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ABSTRACT Gaussian approximation (GA) is widely used to construct polar codes. However, when the code
length is long, the subchannel selection inaccuracy due to the calculation error of conventional approximate
GA (AGA), which uses a two-segment approximation function, results in a catastrophic performance loss.
In this paper, new principles to design the GA approximation functions for polar codes are proposed. First,
we introduce the concepts of polarization violation set (PVS) and polarization reversal set (PRS) to explain
the essential reasons that the conventional AGA scheme cannot work well for the long-length polar code
construction. In fact, these two sets will lead to the rank error of subsequent subchannels, which means that
the orders of subchannels are misaligned, which is a severe problem for polar code construction. Second, we
propose a new metric, named cumulative-logarithmic error (CLE), to quantitatively evaluate the remainder
approximation error of AGA in the logarithm. We derive the upper bound of CLE to simplify its calculation.
Finally, guided by PVS, PRS, and CLE bound analysis, we propose new construction rules based on a multi-
segment approximation function, which obviously improve the calculation accuracy of AGA so as to ensure
the excellent performance of polar codes especially for the long code lengths. Numerical and simulation
results indicate that the proposed AGA schemes are critical to constructing high-performance polar codes.

INDEX TERMS Polar codes, Gaussian approximation (GA), polarization violation set (PVS), polarization
reversal set (PRS), cumulative-logarithmic error (CLE).

I. INTRODUCTION
Polar codes proposed by Arıkan [1] have been proved to
achieve the capacity of any symmetric binary input sym-
metric discrete memoryless channels (B-DMCs) under a
successive cancellation (SC) decoder as the code length
goes to infinity. Recently, polar codes have been identified
as one of the channel coding schemes in the 5G wireless
communication system due to its excellent performance [2].
To construct polar codes, the channel reliabilities are
calculated efficiently using the symmetric capacities of sub-
channels or the Bhattacharyya parameters for the binary-
input erasure channels (BECs). As a heuristic method, Arıkan
has suggested to use the recursion which is optimal only
for BECs also for other B-DMCs [3]. Mori and Tanaka [4]
regarded the construction problem as an instance of den-
sity evolution (DE), which theoretically has the highest
accuracy. Considering its high computational complexity,

Tal and Vardy devised two approximation methods to sim-
plify the calculation of DE, by which one can get the upper
and lower bounds on the error probability of each subchannel.
Tal and Vardy’s method has almost no performance loss
compared with DE [5]–[8]. Afterwards, Gaussian approx-
imation (GA) was proposed to further reduce the compu-
tational complexity of DE [9] without much sacrifice in
accuracy, which became popular in the construction of polar
codes thanks to its good tradeoff between the complexity and
performance.

In the GA construction of polar codes, the bit log-
likelihood ratio (LLR) of each subchannel is assumed to
obey a constraint Gaussian distribution in which the mean
is half of the variance. Hence, the iterative evaluation of
each subchannel reliability is only involved with the mean
update of LLRs. However, the LLR mean updates in check
nodes still depend on complex integration. Consequently, for

7950
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017



J. Dai et al.: Does GA Work Well for the Long-Length Polar Code Construction?

construction of polar codes, the computational complexity of
exact GA (denoted by EGA) grows exponentially with the
polarization levels. This makes EGA too complicated to be
practically employed. Therefore, in practical implementation,
like GA utilized in LDPC codes, the well-known approximate
version of GA (denoted by AGA) given by Chung et al. based
on a two-segment approximation function is used to speed up
the calculations [10]–[12].

Initially, the approximation function in conventional AGA
chosen by Chung is suitable for LDPC codes. However, in
principle, we don’t know whether this approximation method
can be also good for the polar codes. In fact, the calculation
error of AGA versus EGA will be accumulated and ampli-
fied in the recursion process of polar codes construction.
Consequently, this phenomenon causes the inaccurate sub-
channel selection and results in a catastrophic block error
ratio (BLER) performance loss for the long code lengths.
Taking the polar code structure characteristics into consider-
ation, it is lack of the comprehensive framework to design the
AGA schemes for the construction of polar codes. In addition,
the performance evaluation method for different AGA is also
absent.

On the polar code construction, we find that the rank error
of the subchannels and the calculation error of each subchan-
nel’s reliability are two critical factors to affect the accuracy
of AGA approximation function. Here, ranking error means
the orders of subchannels are misaligned. For various AGA
schemes, the two factors will result in different evaluation
error of each subchannel. Followed by above two distortions,
we reveal the essential reason that the conventional AGA
scheme leads to a catastrophic performance loss. Our ulti-
mate goal is to propose systematic design rules of the AGA
approximation function for polar codes, which achieves the
excellent performance as well as reduces the GA computa-
tional complexity.

Our aim in this paper is to provide the new principles to
design the multi-segment GA approximation functions so as
to improve the calculation accuracy of AGA and guarantee
the excellent performance of polar codes. The main contribu-
tions can be summarized in the following three aspects:
• First, we take a closer investigation at the reason behind
the poor performance of the long-length polar codes
when the conventional versions of AGA (e.g. Chung’s
scheme) are used. To this end, we introduce the con-
cepts of polarization violation set (PVS) and polariza-
tion reversal set (PRS). In the AGA process, when the
subchannel’s LLR mean belongs to the two sets, it will
bring in the rank error and the polarization is ‘violated’
or ‘reverted’ among the subsequent subchannels. This
phenomenon is not consistent with Arıkan’s fundamen-
tal polarization relationship. The two sets reveal the
essential reason that polar codes constructed by the con-
ventional AGA present poor performance at long code
lengths.

• Second, after eliminating PVS and PRS, we further
propose a new metric, named cumulative-logarithmic

error (CLE) of channel polarization, to quantitatively
evaluate the remainder calculation error between AGA
and EGA in the construction of polar codes. We also
derived the upper bound of CLE to simplify its calcu-
lation. With this bound, the performance of different
versions of AGA can be easily evaluated by analytic
calculation rather than redundant the Monte-Carlo
simulation.

• Finally, guided by PVS, PRS and the CLE bound, we
propose new design rules for the improved AGA tech-
niques which is tailored for the polar code construc-
tion. In this way, a systematic framework is established
to design the high accuracy and low complexity AGA
scheme for polar codes at any code length. Followed by
the proposed rules, three new AGA schemes are given to
guarantee the excellent performance of polar codes.

The remainder of the paper is organized as follows. The
preliminaries of polar coding are described in Section II. Then
the conventional GA is introduced in Section III. Section IV
makes detailed error analysis of GA, in which the concepts
of PVS, PRS and CLE are proposed. Then the new design
rules of AGA approximation functions are given in Section V,
and new AGA schemes with complexity comparison are also
given in this part. Different versions of AGA are compared
with the help of CLE bound in Section VI, where the simula-
tion results are also analyzed. Finally, Section VII concludes
this paper.

II. PRELIMINARIES
A. NOTATION CONVENTIONS
In this paper, we use calligraphic characters, such as X ,
to denote sets. Let |X | denote cardinality of X . We write
lowercase letters (e.g., x) to denote scalars. We use notation
vN1 to denote a vector (v1, v2, · · · , vN ) and vji to denote a
subvector

(
vi, vi+1, · · · , vj

)
. The sets of binary and real field

are denoted by B and R, respectively. Specially, let N (a, b)
denote Gaussian distribution, where a and b represent the
mean and the variance respectively. For polar coding, only
square matrices are involved in this paper, and they are
denoted by bold letters. The subscript of a matrix indicates its
size, e.g. FN represents an N × N matrix F. The Kronecker
product of two matrices F and G is expressed as F⊗G, and
the n-fold Kronecker power of F is denoted by F⊗n.

Throughout this paper, log (·) means ‘‘logarithm to
base 2’’, and ln (·) stands for the natural logarithm.

B. POLAR CODES AND SC DECODING
LetW : X → Y denote a B-DMC with input alphabet X and
output alphabet Y . The channel transition probabilities are
given by W (y |x ), x ∈ X and y ∈ Y . Given the code length
N = 2n, n = 1, 2, · · · , the information lengthK , and the code
rate R = K/N , the polar coding is described as [1]. After the
channel combining and splitting operations onN independent
duplicates ofW , we obtain N successive uses of synthesized
binary input channels W (j)

N , j = 1, 2, · · · ,N , with transition
probabilities W (j)

N (yN1 , u
j−1
1

∣∣uj ). The information bits can be
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assigned to the channels with indices in the information setA,
which are the more reliable subchannels. The complementary
set Ac denotes the frozen bit set and the frozen bits uAc

can be set as the fixed bit values, such as all zeros, for the
symmetric channels. To put it in another way [1], polar coding
is performed on the constraint xN1 = uN1 GN , where GN is
the generator matrix and uN1 , x

N
1 ∈ {0, 1}

N are the source
and code block respectively. The source block uN1 consists of
information bits uA and frozen bits uAc . The generator matrix
can be defined asGN = BNF⊗n2 , where BN is the bit-reversal

permutation matrix and F2 =

[
1 0
1 1

]
.

As mentioned in [1], polar codes can be decoded by suc-
cessive cancellation (SC) decoding algorithm. Let ûN1 denote
an estimate of source block uN1 . After receiving y

N
1 , the bits ûj

are successively determined with index from 1 to N in the
following way:

ûj =

{
hj(yN1 , û

j−1
1 ) j ∈ A,

uj j ∈ Ac,
(1)

where

hj(yN1 , û
j−1
1 ) =


0 if

W (j)
N

(
yN1 , û

j−1
1 |0

)
W (j)
N

(
yN1 , û

j−1
1 |1

) ≥ 1,

1 otherwise.

(2)

Given a polar code with code length N , information length K
and selected channels indices A, the BLER under SC decod-
ing algorithm is upper bounded by

Pe (N ,K ,A) ≤
∑
j∈A

Pe
(
W (j)
N

)
, (3)

where Pe(W
(j)
N ) is the error probability of the j-th subchannel.

This BLER upper bound is named as the SC bound.

III. GAUSSIAN APPROXIMATION FOR POLAR CODES
In this section, we use the code tree to describe the process of
channel polarization. Based on the tree structure, we present
and analyze the basic procedure of GA.

A. CODE TREE
The channel polarization process can be expressed on a code
tree. For a polar code with length N = 2n, the corresponding
code tree T is a perfect binary tree.1 Specifically, T can be
represented as a 2-tuple (V,B), where V and B denote the set
of nodes and the set of edges, respectively.

Depth of a node is the length of the path from the root to
this node. The set of all the nodes at a given depth i is denoted
by Vi, i = 0, 1, 2, · · · , n. The root node has a depth of zero.
Let v(j)i , j = 1, 2, · · · , 2i, denote the j-th node from left to
right in Vi. As an illustration, Fig. 1 shows a toy example of
code tree with N = 16, which includes 4 levels. In the nodes

1A perfect binary tree is a binary tree in which all interior nodes have two
children and all leaves have the same depth or same level.

FIGURE 1. An example of code tree for N = 16, n = 4. The red bold edge
shows the recursive calculation process of m(8)

4 .

set V2, the 2nd node from left to right is denoted by v(2)2 .
Except for the nodes at the n-th depth, each v(j)i ∈ Vi has
two descendants in Vi+1, and the two corresponding edges
are labeled as 0 and 1, respectively. The nodes v(j)n ∈ Vn are
called leaf nodes. Let T (v(j)i ) denote a subtree with a root
node v(j)i . The depth of this subtree can be defined as n − i
which indicates the difference between the depth of the leaf
node and that of the root node. In addition, the node v(j)i has
two subtrees, that is, the left subtree Tleft = T (v(2j−1)i+1 ) and
the right subtree Tright = T (v(2j)i+1).

All the edges in the set B are partitioned into n levels Bl ,
l = 1, 2, · · · , n. Each edge in the l-th level Bl is incident
to two nodes: one at depth l − 1 and the other at depth l.
An i-depth node is corresponding to a path (b1, b2, · · · , bi)
which consists of i edges, with bl ∈ Bl , l = 1, 2, · · · , i. A
vector bi1 = (b1, b2, · · · , bi) is used to depict the above path.

B. GAUSSIAN APPROXIMATION FOR POLAR CODES
Trifonov [9] suggests a polar code construction method
for the binary input AWGN (BI-AWGN) channels based
on a Gaussian assumption in every recursion step. For the
BI-AWGN channels with noise variance σ 2, the coded bits
are modulated using binary phase shift keying (BPSK). The
transition probability W (y|x) is written as

W (y |x ) =
1

√
2πσ 2

e−
(y−(1−2x))2

2σ2 , (4)

where x ∈ B and y ∈ R. The LLR of each received symbol y
is denoted by

L (y) = ln
W (y |0 )
W (y |1 )

=
2y
σ 2 . (5)

Without loss of generality, we assume that all-zero codeword
is transmitted. One can check L (y) ∼ N

(
2
σ 2
, 4
σ 2

)
.

GA Assumption: The LLR of each subchannel obeys a
constraint Gaussian distribution in which the mean is half of
the variance [9]–[12].

According to the GA assumption, the only issue needed to
be dealt with is the LLR mean. Therefore, in the construction
of polar codes, to obtain the reliability of each subchannel, we
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trace their LLR mean. This recursive calculation process can
be performed on the code tree. The set of LLRs corresponding
to the nodes at depth i is denoted byLi, i = 0, 1, 2, · · · , n. Let
L(j)i , j = 1, 2, · · · , 2i, denote the j-th element in Li. We write
m(j)i as the mean of L(j)i . So the mean of LLR from the channel
information can be written as m(1)0 =

2
σ 2
, and under the GA

assumption we have

L(j)i ∼ N
(
m(j)i , 2m

(j)
i

)
. (6)

Here, m(j)i can be computed recursively as

m(2j−1)i+1 = fc
(
m(j)i

)
,m(2j)i+1 = fv

(
m(j)i

)
, (7)

where the functions fc (t) and fv (t) are used for check nodes
(left branch) and variable nodes (right branch), respectively.
The physical meaning of the function variable t stands for
subchannel’s LLR mean in GA construction. We have{

fc (t) = φ−1
(
1− (1− φ (t))2

)
,

fv (t) = 2t.
(8)

In EGA, φ (t) is written as

φ (t) =

1−
1
√
4π t

∫
R tanh

( z
2

)
e−

(z−t)2
4t dz t > 0,

1 t = 0,
(9)

where tanh (·) denotes hyperbolic tangent function. It is easy
to check that φ (t) is continuous and monotonically decreas-
ing on [0,+∞), with φ (0) = 1 and φ (+∞) = 0 [10].
As an illustration, the red bold edge in Fig. 1 depicts the

recursive calculation process of m(8)4 , whose corresponding
path is denoted by (b1, b2, b3, b4) = (0, 1, 1, 1).
Obviously, the exact calculation of LLR mean in check

nodes requires complex integration, which results in a high
computational complexity. Therefore, Chung et al. give the
well known two-segment approximation function of φ (t),
denoted by ϕ (t), for the analysis of LDPC codes in [10],

ϕ (t) =


e−0.4527t

0.86
+0.0218 0 < t < 10,√

π

t
e
−

t
4
(
1− 10

7t

)
t ≥ 10.

(10)

(10) is also widely used in the construction of polar
codes [11]. Its corresponding AGA algorithm is denoted by
‘‘Chung’’.

By the GA assumption of (6), the error probabilities of
polarized subchannel Pe(W

(j)
N ) can be written as

Pe
(
W (j)
N

)
= Q

 m(j)n√
2m(j)n

 = Q


√
m(j)n
2

, (11)

whereQ (ς) = 1
√
2π

∫
+∞

ς
e−

z2
2 dz. Thus, the SC bound can be

written as

Pe (N ,K ,A) ≤
∑
j∈A

Q


√
m(j)n
2

. (12)

Since Q (ς) is a monotone decreasing function, the subchan-
nel W (j)

N with a larger mean m(j)n has higher reliability. The
construction of polar codes corresponds to the selection of
best K subchannels among N as information set A in terms
of the LLR means m(j)n , where j = 1, 2, · · · ,N .

IV. ERROR ANALYSIS OF GAUSSIAN APPROXIMATION
In this section, we introduce the concepts of polarization
violation set (PVS) and polarization reversal set (PRS).
By calculating the two sets, we demonstrate the intrinsic
reason that polar codes constructed by conventional AGA suf-
fer from catastrophic performance loss at long code lengths.
In order to quantitatively evaluate the remainder calculation
error between AGA and EGA, we further propose the concept
of cumulative-logarithmic error (CLE) of channel polariza-
tion and give a bound to simplify its calculation. Based on
the CLE bound, we can efficiently evaluate the performance
of different approximation functions in AGA.

A. PVS AND PRS
Proposition 1: Under the GA assumption, each subchan-

nel’s symmetric capacity monotonically increases with its
LLR mean.

It is worth noticing that a BI-AWGN channel’s capacity
I (W ) is written as

I (W ) = h
(
σ 2
)

1
=

1
2

∑
x∈B

∫
R
W (y |x ) log

(
2W (y |x )

W (y |0 )+W (y |1 )

)
dy,

(13)

where the transition probability W (y |x ) is given as (4).
In terms of the GA principle, each subchannel is approx-
imated by a BI-AWGN channel W with LLR mean m.
In addition, the variance of corresponding additive white
Gaussian noise is σ 2

=
2
m under GA assumption. Since

the function h
(
σ 2
)
monotonically decreases with σ 2, the

symmetric capacity I (W ) monotonically increases with its
LLR mean m. In addition, we have

lim
m→0

I (W ) = 0, lim
m→+∞

I (W ) = 1. (14)

Proposition 2: For the size-two channel polarization, sup-
pose (W ,W ) 7→ (W (1)

2 ,W (2)
2 ). Under the GA assumption,

the LLR means corresponding to W , W (1)
2 and W (2)

2 are
represented as m, m(1)

2 and m(2)
2 , respectively. Then, the LLR

means should satisfy

m(1)
2 ≤ m ≤ m

(2)
2 (15)

with equality if and only if m = 0 or m = +∞.
This result follows the [1, Proposition 4]. Combining with

Proposition 1, the proof of (15) is immediate. It can be seen
from (15) that the reliability of the original channel W is
redistributed. Based on this interpretation, we may say that
after one step polarization, a ‘‘bad’’ channel W (1)

2 and a
‘‘good’’ channel W (2)

2 have been created.
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Proposition 3: In theAGAconstruction of polar codes, the
approximation function �(t) of φ (t) should satisfy

0 < �(t) < 1, (16)

which is the necessary and sufficient condition for �(t) to
satisfy Proposition 2.

Proof: Different from that in LDPC codes, the approx-
imation function �(t) for polar codes should guarantee that
the relationship of (15) holds.2 Therefore, in the size-two
channel polarization, for t ∈ (0,+∞), �(t) should satisfy

�−1
(
1− (1−�(t))2

)
< t < 2t, (17)

which follows Proposition 2. Recall that φ (t) is continuous
and monotonically decreasing on [0,+∞) [10], we therefore
assume its approximated form�(t)monotonically decreases
on (0,+∞). Consequently, the left inequality in (17) can be
simplified as

1− (1−�(t))2 > �(t)⇒ 0 < �(t) < 1, (18)

In turn, if �(t) satisfies 0 < �(t) < 1, we have

1− (1−�(t))2 > 1− (1−�(t))

⇒ �−1
(
1− (1−�(t))2

)
< �−1 (1− (1−�(t)))︸ ︷︷ ︸

=t

⇒ �−1
(
1− (1−�(t))2

)
< t < 2t (19)

The above analysis indicates that (16) is the necessary and
sufficient condition for �(t) to satisfy Proposition 2.
If �(t) cannot meet (16), its approximation error with

respect to the exact φ (t)will result in the following two types
of reliability rank error:
Type 1) In the size-two channel polarization, if �(t) leads

to m ≤ m(1)
2 < m(2)

2 , this error indicates that the
reliabilities of subchannels are partially violated,
which is named as the ‘‘polarization violation’’ phe-
nomenon.

Type 2) Furthermore, when �(t) leads to m < m(2)
2 ≤ m(1)

2 .
This error indicates the reliabilities of subchannels
have been wrongly reversed, which is named as the
‘‘polarization reversal’’ phenomenon.

Definition 1: Given the approximation function �(t), the
polarization violation set (PVS) SPVS is defined as

SPVS =

{
t
∣∣∣t ≤ �−1 (1− (1−�(t))2) < 2t

}
, (20)

where t ∈ (0,+∞).
Obviously, in the size-two channel polarization, for any

LLR mean m belonging to SPVS, �(t) will certainly lead
to m ≤ m(1)

2 < m(2)
2 , which violates the basic order in

Proposition 2. Therefore, for the AGA algorithm with �(t),
if SPVS 6= ∅, any subchannel whose LLR mean belongs
to SPVS will inaccurately create two ‘‘good’’ channel in the

2In this paper, we analyze the error between AGA and EGA, rather than
the error of GA itself.

size-two channel polarization, which will lead to obvious
approximation error in the subsequent AGA process.
Definition 2: Given the approximation function �(t), the

polarization reversal set (PRS) SPRS is defined as

SPRS =

{
t
∣∣∣�−1 (1− (1−�(t))2) ≥ 2t

}
, (21)

where t ∈ (0,+∞).
Interestingly, in the size-two channel polarization, for any

LLR mean m belonging to SPRS, �(t) will result in m <

m(2)
2 ≤ m(1)

2 . In other words, the split ‘‘good’’ channel and
‘‘bad’’ channel swap their roles due to the calculation error
of �(t), which yields severe error in the size-two polariza-
tion. This phenomenon then leads to the substantial error in
subchannels’ position rank.3

Proposition 4: The relationship between PVS and PRS
can be expressed as

SPRS 6= ∅⇒ SPVS 6= ∅. (22)

Proof: Note that when t ∈ (0,+∞), for any t ∈ SPRS,
it makes �−1(1− (1−�(t))2) ≥ 2t by Definition 2, which
will inevitably result in �−1(1− (1−�(t))2) ≥ t . There-
fore, according to Definition 1, the proof of Proposition 4
is immediate. In other words, SPRS 6= ∅ is the sufficient
condition of SPVS 6= ∅. On the contrary, if SPVS = ∅, we
can derive SPRS = ∅.
Suppose �(t) monotonically decreases on (0,+∞), the

left inequality in (20) can therefore be simplified as

�(t) ≥ 1− (1−�(t))2 ⇒ �(t) ≥ 1. (23)

Analogously, the inequality in (21) will also be simplified as

1− (1−�(t))2 ≤ �(2t)⇒ 2�(t)−�(t)2 ≤ �(2t) .

(24)

Example: recall that in Chung’s conventional AGA
scheme, the two-segment approximation function ϕ (t) is a
specific form of�(t). Since ϕ (0) = e0.0218 > 1, ϕ (t) cannot
satisfy (16). For ϕ (t), its corresponding PVS and PRS are
denoted by SPVS = (a1, a2] and SPRS = (0, a1], respectively.
The boundary points a1 and a2 are given in the following
equations{
2ϕ (a1)− ϕ(a1)2= ϕ (2a1) ,
ϕ (a2)= 1,

⇒

{
a1= 0.01476,
a2= 0.02939,

(25)

which follows (23) and (24). Hence for ϕ (t) we have

SPVS = (0.01476, 0.02939] ,SPRS = (0, 0.01476] , (26)

which are denoted in Fig. 2.
Theorem 1: For the N -channel transform, where N = 2n,

n ≥ 1, suppose that the original channel’s LLR mean has two
configurations, which are denoted by _m

(1)
0 and ^m

(1)
0 . If they

3One should notice that we cannot havem(2)
2 < m sincem(2)

2 = 2m. There
just exist three orders, which correspond to (15), PVS and PRS.
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FIGURE 2. Schematic plot of ϕ
(
t
)
, where SPVS =

(
0.01476, 0.02939] and

SPRS =
(
0, 0.01476].

satisfy _m
(1)
0 ≥

^m
(1)
0 , then under the GA assumption, for j =

1, 2, · · · , 2n, we have
_m
(j)
n ≥

^m
(j)
n . (27)

Proof: This result will be proved by mathematical
induction. Under the GA assumption, recall that φ (t) is
continuous and monotonically decreasing on [0,+∞) [10],
one can easily check that fc (t) and fv (t) in (8) monotonously
increase on [0,+∞).

Suppose N = 2k , k = 1, if the two LLR mean configura-
tions of the original channel satisfy _m

(1)
0 ≥

^m
(1)
0 , thenfc

(
_m
(1)
0

)
≥ fc

(
^m
(1)
0

)
,

fv
(
_m
(1)
0

)
≥ fv

(
^m
(1)
0

)
,
⇒


_m
(1)
1 ≥

^m
(1)
1 ,

_m
(2)
1 ≥

^m
(2)
1 .

(28)

With the increased LLR mean of the original channel W ,
it can be seen that the LLR means of two polarized subchan-
nels will strictly increase.

Next, suppose N = 2k , if we have _m
(1)
0 ≥

^m
(1)
0 , then for

j = 1, 2, · · · , 2k , _m
(j)
k ≥

^m
(j)
k holds. Thus, when N = 2k+1,

one can checkfc
(
_m
(j)
k

)
≥ fc

(
^m
(j)
k

)
,

fv
(
_m
(j)
k

)
≥ fv

(
^m
(j)
k

)
,
⇒


_m
(2j−1)
k+1 ≥

^m
(2j−1)
k+1 ,

_m
(2j)
k+1 ≥

^m
(2j)
k+1.

(29)

In other words, for j = 1, 2, · · · , 2k+1, _m
(j)
k+1 ≥

^m
(j)
k+1. From

above analysis, the proof of (27) is finished.
Theorem 1 indicates that under the GA assumption, if the

LLR mean of the original channelW increases, the polarized
subchannel’s LLR mean will increase together. Combining
PVS and PRS, Theorem 1 serves to analyze the subchannel’s
rank error and the poor performance of the long-length polar
codes when Chung’s conventional AGA is used.

For the AGA construction of polar codes with �(t), sup-
poseSPRS 6= ∅, then for any LLRmeanm(j)i ∈ SPRS, we have
m(2j−1)i+1 ≥ m(2j)i+1 by the definition of SPRS in the recursive
calculation of GA. However, φ (t) in EGA can guarantee

SPRS = ∅ and SPVS = ∅, which claims m(2j−1)i+1 < m(2j)i+1 for
any m(j)i > 0. The above analysis indicates that in the AGA
process, as presented in the code tree, due to SPRS 6= ∅, the
condition m(j)i ∈ SPRS will lead to the rank error among the
leaf nodes which belong to the left subtree Tleft = T (v(2j−1)i+1 )
and the right subtree Tright = T (v(2j)i+1). In other words, we
have

m
(
(j−1)2n−i+s

)
n ≥ m

(
(j−1)2n−i+s+2n−i−1

)
n , (30)

where s = 1, 2, · · · , 2n−i−1. This result follows from
Theorem 1 by mechanically applying m(2j−1)i+1 ⇒

_m
(1)
0 and

m(2j)i+1 ⇒
^m
(1)
0 . Then we have _m

(s)
n−i−1 ≥

^m
(s)
n−i−1. Note that

in these two subtrees, _m
(s)
n−i−1 and ^m

(s)
n−i−1 correspond to the

left and right side in (30), respectively. However, in EGA,
the ‘‘≥’’ in (30) should be ‘‘<’’. This polarization reversal
phenomenon leads to the rank error of subchannel’s position,
which directly affects the selection of information set A.

FIGURE 3. A code tree representation of polarization violation and
polarization reversal, where N = 16 and n = 4. m(1)

1 ∈ SPRS and

m(5)
3 ∈ SPVS.

As an example, Fig. 3 shows the polarization violation and
polarization reversal in the code tree, where N = 16 and
n = 4. In the AGA computation process, m(1)1 ∈ SPRS. Then
we have m(1)2 ≥ m(2)2 , for the leaf nodes with Tleft = T (v(1)2 )
and Tright = T (v(2)2 ), following Theorem 2, one can check

m(1)4 ≥ m(5)4 , m(2)4 ≥ m
(6)
4 ,

m(3)4 ≥ m(7)4 , m(4)4 ≥ m
(8)
4 . (31)

Similarly, since m(5)3 ∈ SPVS, we have m
(9)
4 ≥ m(5)3 , whereas

in EGA, it should be m(9)4 < m(5)3 , and all the ‘‘≥’’ in (31)
should be ‘‘<’’. Thus, compared to EGA, the approximation
error of AGA results in obvious rank error within the 16 leaf
nodes.

The above analysis indicates that in the AGA construction
of polar codes, if SPRS 6= ∅, its approximation error leads to
polarization reversal. Considering its definition, SPRS lies in
the vicinity of 0. As stated in [1], whenN tends to infinity, the
symmetric capacity terms {I (W (j)

N )} cluster around 0 and 1,
and the corresponding LLR means cluster around 0 and+∞.
So when the code length becomes longer, there are more LLR
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means falling in SPRS during the AGA recursive computation
process. This is the essential reason that polar codes con-
structed by some AGA suffer from catastrophic performance
loss with the long code lengths.

During the recursive process of AGA, assuming the num-
ber of code tree nodes belonging to the two sets4 are denoted
by µPVS and µPRS, the corresponding ratios with respect to
all nodes are written as

θPVS =
µPVS
n−1∑
k=0

2k
, θPRS =

µPRS
n−1∑
k=0

2k
. (32)

For Chung’s conventional AGA, Table 1 gives the distribution
of µPVS and µPRS with different polarization levels n. The
corresponding θPVS and θPRS are also listed in Table 1, where
Eb/N0 = 1dB (σ 2

= 1.1915). From Table 1, we observe
that with the increase of code length, there are more and
more nodes falling in PRS, and its corresponding ratio also
becomes larger. Therefore, the polar codes constructed by
Chung’s conventional AGA suffer from catastrophic jitter in
performance when their code lengths are long.

TABLE 1. The number of nodes and its percentage whose LLR mean
belongs to SPVS and SPRS during the recursive process of Chung’s
conventional AGA, where Eb/N0 = 1dB.

Fig. 4 demonstrates the BLER performance of polar codes
constructed by Chung’s conventional AGA and Tal&Vardy’s
method under the BI-AWGN channels. In Fig. 4, polar codes
are constructed depending on the signal-to-noise ratio (SNR)
one by one, and all the schemes have code rate R = 1/3
with SC decoding. The code length N is set to be 212, 214

and 218. We observe that for long code lengths, Chung’s
scheme obviously presents catastrophic performance loss.
It is consistent with the analysis of Table 1.
Remark 1: For the AWGN channels, compared with the

accurate DE or Tal&Vardy’s algorithm, EGA is also found
to well approximate the actual polarized subchannels. Note
that EGA has strict order preserving property, which follows
Proposition 2. This order preserving property of EGA indeed

4The leaf nodes whose LLR mean falls into the two sets are not counted
in, because it will not lead to rank error among the descendants.

FIGURE 4. BLER performance comparison of polar codes with the code
length N = 2n (n = 12, 14, 18) and code rate R = 1/3 in the AWGN
channel.

gives reasonable interpretation about its ‘‘good results’’ ver-
sus DE. Therefore, in general, the error between EGA and DE
is so small that it can be ignored.
Remark 2: Recall that Arıkan in [3] suggested a heuristic

BEC approximation method to construct the polar codes for
arbitrary binary-input channels, which has also yielded good
results in experiments. The above PVS and PRS analyses also
give interpretation about this ‘‘good results’’. One can check
BEC approximation has strict order preserving property in
size-two polarization transform, which shows I (W (1)

2 ) <

I (W ) < I (W (2)
2 ). Heuristic BEC approximation will not

lead to polarization violation and polarization reversal in this
sense. Therefore, this heuristic method will just bring some
moderate performance loss rather than catastrophic jitter.

B. CLE OF CHANNEL POLARIZATION
Polarization violation and polarization reversal reveal the
essential reason that AGA cannot work well for long code
lengths. Besides these two sets, in this subsection, we fur-
ther propose a new metric, named cumulative-logarithmic
error (CLE) of channel polarization, to quantitatively evaluate
the remainder approximation error between AGA and EGA.
Then CLE is utilized to guide the design of GA approxima-
tion function �(t).

For �(t) in AGA, suppose its SPVS = ∅ and SPRS = ∅,
CLE will play a crucial role in evaluating the performance of
AGA. We concern about the subchannel’s capacity, which is
a function of LLR mean under GA assumption. Hence, the
difference between�(t) and φ (t) brings in calculation error
in subchannel capacity evaluation. The original absolute error
of capacity calculation between AGA and EGA is denoted
by 1(t), which is a function of LLR mean t . Without ambi-
guity, 1(t) will be abbreviated to 1 in this paper.

Assume 1 occurs after r recursions, denoted by 1r . Thus
1r is accumulated as final error after n − r polarization
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levels, and this process can be represented on a subtree with
a depth n − r . To evaluate the calculation error of AGA, we
focus on the difference of subchannel’s capacity calculated
by AGA and EGA in logarithmic domain. The capacities
calculated by EGA can form a set I defined on this code
subtree with the following properties:

On this subtree, the set of capacities corresponding to the
nodes at a given depth d is denoted by Id , d = r, r+1, · · · , n.
Let I (k)d , k = 1, 2, · · · , 2d−r , denote the k-th element in Id .
For each I (k)d ∈ Id , I (k)d takes value on [0, 1]. For d > r , I (k)d
is a function of path bdr+1, which is actually the binary expan-
sion of k − 1 (i.e., k − 1 =

∑d−r
i=1 br+i2

d−r−i). Therefore, at
the root node v(j)r , 1r can be written as

1r = Ĩ (1)r − I
(1)
r = h

(
2

m̃(j)r

)
− h

(
2

m(j)r

)
, (33)

where Ĩ (1)r , I (1)r and m̃(j)r ,m
(j)
r stand for the initial symmetric

capacities and LLR means calculated by AGA and EGA
respectively, and the formula of h (·) is written in (13).
As stated in Remark 2, without much sacrifice in accuracy,

BEC approximation will act as faithful surrogate for GA in
error analysis. According to the iteration structure in channel
polarization transform in [1], we can derive as followsI

(2k−1)
d+1 =

(
I (k)d

)2
when bd+1 = 0,

I (2k)d+1 = 2I (k)d −

(
I (k)d

)2
when bd+1 = 1.

(34)

Furthermore, when bd+1 = 1, we have I (2k)d+1 ≤ 2I (k)d . Thus,
in logarithmic domain, we can getlogI

(2k−1)
d+1 = 2logI (k)d when bd+1 = 0,

logI (2k)d+1 ≤ logI (k)d + 1 when bd+1 = 1.
(35)

Define Ĩ (k)d = I (k)d +1
(k)
d , where Ĩ (k)d denotes the capacity

corresponding to AGA, 1(k)d represents the absolute error of
capacity calculation between AGA and EGA. For r < d ≤ n,
Ĩ (k)d and I (k)d represent the capacities, which are calculated by
BEC approximation, of AGA and EGA respectively. In this
paper, We only analyze the error between AGA and EGA,
rather than the error of GA itself or the error brought in
by heuristic BEC approximation. Therefore, 1(1)r = 1r .
Let ρ(k)d = 1

(k)
d /I (k)d denote the relative error, and e(k)d =

logĨ (k)d − logI (k)d = log
(
1+ ρ(k)d

)
denote the capacity

calculation error in logarithmic domain. Hence, the partial
cumulative-logarithmic error (PCLE) can be written as

Cr :n =
2n−r∑
k=1

∣∣∣e(k)n ∣∣∣. (36)

The cumulative-logarithmic error (CLE) will beC =
∑
r
Cr :n.

C. CLE BOUND
The precise calculation of CLE is too complicated to be
analyzed using recursive relation (34). In this subsection, we
propose an upper bound on CLE to simplify its calculation.
Definition 3: For the k-th leaf node corresponding to a

path bnr+1, we define |{r + 1 ≤ i ≤ n : bi = 0}| = α and
|{r + 1 ≤ i ≤ n : bi = 1}| = n− r − α.
Theorem 2: The logarithm error

∣∣∣e(k)n ∣∣∣ can be bounded by

∣∣∣e(k)n ∣∣∣ ≤ 2α
∣∣∣log (1+ ρ(1)r

)∣∣∣ = 2α
∣∣∣∣∣log

(
1+

1
(1)
r

I (1)r

)∣∣∣∣∣.
Proof: Let ẽ(k)d denote the bound of e(k)d . Then, ẽ(k)n is

determined by specifying ẽ(1)r = e(1)r = log
(
1+ ρ(1)r

)
andẽ

(2k−1)
d+1 = D

(
ẽ(k)d

)
when bd+1 = 0,

ẽ(2k)d+1 = E
(
ẽ(k)d

)
when bd+1 = 1,

(37)

where E : R → R, E (z) = z denotes equality, D : R → R,
D (z) = 2z denotes doubling.
If 1(1)r ≥ 0, it claims that 1(k)d ≥ 0 holds in terms of

Theorem 1. Note that during the iteration, when bd+1 = 0,

0 ≤ e(2k−1)d+1 = 2e(k)d = ẽ(2k−1)d+1 . (38)

When bd+1 = 1, it can be proved that e(2k)d+1 ≤ ẽ(2k)d+1.
According to the first equation of (34), it is easy to get that

Ĩ (2k)d+1 = 2Ĩ (k)d −

(
Ĩ (k)d

)2
= 2

(
I (k)d +1

(k)
d

)
−

(
I (k)d +1

(k)
d

)2
= 2I (k)d −

(
I (k)d

)2
︸ ︷︷ ︸

=I (2k)d+1

+ 21(k)d − 2I (k)d 1
(k)
d −

(
1
(k)
d

)2
︸ ︷︷ ︸

=1
(2k)
d+1

.

(39)

Therefore, e(2k)d+1 can be written as

e(2k)d+1 = log
(
1+ ρ(2k)d+1

)
= log

1+
21(k)d − 2I (k)d 1

(k)
d −

(
1
(k)
d

)2
2I (k)d −

(
I (k)d

)2
. (40)

In addition, we have

ẽ(2k)d+1 = log
(
1+ ρ̃(2k)d+1

)
= e(k)d = log

(
1+

1
(k)
d

I (k)d

)
. (41)

Then we can check

ρ̃
(2k)
d+1 − ρ

(2k)
d+1 =

1
(k)
d

(
I (k)d +1

(k)
d

)
I (k)d

(
2− I (k)d

) ≥ 0. (42)

It can be inferred that ẽ(k)d ≥ e
(k)
d ≥ 0 holds.
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Recall Definition 3, during the iterative calculation of ẽ(k)n ,
we count doubling α times and equality n − r − α times.
Hence, we have

0 ≤ e(k)n ≤ ẽ
(k)
n = En−r−αDα

(
e(1)r

)
= 2αe(1)r . (43)

Analgously, if 1(1)r < 0, we have 1(k)d < 0. From (38)
and (42), we can get

0 > e(k)n > ẽ(k)n = En−r−αDα
(
e(1)r

)
= 2αe(1)r . (44)

Combing (43) and (44), we prove the theorem.
Theorem 3: PCLE Cr :n can be upper bounded by

Cr :n ≤ 3n−r
∣∣∣log (1+ ρ(1)r

)∣∣∣ = 3n−r
∣∣∣∣∣log

(
1+

1
(1)
r

I (1)r

)∣∣∣∣∣.
Proof: For any k ∈

{
1, 2, · · · , 2n−r

}
, the number of

vectors bnr+1 satisfying Definition 3 is
(n−r
α

)
, where bnr+1 is

the binary expansion of k−1. Combined with definition (36)
and Theorem 2, Cr :n satisfies the following constraint

Cr :n ≤
2n−r∑
k=1

∣∣∣ẽ(k)n ∣∣∣ = n−r∑
α=0

(n−r
α

)
2α
∣∣∣e(1)r ∣∣∣ = 3n−r

∣∣∣e(1)r ∣∣∣ . (45)

The last equation in (45) uses binomial theorem. Therefore,
CLE C can be upper bounded by

∑
r
3n−r

∣∣∣log2 (1+ ρ(1)r

)∣∣∣,
and the exponent n− r stands for polarization levels.

V. IMPROVED GAUSSIAN APPROXIMATION
In this section, guided by the previous PVS, PRS and CLE
analyses, we propose new rules to design AGA for the con-
struction of polar codes. Then we give three specific forms of
the approximation function in AGA, which have advantages
in both complexity and performance.

A. DESIGN RULES OF AGA
For channels other than BEC (e.g. AWGN channel), AGA
is widely used to construct polar codes. However, in prac-
tical implementation, the accuracy of approximation func-
tion �(t) will greatly affect the construction of polar codes
especially when the code length is long. According to
Theorem 3, the initial error will be exponentially amplified
with the increase of polarization levels. Note that PCLE
bound is mainly affected by two factors: the first term 3n−r

is relevant to polarization levels, and the second term is
dependent on the original relative error ρ(1)r = 1

(1)
r /I (1)r .

In general, the absolute error 1(1)r is tiny. Therefore, for
the good channels whose capacities I (1)r approach 1, their
original relative errors ρ(1)r are so small that they can be
ignored. However, for the bad channels whose capacities I (1)r
approach 0, their original relative errors are not negligible.
Subsequently, given a fixed absolute error1(1)r , the more I (1)r
is close to 0, the larger the original relative error ρ(1)r becomes.
Above analysis indicates that CLE bound is mainly

affected by the terms Cr :n with the small initial capacity I (1)r ,
which corresponds to the bad channels. Due to the error, some

frozen subchannels will be wrongly identified as information-
carrying ones (role flipping), which results in the perfor-
mance degradation. Note that the capacity I (1)r monotonically
increases with LLR mean t under the GA assumption.
In addition, according to (14), we have

lim
t→0

I (1)r = 0, lim
t→+∞

I (1)r = 1. (46)

Guided by above analyses, the AGA approximation func-
tion design is composed of three rules:
Rule 1) PVS and PRS eliminating: �(t) should guarantee

SPVS = ∅ and SPRS = ∅. According to Propo-
sition 4 and its converse-negative proposition, if
SPVS = ∅, we have SPRS = ∅. Hence, in order to
empty PVS and PRS, we should ensure 0 < �(t) <
1 for any t ∈ (0,+∞).

Rule 2) Low SNR design: When t comes close to 0, we must
guarantee lim

t→0
�(t) = 1 to reduce approximation

error. Since CLE bound is amplified exponentially
with the growth of polarization levels, the only way
to reduce CLE bound is to lower the initial relative
error ρ(1)r . Therefore, �(t) needs to be divided into
more segments when t approaches 0. This rule can
reduce the original absolute error1(1)r in the vicinity
of 0 so as to lower ρ(1)r .

Rule 3) High SNR design:When t stays away from 0, thanks
to the relatively large I (1)r , CLE bound can tolerate a
more obvious absolute error 1(1)r . Therefore, �(t)
can be selected with some simpler forms to reduce
the computational complexity.

Besides,�(t) should keep continuity between the adjacent
two segments, which can mitigate the jitter of CLE bound
by keeping smooth of initial error. Among these three rules,
Rule 1 is the most crucial, which can prevent the correspond-
ing AGA polar code construction scheme from severe perfor-
mance loss. Then the importance of Rule 2 is second, which
reduces the remainder approximation error between AGA
and EGA. Rule 3 plays a less important role, which helps to
further reduce the computational complexity of AGA.

B. IMPROVED AGA APPROXIMATION FUNCTION
Recall the analysis in Section IV, Chung’s two-segment AGA
scheme leads to SPVS 6= ∅ and SPRS 6= ∅, which violates
Rule 1. Therefore, guided by above rules, we design the
following new two-segment approximation function by
employing curve-fitting algorithm with minimum mean
square error criterion, denoted by �2 (t),

�2 (t) =

{
e0.0116t

2
−0.4212t 0 < t ≤ a,

e−0.2944t−0.3169 a < t,
(47)

where the boundary point a = 7.0633. The corresponding
newAGAalgorithm is denoted byAGA-2. In the construction
of polar codes, compared with Chung’s scheme, AGA-2 can
eliminate rank error and therefore will not lead to catastrophic
performance loss at the long code lengths. In addition, since
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the inverse function of �2 (t) can be analytically obtained,
it has lower calculating complexity. Furthermore, guided by
Rule 3, for fc (t) in (8), when t leaves away from 0, 1−�2 (t)
tends to 1, which indicates

(1−�2 (t))2 ≈ 1−�2 (t)⇒ fc (t) ≈ t. (48)

Followed by Proposition 2, fc (t) should satisfy fc (t) < t .
Thus, when t stays away from 0, the complex fc (t) can be
further approximated as

fc (t) = t − ε, (49)

where ε denotes the offset. Then according to (8), when�2 (t)
tends to 0, one can check

�2 (t − ε) = 2�2 (t)−�2(t)2 ≈ 2�2 (t) . (50)

Therefore, for �2 (t), in terms of (47), when t � 0 we have

e−0.2944(t−ε)−0.3169 = e−0.2944t−0.3169+ln 2

⇒ ε = 2.3544, (51)

where t − ε should locate in the sencond segment, namely
t − ε > a, which claims t > 9.4177. Following Rule 3, for
the entire AGA-2 scheme, its fc (t) is further simplified as

fc (t) =

{
�−12

(
1− (1−�2 (t))2

)
0 ≤ t ≤ τ,

t − 2.3544 t > τ,
(52)

where the boundary point is τ = 9.4177.
From the subsequent CLE analysis, we find that although

AGA-2 can satisfy Rule 1 so as to remove the rank error, it
will still bring obvious approximation error in the vicinity
of 0. Therefore, when the code length is relatively long,
AGA-2 will also bring some moderate performance loss.
In order to further improve the GA construction performance,
we propose a new piecewise function �3 (t) with three seg-
ments by using curve-fitting algorithm, that is

�3 (t) =


e0.06725t

2
−0.4908t 0 < t ≤ a,

e−0.4527t
0.86
+0.0218 a < t ≤ b,

e−0.2832t−0.4254 b < t,

(53)

where the boundary points a = 0.6357 and b = 9.2254.
Its corresponding AGA algorithm is denoted by AGA-3.
It is specially designed for polar codes, which follows the
proposed rules. AGA-3 can better satisfy Rule 1 and Rule 2.
Especially in the third segment, namely the high SNR region,
AGA-3 has lower computational complexity compared to
Chung’s scheme which obeys Rule 3. In addition, the inverse
function of �3 (t) can be easily obtained. Similar with
AGA-2, for the whole AGA-3 scheme, its fc (t) can be further
simplified as

fc (t) =

{
�−13

(
1− (1−�3 (t))2

)
0 ≤ t ≤ τ,

t − 2.4476 t > τ,
(54)

where the boundary point is τ = 11.673.
There is no doubt that, if the code length becomes

extremely long, the three-segment approximation function

in AGA-3 will also bring calculation error, which obey
Theorem 3 and is stated in Rule 2. Hence, we design the fol-
lowing four-segment improved AGA scheme for extremely
long polar code, that is

�4 (t) =


e0.1047t

2
−0.4992t 0 < t ≤ a,

0.9981 · e0.05315t
2
−0.4795t a < t ≤ b,

e−0.4527t
0.86
+0.0218 b < t ≤ c,

e−0.2832t−0.4254 c < t,

(55)

where the boundary points a = 0.1910, b = 0.7420 and
c = 9.2254. The approximation accuracy in the vicinity
of 0 is further improved. Its corresponding AGA algorithm
is denoted by AGA-4. The inverse function of�4 (t) can also
be analytically obtained. Since the last two segments in�4 (t)
are the same as that in�3 (t), the fc (t) function inAGA-4 also
has the same form as the equation (54).
The computational complexity of fc (t) has been remark-

ably reduced thanks to Rule 3 in the above three proposed
AGA schemes. Moreover, Rule 1 and Rule 2 help AGA to
achieve excellent performance. Thus, for the general con-
struction of polar codes, the proposed AGA-2 scheme is a
good alternate to improve the Chung’s conventional AGA
scheme. When the code length becomes longer, the proposed
AGA-3 scheme will achieve better performance than AGA-2
scheme. If the code length becomes extremely long, AGA-4
will present better performance. When the code length con-
tinues to grow, AGA-4 will inevitably bring calculation error,
which follows Theorem 3 and Rule 2. Nevertheless, followed
by Rule 1 to 3, we can still design AGA with more complex
multi-segment approximation function to keep the calculation
accuracy. In this way, we provide a systematic framework to
design high accuracy AGA scheme for polar codes at any
code length.
As for the specific forms of the new AGA approximation

functions, it is heuristically obtained from Chung’s original
ϕ (t) while taking the Rule 1 to 3 into consideration. The
first segment should ensure lim

t→0
�(t) = 1 and use some

complex functions to reduce the relative error. When t stays
away from 0, �(t) can be selected with some simpler forms
to reduce the computational complexity. After choosing the
approximation form, its parameters are acquired by curve-
fitting. Certainly, one can choose different approximation
functions according to the proposed rules. Finally, the per-
formance will be evaluated by calculating its CLE bound.
For other channels W rather than the AWGN (e.g. the

Rayleigh fading channel), onemay expect better performance
at the expense of more complexity in the code construction by
using DE. However, we can approximate the channelW using
an AWGN channel W with σ , where

I
(
W
)
= I (W ) = h

(
σ 2
)
. (56)

The code construction is then then performed over each of
the equivalent AWGN channels in the same GA way as that
in the conventional AWGN case. As that will be shown in
Section VI, the proposed AGA based construction of polar
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codes works well for other channels as well. This is signifi-
cant in that it shows the robustness of the AGA construction
against uncertainty and variation in channel parameters.

C. COMPLEXITY COMPARISON
In this part, we compare the order of complexities with four
typical polar code construction methods, which are Arıkan’s
heuristic BEC approximation method, DE algorithm,
Tal and Vardy’s method and our proposed AGA schemes.
Note that the complexity order provided only includes the
dominant terms, and the detailed number of calculation
depends heavily on the specific hardware implementation,
which is beyond the scope of this paper.

One can check the principle of these four methods is to
recursively calculate each subchannel’s reliability on the code
tree. Therefore, their the total number of node visiting com-
plexity can be written asO (N )+O (N/2)+O (N/4)+· · ·+
O (2)+O (1) = O (N ). It seems that these four methods have
the same number of node visiting. Furthermore, we analyze
the computational complexity of each visiting.
• For the heuristic BEC approximation, the computational
complexity of each visiting operation isO (1), which can
be ignored. Hence, it has the lowest complexity among
the four schemes.

• DE needs a fast Fourier transform (FFT) and an inverse
fast Fourier transform (IFFT) operation when calculat-
ing the probability density function (PDF) of LLR of
each bit. The corresponding complexity is O (ξ log ξ),
where ξ denotes the number of samples. However, a
typical value of ξ is about 105 [13], implying a huge
computational burden in practical application. The dif-
ficulty is further aggravated by the quantization errors,
which will be accumulated over multiple polarization
levels.

• Tal andVardy’smethod can be viewed as an approximate
version of DE [5] and has a complexity of O(µ2 logµ),
whereµ is a fixed, even and positive integer independent
of code length N . In general, a typical value of µ is 256
which is much less than ξ . Hence, this method has much
lower complexity than DE. But when the code length
becomes long, Tal and Vardy’s method still involves
relatively high computational complexity.

• Regarding the proposed AGAmethod, the complexity of
calculating fv (t) can be ignored since the result can be
obtained easily. For fc (t), when t > τ , its calculating
complexity can also be ignored. When 0 ≤ t ≤ τ ,
since the inverse function in fc (t) can be analytically
obtained, the computational complexity is O (1). From
these comparison, it can be concluded that our proposed
AGA schemes have similar calculating complexity order
with the heuristic BEC approximation, which are much
lower than DE or Tal and Vardy’s algorithms.

VI. PERFORMANCE EVALUATION
The precise results and corresponding upper bounds of CLE
for various AGAs are depicted in Fig. 5, where the polar-
ization level n = 8 and r = 0 (CLE C = C0:8). It can

FIGURE 5. The precise results and corresponding upper bounds of CLE for
various AGAs, where t stands for LLR mean and polarization level n = 8.

be found that the CLE bound and the exact result coincide
well. Therefore, the CLE bound may be used as an effective
tool to evaluate the performance of various AGA schemes.
From Fig. 5, we can see that the CLE bound of Chung’s
conventional AGA scheme is obviously higher than that of
AGA-2 and AGA-3, which indicates the poor performance of
polar codes when Chung’s AGA scheme is used. Compared
with AGA-2, the CLE bound of AGA-3 also shows some
performance gain. Furthermore, AGA-4 can achieve the best
performance among theseAGA schemes.We notice that there
exists a non-monotonic behavior for the CLE bound. This
phenomenon is caused by function fitting because there is
different relative error ρ(1)r for different t , which results in
the jitter of CLE bound.

FIGURE 6. The SC decoding BLER performance comparison of polar codes
with the code length N = 2n (n = 12, 14, 18) and the code rate R = 1/3
over the BI-AWGN channel.

Next we compare the BLER performance among different
construction schemes under the BI-AWGN channel, which is
shown in Fig. 6. All the schemes have code rate R = 1/3
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with the SC decoding. The code lengths N are set to 212, 214

and 218, respectively. From these results, it can be found that
the BEC approximation scheme demonstrates somemoderate
performance loss compared with other advanced construction
methods. For the extremely long code lengths, since DE falls
into a huge computational burden in the practical application,
we use Tal and Vardy’s method as an alternate with almost
no performance loss. Therefore, Tal and Vardy’s construction
possesses the highest accuracy in Fig. 6. However, it still
requires high computational complexity at long code lengths.
Among the AGA schemes, we can see that Chung’s scheme
suffers from a dramatic performance loss with the increase
of code length since it violates Rule 1. On the contrast, our
proposed AGA-2 achieves good performance. Hence, AGA-2
can be employed as a good alternate for Chung’s two-
segment method at some moderate code lengths. It can also
be observed that the proposed AGA-3 scheme achieve better
performance which follows Rule 1 and Rule 2. Furthermore,
we can see that AGA-4 scheme approaches the performance
of Tal and Vardy’s method, which can be used for some
extremely long code length. In addition, with the increase
of code length, the performance gap between AGA-3 and
AGA-4 becomes larger. Therefore, in terms of the previous
CLE bound analyses and simulation results, it can be pre-
dicted that the performance gap will become more and more
obvious with the increase of code length.

FIGURE 7. The SC decoding BLER performance comparison of polar codes
with code length N = 214 = 16384 and code rates R = 1/3 and R = 2/5
over the Rayleigh fading channel.

The comprehensive BLER performance comparisons with
the SC decoding in terms of different construction schemes
under the Rayleigh fading channels are given in Fig. 7. The
code length is N = 214, and the code rates R are set to
1/3 and 2/5, respectively. Similar with Fig. 6, we can see
that DE algorithm achieves the best performance. Chung’s
scheme also presents poor performance since it cannot satisfy
Rule 1. On the contrary, AGA-4 scheme suffers from an
ignorable loss of performance compared with DE algorithm.

Furthermore, it becomes more computationally efficient and
implementable in practical use than the former. In addition,
AGA-4 can stably achieve 0.15 ∼ 0.2dB gain for differ-
ent code rates compared with AGA-3 scheme. These results
shows the robustness of the AGA construction against uncer-
tainty and variation in channel parameters, which is valuable
for polar coding.

FIGURE 8. The Ad-CASCL decoding BLER performance comparison of
polar code and LTE turbo code with the code length N = 214 = 16384 and
the code rates R = 1/3. The channel is configured as the BI-AWGN.

In Fig. 8, we provide the BLER performance of polar codes
by using the adaptive cyclic redundancy check (CRC) aided
SC list decoding (Ad-CASCL) [14], [15]. The maximum
list size in the Ad-CASCL decoder is denoted by Lmax. The
16-bit CRC in LTE standard [16] is used. The performance
of LTE turbo code is also given as a comparison, where
the Log-MAP decoding is applied in the turbo decoder with
8 iterations [17]. We can see that Chung’s conventional AGA
scheme shows poor performance. It indicates that this tra-
ditional two-segment AGA scheme is not suitable for the
polar code construction. On the contrary, the polar codes con-
structed by the proposed AGA-4 scheme perform well. When
Lmax = 32, polar code can outperform LTE turbo code in the
low SNR region. For the high SNR region, although turbo
code sometimes performs better than polar code, it suffers
from the error floor. When Lmax is set to 128, polar code can
outperform LTE turbo code for any SNR. Additionally, this
polar code constructed by AGA-4 scheme with Lmax = 128
Ad-CASCL decoding can achieve BLER≤ 10−3 at Eb/N0 =

0.51dB.We compare this performance to the Shannon limit at
the same finite block length, which is provided in [18]. The
maximum rate that can be achieved at block length N and
BLER ε can be well approximated by

Rmax = C −

√
V
N
Q−1 (ε) , (57)

where C is the channel capacity and V is a quantity called
the channel dispersion that can be computed from the channel
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statistics, using the formula:

V = Var
[
log

W (Y |X )
W (Y )

]
. (58)

For the BI-AWGN channel, the transition probability
W (y |x ) is written in (4). The channel dispersion V is written
as

V =
1
2

∑
x∈B

∫
R
W (y |x )

[
log

(
2W (y |x )

W (y |0 )+W (y |1 )

)]2
dy

− I2 (W ) . (59)

By using (57), we can calculate the Shannon limit for the
(N ,K ) = (16384, 5461) code which is named as the ‘‘dis-
persion bound’’ in Fig. 8. To achieve a rate R = 5461/
16384 = 1/3, the minimum Eb/N0 required is −0.186dB.
Hence, polar code constructed by AGA-4 with Lmax = 128 is
0.696dB from the Shannon limit. When Lmax increases, this
SNR gap will become smaller.

VII. CONCLUSION
In this paper, we introduced the concepts of PVS and PRS
which explain the essential reason that polar codes con-
structed by conventional AGA expresses poor performance
at long code lengths. Then we proposed a new metric, named
CLE, to quantitatively evaluate the remainder error of AGA.
We further derived the upper bound of CLE to simplify its
calculation. Guided by PVS, PRS and CLE bound analysis,
we proposed new rules to design AGA for polar codes. Simu-
lation results show that the performance of all AGA schemes
is consistent with CLE analysis. When the polarization levels
increase, Chung’s conventional AGA scheme suffers from a
catastrophic performance jitter. On the contrary, the proposed
AGA methods guided by the proposed rules stably guarantee
the excellent performance of polar codes for both the AWGN
channels and the Rayleigh fading channels.
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