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ABSTRACT In this paper, we investigate a coverage extension scheme based on orthogonal random
precoding (ORP) for the downlink of massive multiple-input multiple-output systems. In this scheme, a
precoding matrix consisting of orthogonal vectors is employed at the transmitter to enhance the maximum
signal-to-interference-plus-noise ratio of the user. To analyze and optimize the ORP scheme in terms of
cell coverage, we derive the analytical expressions of the downlink coverage probability for two receiver
structures, namely, the single-antenna receiver and multiple-antenna receiver with antenna selection. The
simulation results show that the analytical expressions accurately capture the coverage behaviors of the
systems employing the ORP scheme. It is also shown that the optimal coverage performance is achieved
when a single precoding vector is used under the condition that the threshold of the signal-to-noise ratio of
the coverage is greater than one. The performance of the ORP scheme is further analyzed when the different
random precoder groups are utilized over multiple time slots to exploit precoding diversity. The numerical
results show that the proposed ORP scheme over multiple time slots provides a substantial coverage gain
over the space–time coding scheme despite its low feedback overhead.

INDEX TERMS Cell coverage, random precoding, MIMO, massive MIMO.

I. INTRODUCTION
In mobile communication, a massive multiple-input multiple-
output (MIMO) system, where the base station (BS) is
equipped with a large number of antennas, has been recently
considered as a potential technique for dramatically improv-
ing system performance in terms of spectral and power effi-
ciency [1], [2]. It is also thought that a massiveMIMO system
is capable of extending its cell coverage by exploiting a
large array gain to compensate for the significant path loss
in millimeter-wave propagation channels, which provides a
wider bandwidth for 5G communication systems [3]. Specif-
ically, in the downlink, precoding techniques can be exploited
to extend the cell coverage inmassiveMIMO systems [4], [5].

Most studies on precoding techniques for MIMO systems
have been carried out under the assumption of perfect channel
state information (CSI) at the transmitter [6]–[10]. How-
ever, in practical systems, the CSI is imperfect [11]–[13],
and in frequency-division duplexing, it is typically acquired
by the feedback signals from the receivers, which results
in a significant overhead, especially in massive MIMO
systems [14]–[17]. Moreover, in contrast to unicast data
channels, for multicast/broadcast channels, which must be

received by a large number of mobile users in each cell,
CSI-based precoding strategies can lead to the potentially
excessive overhead [18]–[20]. Therefore, to achieve the cov-
erage gain in the downlink of massive MIMO systems, non-
or partial-CSI based transmission techniques such as random
precoding should be considered [21], [22].

A. RELATED WORKS
There has been a line of research studying the coverage exten-
sion problem. Lee andKim [23] showed that the cell coverage
can be extended by the dual-hop space-time relaying scheme.
The results in [24] indicate that the proposed strategy called
the strongest-weakest-normalized-subchannel-first schedul-
ing can significantly expand the coverage of MIMO systems.
In [25], the downlink coverage performance inMIMOhetero-
geneous cellular networks was investigated; furthermore, the
work was extended with flexible cell selection in [26]. The
same problem has also been recently considered in massive
MIMO systems [27], [28]. The analytical expressions for the
asymptotic coverage probability and rate for both downlink
and uplink in random cellular networks with Poisson dis-
tributed BS locations are presented in [27]. The cell coverage
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optimization problem for the massive MIMO uplink was
investigated in [28].

There has been another line of work studying random
beamforming. Huang and Jr [18] presented asymptotic
throughput scaling laws for space-division multiple access
with orthogonal beamforming known as per user unitary and
rate control for the interference- and noise-limited regimes.
The work of [20] showed that in the orthogonal random
precoding (ORP) scheme, the throughput scales linearly with
the number of transmit antennas Nt , provided Nt does not
increase faster than log n, where n is the number of users.
The works of [29] and [30] investigated the achievable rates
in a multi-cell setup subject to inter-cell interference and
characterized the achievable degree of freedom region in the
MIMO random beamforming scheme. Viswanath et al. [31]
proposed the use ofmultiple transmit antennaswith the aim of
inducing channel fluctuations to exploit multiuser diversity.

B. CONTRIBUTIONS
In contrast to the above mentioned approaches, this paper
focuses on an ORP scheme to enhance the cell coverage in the
downlink of massive MIMO systems. As an advantage, this
scheme requires only partial CSI at the transmitter. Specifi-
cally, each receiver only feeds back its maximum signal-to-
interference-plus-noise ratio (SINR) and the corresponding
beam index. The analytical expressions for the downlink cov-
erage probability of the ORP scheme are derived. In addition,
the ORP schemes in conjunction with various receive struc-
tures and multiple precoder groups are evaluated. We also
compare the ORP scheme to the conventional space-time
coding (STC) scheme to show that when multiple precoder
groups are employed to increase the diversity gain in the
ORP scheme, its achievable cell coverage surpasses that of
the STC scheme. The analysis results can also be applied to
the ORP scheme for multicast/broadcast channels where the
CSI cannot be used for precoding.

The outline of the paper is as follows. In Section II, we
describe the system model and the ORP scheme. Section III
presents an analysis of the downlink coverage probability of
the ORP scheme for the cases of single and multiple receive
antennas. In Section IV, the improvement in cell coverage
with multiple random precoder groups under a delay con-
straint is presented. A comparison between the ORP scheme
and STC technique is also given. Section V provides our
simulation results, while Section VI concludes the paper.
Notations: Throughout this paper, scalars, vectors, and

matrices are denoted by lower-case, bold-face lower-case,
and bold-face upper-case letters, respectively. The (i, j)th ele-
ment of a matrix is denoted as [·]i,j, and (·)T and (·)∗ denote
the transpose and conjugate transpose operators, respectively.
Further, ‖ · ‖ denotes the norm of a vector and E {·} denotes
statistical expectation. The distribution of a circularly sym-
metric complex Gaussian random variable with zero-mean
and variance σ 2 is denoted by CN (0, σ 2), while χη

(
ε2
)

denotes the central chi-square random variable of η degrees
of freedom with mean ε2. Finally, Cx×y and R2

+ denote the

FIGURE 1. Downlink system with orthogonal random precoding.

space of x × y complex matrices and the non-negative real
coordinate space of two dimensions, respectively.

II. PROBLEM FORMULATION
A. SYSTEM MODEL
In this section, we present the system model of a downlink
channel in a massive MIMO network, which is illustrated in
Fig. 1. The BS and each mobile station (MS) have Nt and Nr
antennas, respectively. We assume that the channel is block-
fading and is constant during a coherence interval.

At time t , the received signal at the kth MS is given by

yk (t) = Hk8(t)s(t)+ zk (t), (1)

where Hk ∈ CNr×Nt is the channel coefficient matrix
between the BS and the kth MS, s(t) ∈ CN×1 is the vector of
transmit symbols, zk (t) ∈ CNr×1 is an additive white Gaus-
sian noise vector in the kth MSwith elements CN (0, σ 2), and
8(t) ∈ CNt×N is a random unitary matrix consisting of N
orthonormal precoding vectors with the constraint N ≤ Nt .
We assume that the N elements in s(t) are the signals sent
to N different MSs, indicating that N MSs are simultane-
ously served each time. The channel matrix is assumed to
be Rayleigh fading; hence, the coefficients of Hk are inde-
pendent and identically distributed (i.i.d.) Gaussian random
variables, i.e., [Hk ]i,j ∼ CN (0, 1). Moreover, we assume the
average total transmit power is PT , i.e., E {s(t)∗s(t)} = PT ,
which yields that the transmit power per symbol is PT /N ,
i.e., E

{
|si(t)|2

}
= PT /N , where si(t) is the ith element in

s(t), i = 1, 2, . . . ,N . Let ρ be the average received signal-to-
noise ratio (SNR); then, ρ is expressed as

ρ =
E
{
‖8(t)s(t)‖2

}
σ 2 =

PT
σ 2 .

For simplicity, we ignore the inter-cell interference in the
signal model. However, the effect of inter-cell interference
can be approximately considered to be included in noise z.
In the forthcoming analysis, the SNR is set to a fixed value ρ.
Hence, the analysis performed in this work depends on a
particular value of ρ, and not its distribution. Therefore,
by analyzing the coverage for various SNRs, the effect of
different inter-cell interference can also be evaluated. Further-
more, depending on the cell deployment, cell-edge users can
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have different signal strengths, which result in different SNR
values. In the subsequent section, to evaluate the coverage
performance of the ORP scheme, we analyze the distribution
of SINR for various SNR values. Then, the coverage perfor-
mance is analyzed based on the coverage probability.

B. ORTHOGONAL RANDOM PRECODING
In the ORP scheme for unicast data channels, the signals are
precoded byN orthonormal random precoding vectors before
transmission.We describe the ORP scheme by dividing it into
two phases as follows:

1) TRAINING PHASE
The BS starts the training phase by randomly generating
a precoding matrix 8 of N orthonormal precoding vectors
φφφ1, φφφ2, . . ., φφφN . The training signals are multiplied by the
precoding matrix before being sent to the MSs.

At the receiver side, each MS computes the SINR of each
precoding vector and finds the maximum one. Specifically, at
an MS, N SINR values SINR1, . . ., SINRN , which correspond
to N orthogonal beams, are estimated as in the schemes of
[29] and [20]. The maximum SINR SINRn is determined, and
then the value SINRn as well as its index n are fed back to the
BS. In this work, this optimally selected precoding vector is
referred to as the ‘‘effective beam."

2) TRANSMISSION PHASE
When the training phase is finished, the BS knows the effec-
tive beam index and its SINR for each MS. Then, if the
maximum SINR is higher than a predefined threshold T ,
the MS is determined to be in coverage and can be selected
for data transmission. In this phase, the transmit signal is
precoded by the effective beam before transmission.

Similar to the unicast data channels, the ORP scheme can
also be employed for multicast/broadcast channels in which
it is problematic to achieve a coverage gain through multi-
ple transmit antennas because CSI-based precoding schemes
cannot be applied. As an example, in LTE/LTE-A systems,
the physical broadcast channel (PBCH), which delivers the
master information block to the MSs during the initial call
setup procedure [32], [33], can be transmitted via random
precoding vectors; however, in contrast to the unicast data
channels, the training phase is not performed.

In this work, to analyze the cell coverage extension result-
ing from the ORP scheme, we use the SINR as a criterion.
In other words, it is said that the MS is covered by the
BS in the cell if the maximum of N SINRs is larger than
threshold T . In the next section, we analyze the probability
that the user is covered by the BS.

III. COVERAGE PROBABILITY WITH THE ORP SCHEME
A. SINGLE RECEIVE ANTENNA SYSTEM
We first consider the baseline scenario where each MS is
equipped with a single receive antenna. Without loss of gen-
erality, hereafter, we drop the indexes k and t . The received

signal in (1) becomes

y = hT8s+ z = hT
N∑
i=1

φφφisi + z, (2)

where hT ∈ C1×Nt is the channel vector between the BS
and single-antenna MS, and we assume that the MS esti-
mates hTφφφi, i = 1, . . . ,N , by training procedures. Note
that the estimation of hTφφφi, i = 1, . . . ,N , requires a lower
overhead compared to that of h for N < Nt . Therefore,
each MS can compute the SINR corresponding to the nth
beam φφφn by assuming that sn is the desired signal, while
the others are interference from N − 1 ineffective beams φφφi,
i 6= n, i = 1, . . . ,N [20]. Specifically, the SINR for φφφn can
be expressed as

SINRn =

∣∣hTφφφn∣∣2 PT
N

σ 2 +
∑N

i 6=n

∣∣hTφφφi∣∣2 PT
N

=

∣∣hTφφφn∣∣2
N
ρ
+
∑N

i 6=n

∣∣hTφφφi∣∣2 , n = 1, . . . ,N . (3)

The downlink coverage probability can then be defined as
follows:
Definition 1 (Downlink Coverage Probability): In the

downlink of a massive MIMO system using the ORP scheme,
anMS is said to be in coverage if its maximumSINR is higher
than a predefined threshold T . The coverage probability is
defined as

P (T )
= P

{
max

n=1,...,N
SINRn > T

}
. (4)

Obviously, T is always a positive number, and the down-
link coverage depends on the SINR threshold T . For a certain
service type with a sufficiently low threshold, a BS can
cover a large area. In contrast, a higher threshold T leads
to a smaller coverage area. However, in the ORP scheme,
the coverage performance also significantly depends on the
number of precoding vectors N . In the following theorem,
we present the main result of this work, an exact analytical
expression for the downlink coverage probability of the ORP
scheme.
Theorem 1: In a system employing the ORP scheme with

multiple precoding vectors and a single antenna receiver
(ORP-SA scheme), the downlink coverage probability is
given by

P (T )
=

{
N

(T+1)N−1
e−

TN
ρ , T ≥ 1

P (T )
1 +

∑m−1
k=2 P (T )

k + P (T )
m , T < 1,

(5)

where P (T )
1 , P (T )

k , and P (T )
m are

P (T )
1 =

N
(N − 2)!

(
e−

TN
ρ C1 + C2

)
, (6)

P (T )
k = ξk

(
e−

TN
ρ
T l

l!
D1 −

1
(k − 1)l l!

D2

)
+ξk

(
1
k l l!

E1 −
1

(k − 1)l l!
E2

)
, (7)
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P (T )
m = ξm

(
e−

TN
ρ
T l

l!
F1 −

1
(m− 1)l l!

F2

)
. (8)

Here, the function ξp(·), p = 1, . . . ,N − 1, is defined as

ξp(·) =
N

(N − 2)!

k∑
t=1

(
N − 1
t − 1

)

× (−1)t+1
N−2∑
i=0

(
N − 2
i

)
(1− t)ii!

i∑
l=0

(·), (9)

and C1, C2,D1,D2, E1, E2, F1, and F2 are given by (19)–(26)
in Appendix A.

Proof: See Appendix B. �
As expected, Theorem 1 shows that the value ofP (T ) varies

depending on the SINR threshold T and average SNR ρ.
Specifically, P (T ) decreases with T but increases with ρ.
Furthermore,P (T ) depends onN , the number of beams. In the
ORP scheme, when the number of beams is large, the precod-
ing diversity gain is enhanced. This increases the chances that
a precoding vector out of N randomly generated orthogonal
ones matches well with the channel of a user to provide high
receive signal power. However, at the same time, the effective
beam at an MS is affected by additional interference signals
introduced by the other beams. Therefore, it is uncertain
whether employing a larger number of precoding vectors
leads to a better coverage performance. In Remarks 1–3, the
dependencies of P (T ) on T and N in the ORP scheme are
stated.
Remark 1: For any value of T , as N increases, the

coverage probability approaches zero, i.e.,

P (T )
−→ 0, as N −→∞,N ≤ Nt , ∀T .

Proof: We observe that

T
(
N
ρ
+ b

)
−→∞, as N −→∞, ∀T .

Hence, from the expression for the downlink coverage
probability in (30), we have

P (T )
=

∫
∞

0

∫
∞

T
(
N
ρ
+b
) f Amax ,Bmin (a, b)dadb −→ 0,

as N −→∞, ∀T ,

which proves Remark 1. �
Remark 1 implies that, as can be inferred from (3), using

a large number of beams can reduce the SINR and thereby
result in a lower coverage probability even though it can
enhance the precoding diversity. Therefore, for any SINR
threshold, the number of beams should be controlled to be
sufficiently small to achieve a large downlink coverage.
Remark 2: When T ≥ 1, the downlink coverage probabil-

ity is a decreasing function of N . Let N ? denote the optimal
number of precoding vectors such that the ORP scheme pro-
vides the maximum coverage probability. When T ≥ 1, the
maximum coverage probability becomes

P (T )
= e−

T
ρ ,

which is achieved for N ? = 11. Furthermore, for multiple
precoders, i.e., N ≥ 2, the higher N , the more slowly P (T )

decreases.
Proof: See Appendix C �

Next, we consider the case of T < 1. From (30), we
see that the downlink coverage probability is determined by
f Amax ,Bmin (a, b) in (39) in the area

R =
{
(a, b) ∈ R2

+ : T
(
N
ρ
+ b

)
≤ a

}
.

It can be seen from Fig. 11 in Appendix B that when N
increases, sector R narrows. However, f Amax ,Bmin (a, b) varies
depending on N . Therefore, in contrast to the case of T ≥ 1,
the decreasing property is not generally secured. If P (T ) is
not a decreasing function of N , a larger N ? can achieve
the maximum P (T ). These properties of P (T ) are stated in
the following remark and justified by simulation results in
Section V.
Remark 3: When T < 1, the conclusion in Remark 2 on

the decreasing property of the downlink coverage probability
is not valid anymore; thus, the optimal value N ? can be
larger than one. However, even when T < 1, the maximum
coverage is achieved for a small number of precoding vectors,
i.e. N ? � Nt .

Remarks 2 and 3 show that when a sufficiently small num-
ber of precoding vectors are employed, the coverage proba-
bility becomes higher than when N is large. Especially, when
T ≥ 1, the downlink coverage probability is a decreasing
function ofN , which results inN ? = 1. Furthermore, because
the coverage probability decreases more rapidly for small N ,
a slight increase in N can substantially lower the coverage
probability. Remarks 1–3 imply that the interference caused
by the other beams affects the coverage performance more
significantly than the precoding diversity gain. Therefore, for
a small number of beams, we achieve the optimal down-
link coverage probability, but the number of simultaneously
served users is limited. The inverse relationship between the
cell coverage and the number of active users is alsomentioned
in [34]. To overcome this problem, in the next sections,
MSs equipped with an antenna selection (AS) receiver are
considered.

Note that based on Theorem 1, we can readily derive
the cumulative distribution function (CDF) of Xmax =
max

n=1,...,N
SINRn in a baseline system where a single antenna

is employed at the receiver.
Corollary 1: The CDF of the random variable

Xmax = max
n=1,...,N

SINRn is given as

FXmax (x) =

1−
N

(x+1)N−1
e−

xN
ρ , x ≥ 1

1−
(
P (x)
1 +

∑m−1
k=2 P (x)

k + P (x)
m

)
, x < 1,

(10)

1This does not mean that only a single user is served by the entire system.
Multiple users can be simultaneously served with multiple time-frequency
resources.
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where P (x)
1 , P (x)

k , and P (x)
m are given in (6), (7), and (8),

respectively.
Proof: By Definition 1, we have

P (T )
= P {Xmax > T } = 1− FXmax (T ),

which leads to

FXmax (T ) = 1− P (T ). (11)

From (5) and (11), we obtain the CDF of Xmax in (10). �
We note that in [20], although the ORP scheme is applied,

the multiuser diversity gains are exploited, which is different
from our scheme. Thus, the maximum SINR among K users
is expressed by X ′max = max

k=1,...,K
SINRk , and the CDF of X ′max

is given by [20]

FX ′max (x) =

(
1−

e−x
N
ρ

(x + 1)N−1

)K
.

However, in [20], the number of precoding vectors is equal
to the number of transmit antennas, i.e., N = Nt . This is
not practical in massive MIMO systems with the aim of cell
coverage extension, because, with a very large number of
precoding vectors, the downlink coverage probability tends
to zero. This result is presented in Remark 1.

B. RECEIVERS WITH AS
In an AS receiver, multiple receive antennas are uti-
lized to achieve receive spatial diversity gains. The down-
link coverage probability of an AS receiver in a sys-
tem employing the ORP scheme is given in the following
theorem.
Theorem 2: The downlink coverage probability of the

ORP scheme with an AS receiver (ORP-AS) is

P (T )
AS =


1−

(
1− N

(T+1)N−1
e−

TN
ρ

)Nr
, T ≥ 1

1−
[
1−

(
P (T )
1 +

∑m−1
k=2 P (T )

k + P (T )
m

)]Nr
,

T < 1,

(12)

where P (T )
1 , P (T )

k , and P (T )
m are given in (6), (7), and (8),

respectively.
Proof: Let XASmax denote the maximum SINR in the

ORP-AS scheme, i.e.,

XASmax = max
n=1,...,N
r=1,...,Nr

SINRn,r ,

where SINRn,r is the SINR for the nth beam at the r th
antenna of the AS receiver. Because the channel between
each pair of transmit and receive antennas are statistically
independent, the SINRs at different receive antennas are
i.i.d. random variables. Therefore, the CDF of XASmax is
given as

FXASmax (T ) =
[
FXmax (T )

]Nr . (13)

Hence, we obtain

P (T )
AS = 1− P

{
XASmax > T

}
= 1− FXASmax (T )

= 1−
[
FXmax (T )

]Nr . (14)

From (10) and (14), the theorem is proved. �
From Theorem 2, it is clear that for a fixed T and ρ, P (T )

depends on not only on N but also on Nr . Larger number
of receive antennas mean that more spatial diversity gains
can be exploited, which can increase the maximum SINR;
hence, higher P (T ) is expected. In the following remark, the
coverage performance improvement of the ORP-AS scheme
and its dependence on N and Nr are presented.
Remark 4: In the ORP-AS scheme, the downlink coverage

probability is an increasing function of Nr . In particular,
in massive MIMO systems with the ORP-AS scheme that
employ a fixed number of precoding vectors, the user is in
coverage with a high probability provided that the system is
equipped with a sufficiently large number of antennas, i.e.,

P (T )
AS −→ 1 as Nr −→∞,N = c.

where c represents a constant.
Proof: With a fixed value of N , we observe that

0 < FXmax (T ) < 1,

which leads to [
FXmax (T )

]Nr < FXmax (T ),

and
[
FXmax (T )

]Nr is a decreasing function of Nr . Therefore,
P (T )
AS in (14) becomes an increasing function of Nr , and

P (T )
AS −→ 1, as Nr −→∞. Remark 4 is hence proved. �
Remark 4 reveals that multiple receive antennas enhance

the number of transmitted streams as well as the coverage
gain. However, according to Remarks 2 and 3, to achieve
the maximum downlink coverage probability, the number
of precoding vectors should be sufficiently small. Hence,
it comes at the price of limiting the number of streams.
Fortunately, according to Remark 4, when a large number of
receive antennas are employed, the BS can transmit multiple
streams while the coverage is secured. However, increasing
N slows down the increases in P (T )

AS , which implies that in
the ORP-AS scheme, the cell coverage is still affected by the
interference from other beams. In Section V, we numerically
prove the accuracy of this analysis. The coverage can be
further improved by employing multiple transmission slots,
which is considered in the next section.

IV. ORP WITH MULTIPLE PRECODER GROUPS OVER
MULTIPLE TIME SLOTS
A. DOWNLINK COVERAGE PROBABILITY
The results in the previous sections were obtained by con-
sidering a single transmission slot, which consists of a pair
of training and transmission phases. In this section, multiple
transmission slots are considered to enhance the maximum
SINR of each user, which results in a higher cell coverage
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probability. In this scheme, the BS randomly generates a
precoding matrix 8 ∈ CNt×(ND), where D is the number
of transmission slots and 8 consists of ND orthonormal
precoding vectors

{
φφφn,d

}
, n = 1, . . . ,N , d = 1, . . . ,D, with

the constraint ND ≤ Nt . For each transmission slot, one cycle
of training and transmission phases occurs.

In the training phase of the first cycle, N training
signals are multiplied by the first N precoder group{
φφφ1,1,φφφ2,1, . . . ,φφφN ,1

}
before being sent to the MSs. Then,

each MS computes N SINR values and determines the maxi-
mum one. The maximum SINR and the index of the effective
beam of each MS are fed back to the BS. In the transmission
phase, if an MS has a maximum SINR that is higher than T ,
it is determined to be in coverage and can be selected for
transmission. In the second cycle, the next precoder group{
φφφ1,2,φφφ2,2, . . . ,φφφN ,2

}
is used for precoding.

We assume that anMS has a delay constraint ofD transmis-
sion slots for a certain traffic type. In this case,D consecutive
cycles of training and transmission phases can be considered
to find its effective beam. In this case, the maximum SINR
is searched for over ND beams. Therefore, higher D leads to
more chances for the maximum SINR to be larger than the
threshold, which increases the coverage probability. In the
following theorem, we investigate the ORP schemes with
single-antenna (SA) and multiple-antenna receivers in con-
junction with multiple precoder groups, which are denoted as
ORP-MPG and ORP-AS&MPG, respectively.
Theorem 3: For transmissions of D multiple precoder

groups over multiple time slots, the downlink coverage prob-
abilities of the ORP-MPG and the ORP-AS&MPG schemes
are given by

P (T )
MPG=


1−

(
1− N

(T+1)N−1
e−

TN
ρ

)D
, T ≥ 1

1−
[
1−

(
P (T )
1 +

∑m−1
k=2 P (T )

k + P (T )
m

)]D
,

T < 1,

(15)

P (T )
AS&MPG

=


1−

(
1− N

(T+1)N−1
e−

TN
ρ

)NrD
, T ≥ 1

1−
[
1−

(
P (T )
1 +

∑m−1
k=2 P (T )

k + P (T )
m

)]NrD
T < 1,

(16)

respectively, where P (T )
1 , P (T )

k , and P (T )
m are given in (6), (7),

and (8), respectively.
Proof: At a receiver, the maximum SINR is selected not

only from N beams but also from D transmission slots. In the
d th slot, the SINR for the nth beam,φφφn,d , can be expressed as

SINRn,d =

∣∣Hφφφn,d ∣∣2
N
ρ
+
∑N

i 6=n

∣∣Hφφφi,d ∣∣2 ,
n = 1, . . . ,N , d = 1, . . . ,D.

In this scheme, the ND precoding vectors in 8 are mutually
orthogonal, while the coefficients of the channel matrix H

are random variables of CN (0, 1). Therefore, Hφφφn,d ,
n = 1, . . . ,N , d = 1, . . . ,D, are independent. As a result,
the ND values of the SINR are independent, which yields

P (T )
MPG = 1− P

 max
n=1,...,N
d=1,...,D

SINRn,d ≤ T


= 1−

[
FXmax (T )

]D
. (17)

Based on (10), (11), and (17), we obtain P (T )
MPG in (15).

By performing the same analysis as for the case of multiple
receive antennas with the AS receiver, we complete the proof
of this theorem. �
Theorem 3 shows the coverage gains achieved by employ-

ing the ORP scheme over multiple transmission slots. In this
scheme, the maximum SINR at each MS is searched over
ND values. As a result, when D is large, there are more
chances that themaximumSINR exceeds the SINR threshold,
leading to an improved coverage probability in (16). We note
that a similar analysis can be performed for broadcast chan-
nels, which do not require the training phases. In broadcast
channels, when the SINR of a beam exceeds the threshold,
the signal received over the corresponding beam can be suc-
cessfully decoded, which means that the MS is in coverage.
If a broadcast channel has a delay constraint of D, the ORP
scheme for this channel provides the same coverage proba-
bilities as (15) and (16).

B. COMPARISON OF ORP AND STC
In this section, we compare the ORP scheme with the STC
technique in terms of the coverage performance and pilot
overhead. The STC scheme is chosen for comparison because
it is widely considered as a suitable scheme for cell-edge
users as well as for broadcast/multicast channels. More
specifically, similar to the ORP scheme, the STC generally
does not exploit the CSI at the transmitter and hence, no
CSI feedback is required. For example, in long-term evolu-
tion (LTE) mobile networks, the STC scheme is exploited
for the physical broadcast channel (PBCH), which should
be received by every user in a cell [35]. In the following
analysis, we will show that the STC scheme is capable of
guaranteeing a certain coverage probability, which is gener-
ally higher than that of the single-transmission ORP scheme.
However, if the ORP scheme employs multiple transmission
slots, it surpasses the STC scheme.

For the sake of simplicity, we assume that only one receive
antenna is employed, i.e., Nr = 1, and we consider a real
space-time block code x ∈ RNt×1 as the transmit signal.
In STC, the effective received signals at a user can be writ-
ten as

y =

√
Ex
σ 2Nt

Hx+ z, (18)

where Ex and σ 2 indicate the average energy of each trans-
mit signal and the noise variance, respectively. Furthermore,
y ∈ CNt×1, H ∈ CNt×Nt , and z ∈ CNt×1 denote the receive
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signal vector, channel matrix, and Gaussian noise vector,
respectively. In (18), y is obtained by properly rearranging the
original received signals, and the columns of H are orthogo-
nal to each other [36]. Because of the orthogonality ofH , the
signals can be optimally detected by a linear receiver, which
yields

ỹ = HT y=

√
Ex
σ 2Nt

HTHx+HT z=

√
Ex
σ 2Nt

Nt∑
i=1

|hi|2 x+ z̃.

Note that with the STC scheme in massiveMIMO systems,
a very large number of transmit antennas hardens the time-
varying channel [31]. By the law of large numbers, we have

lim
Nt−→∞

1
Nt

Nt∑
i=1

|hi|2 −→ 1.

As a result, a fading channel in a massive MIMO system
turns into a less varying channel [37]. With the STC scheme,
because the channel is averaged over Nt values, the SNR
at the receivers varies less in the time domain. Hence, for
the downlink coverage probability, it gains little diversity
overD transmission slots. When only one transmission slot is
employed, it is more likely that the STC technique will pro-
vide a better coverage compared to the ORP scheme because
it has no inter-stream interference. However, when signals are
transmitted over multiple slots, in the ORP scheme, a higher
diversity gain can be achieved by multiple precoder groups.
As explained in Section IV-A, if the signals are transmitted
over D slots, the coverage probability is determined by the
maximum SINR over ND values. Therefore, when D is suf-
ficiently large, it is expected that the maximum SINR of the
ORP scheme will be higher than the average SNR of the STC
scheme. As a result, the ORP scheme can outperform the
STC scheme when multiple transmission slots are employed,
which is verified through numerical results in Section V.

We also compare the two schemes in terms of the overhead
for pilot signals. In the STC scheme, the channel coefficient
of each transmit antenna should be estimated for symbol
detection, and hence the overhead of pilot signals increases
proportionally with Nt . In particular, in the massive MIMO
system, the overhead for pilot signals becomes significant,
which can substantially limit the spectral efficiency. In con-
trast, the number of required pilot signals increase proportion-
ally with the number of beams, which should be set to a small
number to maximize the coverage, as explained in Section III.
Therefore, the ORP scheme requires a significantly lower
number of pilot symbols for the signal transmission to cell-
edge users while being able to enhance their link quality.

V. NUMERICAL RESULTS
Computer simulations were performed to evaluate the
performance of the proposed ORP scheme. An orthonormal
precoding matrix is created by computing an orthonormal
basis for the column space of a randomly generated matrix.
Furthermore, the coefficients of the channel matrix are ran-
domly generated as CN (0, 1) random variables but fixed

FIGURE 2. Comparison between analytical and simulation CDFs of the
maximum SINR for ρ = 0 dB, Nt = 32, Nr = 1, and N ∈ {1,2,6,12}.

FIGURE 3. Downlink coverage probability versus N when T ≥ 1 for
Nt = 32, Nr = 1, ρ = 6 dB, and T ∈ {0,2,4,8} dB.

over D time slots. The values of Nt , Nr , N , D, ρ, and T are
differently assumed in each simulation.

First, we validate the accuracy of the analytical CDF of
the maximum SINR in the ORP scheme, which is given
in Corollary 1, by comparing it to the simulation results.
In Fig. 2, the CDFs of themaximumSINR of the ORP scheme
for Nt = 32, Nr = 1, ρ = 0 dB, and N ∈ {1, 2, 6, 12} are
depicted. It is clear that the analytical results in (10) match
well with the simulation results. We observe that in the low
SINR region, the ORP scheme with small N has larger CDF
values than the one with larger N . However, in the high SINR
region, larger N leads to a larger CDF value. Therefore, if the
SINR threshold T is low, it is better to use multiple precoding
vectors to maximize the cell coverage. In contrast, as T is suf-
ficiently high, only a single precoding vector should be used
to maximize the cell coverage, as proved in Remark 2. This
property of the CDF helps explain the results in Figs. 3 and 4.
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FIGURE 4. Downlink coverage probability versus N when T < 1 for
Nt = 32, Nr = 1, ρ = −2 dB, and T ∈ {−1,−4,−7,−10} dB.

Figs. 3 and 4 present the results of the downlink coverage
probability of the ORP-SA scheme (Nr = 1) to validate the
accuracy of the analytical expression of P (T ) in Theorem 1.
In Fig. 3, the case T ≥ 1 is considered, while Fig. 4 depicts
P (T ) for T < 1. In each figure, ρ is fixed, while various
values of T are assumed. In Figs. 3 and 4, it is clear that the
results from the formula in Theorem 1 agree with those from
the simulations. It can also be observed that as T decreases,
the coverage performance is significantly improved. Further-
more, as N increases, as stated in Remark 1, P (T ) approaches
zero and becomes substantially smaller than it is for small N .
It is clear that the optimal number of precoding vectors N ?

depends on T and ρ.
Specifically, in Fig. 3, where the higher-than-one SINR

threshold, T ∈ {0, 2, 4, 8} dB, ρ = 6 dB, and Nt = 32
are considered, it can be observed that the downlink coverage
probability is a strictly decreasing function ofN ; thus,P (T ) is
always maximum at N ? = 1, and rapidly decreases to zero as
N grows. This result implies that when T ≥ 1, the coverage
performance is seriously affected by the interference from
ineffective beams rather than benefiting from the diversity
gains. Another observation from Fig. 3 is that for N ≥ 2,
the higher N is, the more slowly P (T ) decreases, as discussed
in Remark 2.

Fig. 4 shows the downlink coverage probability for T < 1.
In this simulation, we assume Nt = 32, ρ = −2 dB, and T ∈
{−1,−4,−7,−10} dB. Compared to the results in Fig. 3,
it can be observed that for T < 1, P (T ) is not generally a
decreasing function of N . It is interesting to note that when T
becomes substantially smaller, the optimal point N ? tends
to be a larger value. Therefore, the coverage performance in
the massive MIMO downlink with substantially small T can
be improved by using multiple precoding vectors. However,
in the assumed environments, N ? is not larger than three.
Furthermore, after achieving its peak at a relatively small N ,
P (T ) approaches zero, which further proves that the use of

FIGURE 5. Comparison between ORP-SA and ORP-AS for Nt = 32,
Nr ∈ {1,4,16}, ρ = 0 dB, and T ∈ {−5,2} dB.

FIGURE 6. Downlink coverage probability versus Nr in the ORP-AS
scheme for Nt = 32 and {ρ, T } =

{
{0,−5}, {5,2}

}
dB.

a large number of beams is not desirable for optimizing cell
coverage.

Figs. 5 and 6 present the coverage performance of the
ORP-AS scheme to numerically verify Theorem 2 and
Remark 4. In these figures, for Nt = 32, the simulation and
analytical results of the downlink coverage probability are
depicted to show that they match well for all cases of T , N ,
and Nr . In Fig. 5, we compare P (T ) of the ORP-SA (Nr = 1)
and ORP-AS schemes (Nr ∈ {4, 16}) for T ∈ {−5, 2} dB and
ρ = 0 dB. For both values of T , it is clear that the ORP-AS
scheme provides a significantly better coverage performance
than the ORP-SA scheme. For example, for T = −5 dB, in
the ORP-AS scheme with Nr = 16 and N ∈ [1; 6], P (T )

AS ≈ 1
is achieved; however, for the ORP-SA scheme, the maximum
coverage probability is only 0.73 at N = 1.
Fig. 6 shows the results ofP (T )

AS versusNr for various values
of T , ρ, and N , when Nr increases from 2 to 32 and Nt = 32.
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FIGURE 7. Comparison of the ORP-SA, ORP-AS, and ORP-AS&MPG
schemes for Nt = 200, ρ = 0 dB, and T = −4 dB.

Specifically, we consider two cases: T < 0, {T , ρ} = {−2, 0}
dB and T ≥ 0, {T , ρ} = {2, 5} dB. It can be observed that
in both cases, for a fixed N , P (T )

AS is an increasing function of
Nr , and we get P (T )

AS −→ 1 as Nr −→ ∞. For T = −5 dB
and ρ = 0 dB, if the MS is equipped with 12 antennas, five
streams can be simultaneously transmitted with P (T )

AS ≈ 1.
This result implies that in the ORP-AS scheme, multiple data
streams can be transmitted while preserving high coverage
probability. Furthermore, it can be seen from Fig. 6 that for
T ≥ 1, the rate of increase of P (T )

AS decreases as N increases.
These properties agree with the conclusions in Remark 4.

We now compare the coverage probabilities of the
ORP-SA, ORP-AS, and ORP-AS&MPG schemes. In Fig. 7,
both analytical and simulation results are presented for these
schemes. In this simulation, ρ = 0 dB, T = −4 dB,
Nt = 200,Nr ∈ {4, 8}, andD ∈ {4, 8, 16} are assumed. Fig. 7
shows that the analytical results agree with the simulation
results. It can be seen that in the ORP-AS&MPG scheme,
better cell coverage is achieved with higher D. It is also
clear that the ORP-AS&MPG scheme achieves substantially
higher coverage probabilities compared to the ORP-SA and
ORP-AS schemes. In other words, the combination of the
ORP scheme with an AS receiver and multiple precoder
groups significantly improves the coverage performance.

Finally, we compare the downlink coverage probabilities
of the ORP-MPG and STC schemes when T = ρ = −2 dB,
where Nt = 64, Nr = 1, and N ∈ {1, 2, 3}. In Fig. 8,
it is shown that as D increases, the coverage probability of
the ORP scheme increases. In contrast, the STC scheme has
almost constant coverage probability because the channel is
assumed to be fixed over D time slots. We define D0 as the
reference point where both schemes achieve the closest cover-
age probability. For example, in the ORP schemewithN = 1,
D0 is equal to two, which means that with more than two
transmission slots, the ORP scheme obtains a higher coverage
probability than the STC scheme. Furthermore, we obtain
P (T )

≈ 1 if more than 11 transmission slots are employed

FIGURE 8. Comparison of the STC and ORP schemes for Nt = 64, Nr = 1,
N ∈ {1,2,3}, and T = ρ = −2 dB.

while the STC scheme achieves a coverage probability of
0.48 for every value of D. This result shows that the ORP
scheme employing multiple precoder groups over D time
slots is capable of providing significant performance gains
in terms of coverage over the STC scheme.

VI. CONCLUSION
In this paper, the cell coverage extension problem in massive
MIMO systems was considered. As one eligible solution
for this problem, we proposed the use of the ORP scheme,
where the transmit signals are precoded by the orthonormal
precoding vectors. We first analyzed the coverage perfor-
mance in the downlink when an SA receiver is employed.
The analytical closed-form expression of the coverage prob-
ability was derived, which shows that the maximum cover-
age probability not only depends on the SINR threshold T ,
but also significantly depends on the number of precoding
vectors N . It was also shown that to reduce the deleterious
effects of interference from the ineffective beams and to
achieve optimal coverage performance, the use of a small
number of precoding vectors is desirable. To further extend
the coverage, we investigated the ORP-AS, ORP-MPG, and
combined ORP-AS&MPG schemes, which can significantly
improve the coverage performance. The analytical results
were confirmed through numerical results, which proved the
accuracy of our derived expressions.

Finally, we compared the proposed ORP scheme to the
STC scheme over multiple time slots under a delay constraint.
It was numerically shown that the ORP scheme with mul-
tiple precoder groups is capable of providing a higher cov-
erage probability than the STC scheme. The analytical and
numerical results prove that the ORP scheme can efficiently
extend the coverage of unicast channels with a small number
of feedback signals. Furthermore, it can also be employed
for multicast/broadcast channels, where CSI-based precoding
is typically infeasible. Note that, even though the cover-
age analysis was performed for massive MIMO systems by
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considering a large number of beams and antennas,
Theorems 1–2 and Remarks 2–3 can also be applied to nor-
mal MIMO systems where a moderate number of antennas
are employed. In future work, the analysis could consider
coverage extension with different multiple-antenna receivers
such as minimum-mean-square-error, maximum ratio com-
bining, and zero-forcing receivers, which can potentially
further increase the cell coverage. The analysis could also
be extended to investigate the coverage extension for the
practical multi-cell environment with inter-cell interference.

APPENDIX A
EXPRESSIONS FOR C1, C2, D1, D2, E1, E2, F1, AND F2

C1 =
(N − 2)!

(T + 1)N−1

(
1− e−(T+1)b1

N−2∑
l=0

(T + 1)lbl1
l!

)
,

(19)

C2 =
(N − 2)!
2N−1

e−2b1
N−2∑
l=0

2lbl1
l!
, (20)

D1 =

l∑
v=0

(
l
v

)(
N
ρ

)l−v (N − i+ v− 2)!

(T + 1)N−i+v−1

×

N−i+v−2∑
u=0

(T + 1)u

u!

×

(
e−(T+1)bk−1buk−1 − e

−(T+1)bkbuk
)
, (21)

D2 =
(N − i+ l − 2)!(

k
k−1

)N−i+l−1
[
e−

k
k−1 bk−1

N−i+l−2∑
u=0

(
k

k − 1

)u

×
buk−1
u!
− e−

k
k−1 bk

N−i+l−2∑
u=0

(
k

k − 1

)u buk
u!

]
,

(22)

E1 =
(N − i+ l − 2)!(

k+1
k

)N−i+l−1 e− k+1
k bk

N−i+l−2∑
u=0

(
k + 1
k

)u buk
u!
,

(23)

E2 =
(N − i+ l − 2)!(

k
k−1

)N−i+l−1 e− k
k−1 bk

N−i+l−2∑
u=0

(
k

k − 1

)u buk
u!
,

(24)

F1 =
l∑

v=0

(
l
v

)(
N
ρ

)l−v (N − i+ v− 2)!

(T + 1)N−i+v−1
e−(T+1)bm−1

×

N−i+v−2∑
u=0

(T + 1)u
bum−1
u!

, (25)

F2 =
(N − i+ l − 2)!(

m
m−1

)N−i+l−1 e− m
m−1 bm−1

×

N−i+l−2∑
u=0

(
m

m− 1

)u bum−1
u!

, (26)

where bk , k = 1, . . . ,N − 1, is given as

bk =
TN

ρ(1/k − T )
. (27)

APPENDIX B
PROOF OF THEOREM 1
Let An =

∣∣hTφφφn∣∣2, Bn = ∑N
i 6=n

∣∣hTφφφi∣∣2, and Xn = SINRn.
We rewrite (3) as

Xn =
An

N/ρ + Bn
. (28)

Let Xmax = max
n=1,...,N

SINRn, Amax = max
n=1,...,N

An, and Bmin =

min
n=1,...,N

∑N
i 6=n Bn. We can write

Xmax =
Amax

N/ρ + Bmin
, (29)

where we have Amax ≤
Bmin
N−1 . From Definition 1 and (29), the

downlink coverage probability can be expressed as

P (T )
= P {Xmax > T }

= P
{
Amax > T

(
N
ρ
+ Bmin

)}
=

∫
∞

0

∫
∞

T
(
N
ρ
+b
) f Amax ,Bmin (a, b)dadb. (30)

First, we derive the joint distribution of Amax and Bmin,
i.e., fAmax ,Bmin (a, b). Because 8 is composed of orthonor-
mal vectors and the coefficients of hT are random variables
of CN (0, 1), hTφφφn has the same distribution. Therefore,
An becomes a central chi-square random variable of two
degrees of freedom with mean ε2 = 1 , i.e., An ∼ χ2 (1).
The probability density function (PDF) and the CDF of An
are given by

f An (a) = e−a,

FAn (a) = 1− e−a, (31)

respectively. Because Ai =
∣∣hTφφφi∣∣2 and Aj =

∣∣hTφφφj∣∣2 are
independent for all i and j, we have

FAmax (a) = P {Amax ≤ a} = [P {An ≤ a}]N = [FAn (a)]
N

= (1− e−a)N ,

which leads to the PDF of Amax :

f Amax (a) =
d
da
FAmax (a) = N (1− e−a)N−1e−a. (32)

Let S =
∑N

n=1

∣∣hTφφφn∣∣2 = ∑N
n=1 An = Amax + Bmin.

We observe that

FBmin|Amax (b|a) = P {Bmin ≤ b|Amax = a}

= P {Amax + Bmin ≤ a+ b|Amax = a}

= P {S ≤ a+ b|Amax = a}

= FS|Amax (s|a), (33)
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FIGURE 9. Feasible regions of the joint PDF of Amax and Bmin.

where s = a + b. The PDF of S conditioned on Amax is
expressed as [38]

f S|Amax (s|a) =
sN−2e−(s−a)

N !(1− e−a)N−1
hN
(a
s

)
, (34)

where

hN
(a
s

)
=


N (N−1)

∑k
t=1

(N−1
t−1

)
(−1)t+1

(
1−t as

)N−2
,

1
k+1 ≤

a
s ≤

1
k , k = 1, . . . ,N − 1

0, otherwise.

(35)

From (33)–(35), it is clear that the distribution of Bmin condi-
tioned on Amax depends on the regions to which point (a, b)
belongs. We define regions Rk , k = 1, . . . ,N − 1, to be

R1 =
{
(a, b) ∈ R2

+ : a ≥ b
}
, (36)

Rk =
{
(a, b) ∈ R2

+ :
b
k
≤a ≤

b
k − 1

}
, k=2, . . . ,N − 1.

(37)

Fig. 9 illustrates the regions Rk , each of which corresponds
to a different form of hN

( a
s

)
in (35). We can then obtain the

PDF of Bmin conditioned on Amax in the form of

f Bmin|Amax (b|a)

=
e−b

(1− e−a)N−1(N − 2)!

×

k∑
t=1

(
N − 1
t − 1

)
(−1)t+1[b− (t − 1)a]N−2,

(a, b) ∈ Rk , k = 1, . . . ,N − 1, (38)

with the constraint 0 ≤ b ≤ (N − 1)a. From (32) and (38),
the joint PDF of Amax and Bmin is expressed as

f Amax ,Bmin (a, b) = f Bmin|Amax (b|a)f Amax (a)

=
N

(N − 2)!
e−(a+b)

k∑
t=1

(
N − 1
t − 1

)
× (−1)t+1[b− (t − 1)a]N−2,

(a, b) ∈ Rk . (39)

FIGURE 10. Feasible regions for determining P(T ) for T ≥ 1.

For simplicity, we denote

f k (a, b) = f Amax ,Bmin (a, b), (a, b) ∈ Rk .

We now evaluate the integral in (30) by considering two
cases:

1) CASE 1: T ≥ 1
From (30) and Fig. 10, the downlink coverage probability in
this case can be expressed as

P (T )
=

∫
∞

0

∫
∞

T
(
N
ρ
+b
) f1(a, b)dadb.

In R1, the joint distribution of Amax and Bmin in (39) can be
rewritten as

f1(a, b) =
N

(N − 2)!
e−(a+b)bN−2. (40)

Hence, P (T ) is expressed as

P (T )
=

N
(N − 2)!

∫
∞

0

∫
∞

T
(
N
ρ
+b
) e−(a+b)bN−2dadb

=
N

N − 1
e−TN/ρ

∫
∞

0
e−(T+1)bbN−2db.

By applying the partial integration, we obtain∫
∞

0
xN e−λx =

N !
λN+1

, λ > 0, (41)

and hence, P (T ) for T ≥ 1 can be formulated as

P (T )
=

N
(T + 1)N−1

e−TN/ρ . (42)
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FIGURE 11. Feasible regions for determining P(T ) for 0 < T < 1.

2) CASE 2: 0 < T < 1
From (30) and Fig. 11, the downlink coverage probability in
this case can be expressed as

P (T )
= P (T )

1 + P (T )
2 + . . .+ P (T )

m−1 + P (T )
m

= P (T )
1 +

m−1∑
i=2

P (T )
i + P (T )

m , (43)

where

P (T )
1 =

∫ b1

0

∫
∞

T
(
N
ρ
+b
) f1(a, b)dadb︸ ︷︷ ︸

:=P (T )
11

+

∫
∞

b1

∫
∞

b
f1(a, b)dadb︸ ︷︷ ︸
:=P (T )

12

,

(44)

P (T )
k =

∫ bk

bk−1

∫ b
k−1

T
(
N
ρ
+b
) fk (a, b)dadb︸ ︷︷ ︸

:=P (T )
k1

+

∫
∞

bk

∫ b
k−1

b
k

fk (a, b)dadb︸ ︷︷ ︸
:=P (T )

k2

, k = 2, . . . ,m− 1,

(45)

P (T )
m =

∫
∞

bm−1

∫ b
m−1

T
(
N
ρ
+b
) fm(a, b)dadb, m =

⌈
1
T

⌉
, (46)

and bk , k = 1, . . . ,N − 1, is the intersection point between
the two lines a = T

(
N
ρ
+ b

)
and a = b

k , as given by (27).
Inserting (40) into (44), we obtain

P (T )
1 =

∫ b1

0

∫
∞

T
(
N
ρ
+b
) N
(N − 2)!

e−(a+b)bN−2

+

∫
∞

b1

∫
∞

b

N
(N − 2)!

e−(a+b)bN−2dadb

=
N

(N − 2)!

e− TN
ρ

∫ b1

0
e−(T+1)bbN−2db︸ ︷︷ ︸
:=C1

+

∫
∞

b1
e−2bbN−2db︸ ︷︷ ︸
:=C2

 . (47)

Using (41) and the lower incomplete Gamma function for an
integer n, which is∫

∞

α

e−xxndx = 0(n+ 1, α) = n!e−α
n∑
l=0

αl

l!
, (48)

C1 and C2 can be expressed as

C1 =

∫ b1

0
e−(T+1)bbN−2db

=

∫
∞

0
e−(T+1)bbN−2db−

∫
∞

b1
e−(T+1)bbN−2db

=
(N − 2)!

(T + 1)N−1

(
1− e−(T+1)b1

N−2∑
l=0

(T + 1)lbl1
l!

)
,

C2 =

∫
∞

b1
e−2bbN−2db =

(N − 2)!
2N−1

e−2b1
N−2∑
l=0

2lbl1
l!
,

which are the expressions in (19) and (20) in Appendix A.
Combining (19), (20), and (47), we obtain

P (T )
1 =

N
(N − 2)!

(
e−

TN
ρ C1 + C2

)
, (49)

which is given by (6) in Theorem 1.
We next evaluate P (T )

k in (45) by separately considering
P (T )
k1 and P (T )

k2 . Inserting (39) into (45) yields

P (T )
k1 =

N
(N − 2)!

k∑
t=1

(
N − 1
t − 1

)
(−1)t+1

×

∫ bk

bk−1

∫ b
k−1

T
(
N
ρ
+b
) e−(a+b) [b−(t−1)a]N−2 dadb︸ ︷︷ ︸

:=I

.

(50)

Using the binomial expansion, we have [b− (t − 1)a]N−2 =∑N−2
i=0

(N−2
i

)
bN−i−2(1− t)iai. Hence, I in (50) becomes

I =
N−2∑
i=0

(
N − 2
i

)
(1− t)i

×

∫ bk

bk−1

∫ b
k−1

T
(
N
ρ
+b
) e−aaida︸ ︷︷ ︸
:=Iia

e−bbN−i−2db

︸ ︷︷ ︸
:=Ii

. (51)
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Exploiting (48), we obtain

Iia =
∫
∞

T
(
N
ρ
+b
) e−aaida−

∫
∞

b
k−1

e−aaida

= i!
i∑

l=0

e−T(Nρ +b) T l
(
N
ρ
+ b

)l
l!

− e−
b

k−1
bl

(k − 1)l l!

 .
Hence,

Ii = i!
i∑

l=0

e− TN
ρ
T l

l!

∫ bk

bk−1
e−(T+1)b

(
N
ρ
+ b

)l
bN−i−2db︸ ︷︷ ︸

:=D1

−
1

(k − 1)l l!

∫ bk

bk−1
e−

k
k−1 bbN−i+l−2db︸ ︷︷ ︸
:=D2

 . (52)

Through steps similar to those for the derivations of
C1 and C2, we can obtain the expressions for D1 and D2 as
given in (21) and (22). From (50)–(52), and ξp(·) in (9), P (T )

k1
can be rewritten as

P (T )
k1 = ξk

(
e−

TN
ρ
T l

l!
D1 −

1
(k − 1)l l!

D2

)
. (53)

In a similar manner, the expressions of P (T )
k2 and P (T )

m can
also be derived as

P (T )
k2 = ξk

(
e−

TN
ρ
T l

l!
E1 −

1
(k − 1)l l!

E2

)
, (54)

P (T )
m = ξm

(
e−

TN
ρ
T l

l!
F1 −

1
(m− 1)l l!

F2

)
, (55)

where E1, E2, F1, and F2 are given in (23)–(26) in
Appendix A. Finally, Theorem 1 is proved by combin-
ing (43), (49), and (53)–(55).

APPENDIX C
PROVE OF REMARK 2
By Theorem 1, when T ≥ 1, the downlink coverage proba-
bility is written as

P (T )
=

N

(T + 1)N−1
e−

TN
ρ . (56)

We observe that
N

(T + 1)N−1
≤

N
2N−1

≤ 1, T ≥ 1,N ≥ 1, (57)

where the equalities simultaneously occur for N = 1.
Furthermore, we have

e−
TN
ρ ≤ e−

T
ρ , T ≥ 1,N ≥ 1, (58)

where the equality also occurs forN = 1. From (57) and (58),
we obtain

P (T )
=

N

(T + 1)N−1
e−

TN
ρ ≤ e−

T
ρ , T ≥ 1,N ≥ 1, (59)

where the equality occurs for N = 1. Therefore, we conclude
that when T ≥ 1, the optimal number of precoding vectors
at which the downlink coverage probability is maximized is
N ? = 1.
We now prove that P (T ) with T ≥ 1 is a decreasing

function of N . We observe that

∂P (T )

∂N
=

∂

∂N

(
N

(T + 1)N−1
e−

TN
ρ

)
= −

e−
TN
ρ

(T + 1)N−1

(
TN
ρ
+ N log(T + 1)− 1

)
< 0, T ≥ 1,N ≥ 2. (60)

Hence, P (T ) is maximum at N = 1 and is a decreasing
function of N on the range [2;∞).
The decreasing rate of P (T ) with respect to N can be

formulated as

ζ =

∣∣∣∣∂P (T )

∂N

∣∣∣∣ = e−
TN
ρ

(T + 1)N−1

(
TN
ρ
+ N log(T + 1)− 1

)
,

T ≥1.

In addition, the derivative of ζ with respect to N is
expressed as

∂ζ

∂N
=

∂

∂N

(
e−

TN
ρ

(T + 1)N−1

(
TN
ρ
+ N log(T + 1)− 1

))

= −
e−

TN
ρ

(T + 1)N−1

(
T
ρ
+ log(T + 1)

)
×

(
TN
ρ
+ N log(T + 1)− 2

)
, (61)

which has a single zero at

N0 =
2

T/ρ + log(T + 1)
(62)

and is negative on [N0;∞). For T ≥ 1, we have

N0 ≤
2

1/ρ + log(2)
<

2
log(2)

< 3. (63)

Therefore, we can conclude that for the range [3;∞), ζ is a
decreasing function of N .
We now prove that P (T ) decreases on [2; 3] faster than on

[3; 4]. From (56), the values of P (T ) at N = 2, N = 3, and
N = 4 are

P (T )
2 =

2
T + 1

e−
T
ρ ,

P (T )
3 =

3

(T + 1)2
e−

2T
ρ ,

P (T )
4 =

4

(T + 1)3
e−

3T
ρ ,

respectively. From the decreasing property of P (T ), we have
P (T )
2 > P (T )

3 > P (T )
4 . Therefore, the decreasing rates of P (T )
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on [2; 3] and [3; 4] are determined to be∣∣∣∣∣1P (T )
2,3

1N

∣∣∣∣∣ = P (T )
2 − P (T )

3 =
e−

2T
ρ

T + 1︸ ︷︷ ︸
:=α1

(
2−

3
T + 1

e−
T
ρ

)
︸ ︷︷ ︸

:=β1

,

(64)∣∣∣∣∣1P (T )
3,4

1N

∣∣∣∣∣ = P (T )
3 − P (T )

4 =
e−

3T
ρ

(T + 1)2︸ ︷︷ ︸
:=α2

(
3−

4
T + 1

e−
T
ρ

)
︸ ︷︷ ︸

:=β2

,

(65)

respectively. We observe that
α1

α2
= e

T
ρ (T + 1) > 2, T ≥ 1,

β2

β1
= 2−

1− 2
T+1e

−
T
ρ

2− 3
T+1e

−
T
ρ︸ ︷︷ ︸

:=κ

, T ≥ 1. (66)

Furthermore, we have
2

T + 1
e−

T
ρ < 1, T ≥ 1,

3
T + 1

e−
T
ρ <

3
2
, T ≥ 1,

which lead to κ > 0, and hence
β2

β1
< 2, T ≥ 1. (67)

From (64) and (65), α1, α1, β1, and β2 are positive. Therefore,
from (66) and (67), we have α1β1 > α2β2, which means

that
1P (T )

2,3
1N >

1P (T )
3,4

1N . In other words, P (T ) decreases faster on
[2; 3] than on [3; 4], which in conjunction with the decreasing
property of ζ =

∣∣∣ ∂P (T )

∂N

∣∣∣ on [3;∞) leads to the conclusion

that P (T ) decreases more slowly with N on [2,∞). Thus, the
proof of Remark 2 is complete.
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