted an experiment onMininet, many practical
issues such as the packet transformation overhead and buffer-
ing size on switches or engines may downgrade the system
performance. In addition, while the network size becomes
larger, the scalability of our framework may be another issue.
Implementing SDUDP on physical devices and conducting
evaluations at different scales of networks to investigate the
system performance are worthy of being studied in the future.

REFERENCES
[1] RFC 793—Transmission Control Protocol, accessed on Apr. 1, 2017.

[Online]. Available: https://tools.ietf.org/html/rfc793
[2] Rfc 768—User Datagram Protocol, accessed on Apr. 1, 2017. [Online].

Available: https://tools.ietf.org/html/rfc768
[3] N. McKeown et al., ‘‘OpenFlow: Enabling innovation in campus net-

works,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[4] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, ‘‘Composing
software defined networks,’’ in Proc. 10th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2013, pp. 1–13.

[5] N. Feamster, J. Rexford, and E. Zegura, ‘‘The road to SDN: An intellectual
history of programmable networks,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 44, no. 2, pp. 87–98, 2014.

[6] A. Lara, A. Kolasani, and B. Ramamurthy, ‘‘Network innovation using
OpenFlow: A survey,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 1,
pp. 493–512, 1st Quart., 2014.

[7] T. Luo, H.-P. Tan, and T. Q. S. Quek, ‘‘Sensor OpenFlow: Enabling
software-defined wireless sensor networks,’’ Commun. Lett., vol. 16,
no. 11, pp. 1896–1899, Nov. 2012.

[8] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, ‘‘Software defined
wireless networks: Unbridling SDNs,’’ in Proc. Eur. Workshop Softw.
Defined Netw. (EWSDN), Oct. 2012, pp. 1–6.

[9] Draft-Ietf-Sigtran-Reliable-UDP-00—RELIABLE UDP PROTOCOL,
accessed on Apr. 1, 2017. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-sigtran-reliable-udp-00

[10] RFC 4347—Datagram Transport Layer Security, accessed onApr. 1, 2017.
[Online]. Available: https://tools.ietf.org/html/rfc4347

[11] RFC 6347—Datagram Transport Layer Security Version 1.2, accessed on
Apr. 1, 2017. [Online]. Available: https://tools.ietf.org/html/rfc6347

[12] D. McGrew and E. Rescorla, ‘‘Datagram transport layer security (DTLS)
extension to establish keys for secure real-time transport protocol
(SRTP),’’ Internet Eng. Task Force (IETF), Fremont, CA, USA, Tech.
Rep. RFC 5764, 2010.

[13] E. He, J. Leigh, O. Yu, and T. A. DeFanti, ‘‘Reliable blast UDP: Predictable
high performance bulk data transfer,’’ in Proc. IEEE Int. Conf. Cluster
Comput., Sep. 2002, pp. 317–324.

[14] Y. Gu and R. Grossman, ‘‘SABUL: A transport protocol for grid comput-
ing,’’ J. Grid Comput., vol. 1, no. 4, pp. 377–386, 2003.

[15] M. R. Meiss, ‘‘Tsunami: A high-speed rate-controlled protocol for file
transfer,’’ Indiana Univ., Bloomington, IN, USA, 2004.

[16] Y. Gu and R. L. Grossman, ‘‘UDT: UDP-based data transfer for high-speed
wide area networks,’’ Comput. Netw., vol. 51, no. 7, pp. 1777–1799, 2007.

[17] A. O. F. Atya and J. Kuang, ‘‘RUFC: A flexible framework for reliable
UDP with flow control,’’ in Proc. 8th Int. Conf. Internet Technol. Secured
Trans. (ICITST), Dec. 2013, pp. 276–281.

[18] S. Kopparty, S. V. Krishnamurthy, M. Faloutsos, and S. K. Tripathi, ‘‘Split
TCP for mobile ad hoc networks,’’ in Proc. Global Telecommun. Conf.
(GLOBECOM), vol. 1. Nov. 2002, pp. 138–142.

VOLUME 5, 2017 5915



M.-H. Wang et al.: SDUDP: Reliable UDP-Based Transmission Protocol Over SDN

[19] M. Luglio, M. Y. Sanadidi, M. Gerla, and J. Stepanek, ‘‘On-board satel-
lite ‘split TCP’ proxy,’’ IEEE J. Sel. Areas Commun., vol. 22, no. 2,
pp. 362–370, Feb. 2004.

[20] V. Farkas, B. Héder, and S. Nováczki, ‘‘A split connection TCP proxy
in LTE networks,’’ in Meeting of the European Network of Universities
and Companies in Information and Communication Engineering. Berlin,
Germany: Springer, 2012, pp. 263–274.

[21] M. Ivanovich, P. W. Bickerdike, and J. C. Li, ‘‘On TCP performance
enhancing proxies in a wireless environment,’’ IEEE Commun. Mag.,
vol. 46, no. 9, pp. 76–83, Sep. 2008.

[22] H. Kim and N. Feamster, ‘‘Improving network management with software
defined networking,’’ IEEE Commun. Mag., vol. 51, no. 2, pp. 114–119,
Feb. 2013.

[23] A. Gudipati, D. Perry, L. E. Li, and S. Katti, ‘‘SoftRAN: Software defined
radio access network,’’ inProc. 2nd ACMSIGCOMMWorkshopHot Topics
Softw. Defined Netw., 2013, pp. 25–30.

[24] B. A. A. Nunes,M.Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
‘‘A survey of software-defined networking: Past, present, and future of
programmable networks,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 3,
pp. 1617–1634, 3rd Quart., 2014.

[25] D. Kreutz, F. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, ‘‘Software-defined networking: A comprehensive survey,’’
Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[26] J. Li, M. Veeraraghavan, S. Emmerson, and R. D. Russell, ‘‘File multicast
transport protocol (FMTP),’’ in Proc. 15th IEEE/ACM Int. Symp. Cluster,
Cloud Grid Computing (CCGrid), May 2015, pp. 1037–1046.

[27] X. Ji, Y. Liang, M. Veeraraghavan, and S. Emmerson, ‘‘File-stream distri-
bution application on software-defined networks (SDN),’’ in Proc. IEEE
39th Annu. Comput. Softw. Appl. Conf. (COMPSAC), vol. 2. Jul. 2015,
pp. 377–386.

[28] S. Chen, M. Veeraraghavan, S. Emmerson, J. Slezak, and S. G. Decker,
‘‘A cross-layer multicast-push unicast-pull (MPUP) architecture for reli-
able file-stream distribution,’’ in Proc. IEEE 40th Annu. Comput. Softw.
Appl. Conf. (COMPSAC), Jun. 2016, pp. 535–544.

[29] P. J. Frantz and G. O. Thompson, ‘‘VLAN frame format,’’
U.S. Patent 5 959 990 A, Sep. 28, 1999

[30] RFC 791—Internet Protocol, accessed on Apr. 1, 2017. [Online].
Available: https://tools.ietf.org/html/rfc791

[31] RFC 2460—Internet Protocol, Version 6 (IPv6) Specification, accessed on
Apr. 1, 2017. [Online]. Available: https://tools.ietf.org/html/rfc2460

[32] M. Kuźniar, P. Perešíni, and D. Kostić, ‘‘What you need to know about
SDN flow tables,’’ in Proc. Int. Conf. Passive Active Netw. Meas., 2015,
pp. 347–359.

[33] OpenFlow—Enabling Innovation in Your Network, accessed on
Jul. 2, 2017. [Online]. Available: http://archive.openflow.org/

[34] Protocol Data Unit—Wikipedia, accessed on Apr. 1, 2017. [Online].
Available: https://en.wikipedia.org/wiki/Protocol_data_unit

[35] Maximum Transmission Unit—Wikipedia, accessed on Apr. 1, 2017.
[Online]. Available: https://en.wikipedia.org/wiki/Maximum_
transmission_unit

[36] Scapy, accessed on Apr. 1, 2017. [Online]. Available: http://www.secdev.
org/projects/scapy/

[37] OpenFlow—Open Networking Foundation, accessed on Apr. 1, 2017.
[Online]. Available: https://www.opennetworking.org/sdn-resources/
openflow

[38] B. Lantz, B. Heller, and N. McKeown, ‘‘A network in a laptop: rapid
prototyping for software-defined networks,’’ in Proc. 9th ACM SIGCOMM
Workshop Hot Topics Netw., 2010, p. 19.

[39] Wireshark Download, accessed on Apr. 1, 2017. [Online]. Available:
https://www.wireshark.org/download.html

[40] OF-DPA Software, accessed on Apr. 1, 2017. [Online]. Available:
https://www.broadcom.com/products/ethernet-connectivity/software/of-
dpa

MING-HUNG WANG (S’17) received the B.S.
degree in computer science and the M.S. degree
in communication engineering from the National
Tsing-Hua University, in 2008 and 2010, respec-
tively. He is currently pursuing the Ph.D. degree
with the Department of Electrical Engineering,
National Taiwan University. His research interests
include network security, social media analysis,
and software-defined networking. His works have
been published in the IEEE INFOCOM, the IEEE

TrustCom, the IEEE CCNC, and the IEEE SMC conferences.

LUNG-WEN CHEN received the B.S. degree in
computer science from National Tsing-Hua Uni-
versity in 2014 and the M.S. degree in electrical
engineering from National Taiwan University in
2016. His research interests include computer net-
working and distributed systems.

PO-WEN CHI (M’17) received the B.S., M.S.,
and Ph.D. degrees from National Taiwan Univer-
sity in 2003, 2005, and 2015, respectively, all in
electrical engineering. He is currently a Senior
Engineer with Arcadyan Technology Corporation.
His research interests include network security,
applied cryptography, software-defined network-
ing, and telecommunications.

CHIN-LAUNG LEI received the B.S. degree in
electrical engineering from National Taiwan Uni-
versity, Taipei, in 1980, and the Ph.D. degree in
computer science from The University of Texas
at Austin in 1986. From 1986 to 1988, he was
an Assistant Professor with the Computer and
Information Science Department, The Ohio State
University, Columbus. In 1988, he joined the Fac-
ulty of the Department of Electrical Engineering,
National Taiwan University, where he is currently

a Professor. He has authored over 250 technical articles in scientific journals
and conference proceedings. His current research interests include network
security, cloud computing, and multimedia QoE management. He was a
co-recipient of the First IEEE LICS Test-of-Time Award.

5916 VOLUME 5, 2017


