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ABSTRACT The radio transceiver of an Internet of Things (IoT) device is often where most of the
energy is consumed. For this reason, most research so far has focused on low-power circuit and energy-
efficient physical layer designs, with the goal of reducing the average energy per information bit required
for communication. While these efforts are valuable per se, their actual effectiveness can be partially
neutralized by ill-designed network, processing, and resource management solutions, which can become
a primary factor of performance degradation, in terms of throughput, responsiveness, and energy efficiency.
The objective of this paper is to describe an energy-centric and context-aware optimization framework that
accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along
three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature
extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize
the network lifetime; and 3) providing self-adaptability to different operating conditions through the adoption
of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing
this framework, we present some preliminary results that validate the effectiveness of our proposed line of
action, and show how the use of adaptive signal processing and channel access techniques allows an IoT
network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the
application.

INDEX TERMS Context-awareness, energy-efficiency, internet of things, protocol design.

I. INTRODUCTION
The radio transceiver of an IoT device is often where most
of the energy is consumed. For this reason, most research
so far has focused on low power circuit design and energy
efficient PHY, with the goal of reducing the average energy
per information bit required for communication. While any
advances at the RF/PHY layer are expected to translate into a
more energy-efficient device, it is not at all obvious that this
is by itself sufficient for the whole system to make the best
use of the available energy, and a more complete view of the
system, including the application (signal type and processing
tasks), the lower networking layers (MAC scheduling and
routing) and some basic network management functionali-
ties (node discovery and sleep modes) can play a crucial
role in identifying the main sources of energy consumption,
revealing inefficiencies, and providing opportunities for large

gains. Even though cross-layer design and holistic system
approaches have been around for some time, we believe that
energy efficiency at the system level can be achieved only
including in a coherent and coordinated way many different
functionalities that are traditionally considered in isolation, or
at most in combination with neighboring functional blocks.
Toward this, in this paper we propose a framework where
learning and adaptation capabilities are applied to data han-
dling and processing (which include most traditional net-
working functionalities), to optimize the energy efficiency of
the system while effectively handling the heterogeneous QoS
requirements of the applications. The framework is based on
the following key technical thrusts:
• In-node data processing. Following the ‘‘edge com-
puting’’ principle, an energy-centric framework should
support the shift of the computation load toward the
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edge of the network, i.e., to the access node (e.g., the
IoT Gateway) and/or to the end nodes. In-node signal
processing/compression mechanisms can indeed reduce
the amount of data to be transmitted, thus relieving
channel contention, transport and interference issues.
The energy cost of data processing must be accounted
for, so as to find an optimal balance between processing
and communication;

• Channel access, scheduling and routing optimization.
These functionalities have a major impact on the
energy efficiency of the system and, hence, need to
be jointly designed to prolong the network lifetime by
making the best possible use of the available energy
resources, also including sleep modes (duty cycling and
wakeup radios) and Energy Harvesting (EH) sources.
The protocol design needs to account for the hetero-
geneity of the nodes capabilities, in order to favor a
more balanced energy consumption, e.g., through the
dynamic scheduling of processing and routing function-
alities to energy-rich and computation-capable nodes
(e.g., the IoT Gateway), or to nodes that can access
EH sources;

• Self-adaptability. Different applications and services
pose different and, often, conflicting requirements to
the IoT system. Moreover, even when the application
is fixed beforehand (e.g., urban traffic control), the
actual data that is collected may show different statistics,
depending on the deployment location and time. These
facts imply a different usage of network resources that
for efficiency purposes can be learned on the fly and
exploited to optimize the network protocols. The system,
hence, must be able to self-adapt to the application
needs, being driven by the types of data, their statis-
tics, the node density, the PHY layer parameters and so
forth. On-line learning techniques are expected to play a
primary role in this respect, providing effective tools to
handle the vastness and complexity of the optimization
space, together with flexible/reconfigurable algorithms
and protocols.

The core of the proposed framework is an energy-centric
and self-adapting manager, with the task of jointly optimizing
the energy consumption of the main networking functionali-
ties (data compression, scheduling,MAC, routing, etc.) under
QoS constraints and in the presence of EH capabilities. The
manager relies on a learning framework for context awareness
and self-adaptation, which provides the necessary input to the
optimization process, making it flexible and scalable. After
describing the framework, in this paper we provide a concrete
example of classification and adaptation in the context of
channel access resource management. In this setup, multiple
sources concurrently transmit their (compressible) informa-
tion flows to the same gateway node and the task is to dynam-
ically balance compression (signal processing) and channel
access (scheduling) resources based on the distortion-rate
relationship of the flows and on application-dependent
QoS requirements.

The rest of this paper is structured as follows. In Section II
we discuss the related work. The energy centric frame-
work is introduced in Section III. In Sections IV and V we
respectively describe the system setup and a joint context
extraction and channel access problem. The conclusions are
finally drawn in Section VI.

II. RELATED WORK
Next, we analyze the related work for the three technical areas
of Section I, pointing out for each the original aspects of our
approach.

A. DATA PROCESSING
A recent trend in IoT deployments is to move some of the
processing from the network center to its edge, according to
the fog computing paradigm [1]. This load shift is driven by
the gigantic amount of data that is often generated by dis-
tributed sensing applications (e.g., environmental and traffic
monitoring), which is expected to be a burden to the IoT sys-
tem itself and to its connected networks. This burden is likely
to translate into an excessive energy consumption for the IoT
nodes and as well into congestion for the communication
channels and gateways. Given this, in-node and in-network
data processing are of paramount importance, as they can
effectively reduce the amount of information that is to be sent
to (and processed by) the higher levels of IoT systems [2].

In many IoT applications, like industrial and environmen-
tal monitoring, nodes periodically report measurements to a
central entity (the sink) and their data volume can be highly
reduced through predictive algorithms [3], [4], i.e., by send-
ing data points only when they deviate from some expected
pattern. The effectiveness of this approach has also been
proved on real datasets [5]. When dealing with time series,
lossy compression can be exploited to trade some accuracy
in the signal’s representation for improved energy efficiency.
In this domain, a number of approaches like probabilistic, lin-
ear or autoregressive models, Fourier transforms and Kalman
filters have been considered, although they are generally too
computationally expensive and, in turn, power-hungry for
constrained IoT devices [6]. The research community has
thus started exploring lighter algorithms, e.g., Lightweight
Temporal Compression [7].

The heterogeneous and dynamic nature of IoT systems
requires adaptability, and employing a traditional com-
pression scheme may lead to suboptimal performance.
The research focus is thus moving towards data-driven
approaches, where the compression technique is automat-
ically adjusted according to the type of signal and to the
application requirements. For example, in [8] compressive
sensing is combined with principal component analysis to
capture the spatial and temporal characteristics of real signals.
A feedback control loop estimates the signal reconstruction
errors on the fly and allows the system to self-adapt to
changes in the signal statistics. Li and Liang [9] propose
another adaptive scheme that switches between lossless and
lossy compression in an on-demand fashion according to a
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compression error bound (derived from the application
requirements). Another promising approach consists in
applying data mining techniques to extract features from
time series, seeking feature-based classifiers [10]. Signal
classification into groups with similar characteristics allows
the sensors to choose the data processing technique that is
most appropriate for their respective class (i.e., leading to the
best performance for some metric, like the distortion of the
compressed signal) [11], [12].
Novelty: our approach develops along the same lines of

[8], [10]–[12]; we seek a data processing algorithm that
self-adapts to the properties of the signal that is being mea-
sured, i.e., its inherent correlation but also its generation rate.
We want it to be data-driven, as rate-distortion curves are
estimated at runtime, solely based on what each IoT node
measures, using a small portion of the data (e.g., a few hun-
dred samples) and lightweight classifiers. Moreover, the cost
(energy and distortion) of the in-node processing algorithms
shall be included in the optimization of the network protocols
so as to allow the entire system to adapt, seeking a good
tradeoff in terms of overall energy consumption (processing
and communication) vs quality of the information that is sent
to the application (e.g., quality of an answer or representation
accuracy of a measurement).

B. CHANNEL ACCESS, SCHEDULING AND ROUTING
The energy constraints that characterize most of the IoT
devices demand energy-aware protocols and, although data
processing already provides some savings in the energy
consumption, it is not in itself sufficient to guarantee pro-
longed and uninterrupted operation. In this respect, chan-
nel access and transmission scheduling play a crucial role
because of their influence on the usage of the energy-hungry
transceiver. The design of the MAC layer should try to
minimize the energy wastage due to collisions, the over-
head due to control packets, idle listening, and overhearing,
i.e., when a device receives a packet intended for another
destination [13].

Coordinated access schemes are well suited for applica-
tions where the traffic pattern is known in advance, e.g.,
industrial wireless sensor networks [14]. In 2012, the Internet
Engineering Task Force (IETF) introduced the Time-Slotted
Channel Hopping (TSCH) [15] mode as an amendment to
the MAC portion of the IEEE802.15.4e standard, which
combines time synchronization and channel hopping and is
intended for industrial automation. TDMA-based schemes
can be effectively coupled with duty cycling, where nodes
alternate active and sleeping phases [16], or can also be
combined with Channel Sensing Multiple Access (CSMA)
techniques, in a hybrid approach that offers more flexibility
in the choice of the frame length and in the assignment of
access slots to nodes [17], [18]. However, pure coordinated
access schemes may result in poor performance when dealing
with event-based signals such as alarms, which have strict
latency and QoS constraints. Traditional protocols should
therefore be revisited in order to account for the different

traffic types, like in [19], where the proposed access mecha-
nism proactively tunes the number of used resources to meet
the application requirements.

In more dynamic environments, where coordinated
scheduling is costly, random access schemes are generally
preferred [20]. In this case, the network designer should pay
special attention to interference and collisionmanagement, so
that energy wastage is minimized. An interesting approach in
this area is represented by coded random access schemes,
which map the structure of the access protocol to that of
an erasure-correcting code defined on a graph, making it
possible to achieve much better performance than simple
ALOHA [21]. Another way to improve the performance of
random access is to consider a receiver with signal inter-
ference cancellation or multiple packet reception capabili-
ties [22]. Also, in the case of random access schemes, duty
cycling may lead to significantly reduced energy consump-
tion, but has an impact on data latency and still wastes energy
for idle listening [23]. Wake-up receivers (WURs) are a
novel hardware approach that eliminates these shortcomings:
devices are provided with an ultra low power receiver that
continuously listens to the channel and wakes-up the main
radio on demand [24]. WURs improve the overall network’s
energy efficiency, but their design has to deal with several
tradeoffs concerning sensitivity, resilience to interference,
coverage area, wake-up speed, and power consumption [25].

A well-designed channel access scheme is not itself suf-
ficient to ensure efficient and reliable communication in
multi-hop networks, where network connectivity is hampered
by the energy and resource limitations of the IoT devices,
which in some cases may not even have enough energy to
forward packets, and by the dynamic network topology [26].
The unpredictable nature of IoT networks makes flat routing
protocols (e.g., [27]) a good choice because they make it
possible to maintain the network structure easily, but, on the
other hand, hierarchical approaches like cluster-based routing
algorithms (e.g., [28]), allow nodes to take on different roles,
thereby enabling the possibility to leverage on the different
capabilities of the devices and facilitating the aggregation of
data while it is being routed.

Current research is focusing on context-aware routing
algorithms [29], which should readily find the best alter-
native path when the selected one is no longer available.
Cross-layer metrics are often adopted because they provide
a more comprehensive picture than the current context. For
example, in [30], the Routing Protocol for Low-Power and
Lossy Networks (RPL) is extended to jointly consider the
residual energy levels and the expected transmission count;
a similar approach is also proposed in [31]. One of the issues
that routing algorithms have to face concerns unexpected
link failures, and to this aim self-learning techniques may
be helpful to detect sensor faults, e.g., in industrial [32]
or home automation [33] environments. For example,
[34] describes a routing strategy that automatically adapts to
the changing network conditions and shows the effectiveness
of this approach.
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Novelty: we advocate channel access and routing layers
that ‘‘learn’’ what is the preferred (time-varying) configu-
ration based on application requirements, network topology,
data type, characteristics, etc. So, the optimization does not
only relate to the protocol parameters but also depends on
the protocol (or combination thereof) to use. This holistic
approach entails self-learning and self-adaptivity and, due to
its importance, is further discussed next.

C. SELF-ADAPTABILITY
From previous sections it already emerges that IoT systems,
because of their heterogeneous and dynamic nature, demand
a strong adaptability to the context. Devices are expected
to self-manage without external intervention, and flexibil-
ity is a major property which is deemed necessary for an
efficient and resilient system. Ideally, IoT devices should
autonomously learn about the physical environment in which
they are deployed, learn to manage themselves and find
place in the overall system, thereby realizing the so-called
place-and-play concept [35], [36].

An underlying framework for self-managing devices is
described in [37]: it includes measurement-based learning
and adaptation to changing system context and application
demands. Vlacheas et al. [38] proposes a cognitive man-
agement framework for Smart Cities, where heterogeneous
objects are represented in a virtualized environment, and
cognition and proximity are used to automatically select
the most relevant objects for the purpose of an application.
However, neither work provides quantitative results for the
proposed framework. Although the challenges that are to
be addressed to enable self-awareness and self-configuration
have already been identified, it is still not clear how to address
them. In [36], a stack of solutions is built on top of the
networking and service levels, creating a sort of Semantic IoT.
The self-configurability of this framework is demonstrated by
means of a demo application in the home automation domain.
Reference [39] proposes an effective implementation to mon-
itor regular domestic conditions through context awareness
and learning tools.

Learning techniques should be adopted not only to adapt
the context models when previously unseen data is encoun-
tered, but also to discover the relations between user con-
texts in the scope of the application requirements. To this
aim, [40] proposes correlation mining algorithms based
on Kullback-Leibler divergence and frequent set mining
which exploit correlated contexts to enable unsupervised
self-learning.

Although this is a lively research area, many issues still
need to be addressed. One of the main concerns is about data
mining: learning can happen only through experience, and
billions of data points are needed to build effective learning
schemes, train classifiers, etc., and this calls for the develop-
ment of efficient techniques for massive data collection [41].
Testbeds seem to fail due to their localized nature, to the often
limited amount of data available and to the fact that it is hardly
generated by real users. One concrete opportunity is offered

by mobility and smart city data that start to be massively
collected within real applications such as traffic and pollution
monitoring.
Novelty: our approach is innovative in several respects. We

adopt a modular design in the interest of an affordable com-
plexity and we build signal processing and protocol elements
around the data we measure. The approach is data-driven
as its type, statistics and intensity (traffic rate) are used to
understand what type of in-node processing serves best the
application. For example, as we quantify below, lossy com-
pression may be used to save transmission resources while
still meeting certain (application-dependent) accuracy goals.
While this is common practice, we advocate the on the fly
estimation of rate distortion curves, without needing any a
priori knowledge of which type of data the sensors provide.
This, in turn, makes it possible to pick the most appropriate
compressor and tune it to the desired operating point. In addi-
tion, processing figures (energy cost, representation accuracy,
etc.) are fed to the network protocols (channel access, routing,
sleep modes, etc.) to modulate their operating conditions and
possibly change the type of protocol in use. Moreover, the
protocols may as well induce changes in the signal processing
algorithms to balance the amount of resources they allocate
to different flows. So, the system operates in loops, where
processing feeds protocols and vice-versa.

III. ENERGY AND CONTEXT CENTRIC
SYSTEM FRAMEWORK
The reference framework we envision is sketched in Fig. 1.
The solid boxes represent the functional modules that should
be provided in peripheral IoT devices. The dashed boxes
are logic modules, which can be either implemented in a
centralized entity (e.g., the gateway), or distributed among the
nodes in the form of look-up tables or if-then processes. Thin
black arrows denote the information flow, whereas thicker
arrows represent logical relations. Note that the actual imple-
mentation of the conceptual system framework sketched in
Fig. 1 will depend on the device capabilities in terms of
memory, energy and computation, and not all the process-
ing functionalities have to be necessarily supported by each
IoT device.

The role and purpose of each module are described below
in greater detail.
Energy-Centric Manager (ECM): This logical block is at

the core of the proposed optimization framework. Its objec-
tive is to improve the overall energy efficiency of the node
and of the entire network while meeting certain application-
dependent Quality of Service (QoS) requirements in terms of
reliability, delay, and throughput. This is achieved through the
joint optimization of network, scheduling, MAC, and PHY
operations performed by the main functional modules, also
accounting for the characteristics of the Energy Harvesting
sources, if available. Accordingly, the ECM operates within
a single node and across multiple nodes as we now explain.

At the intra-node level, the ECM acts on the in-node data
processing and Scheduling/MAC blocks, taking into account

VOLUME 5, 2017 6897



A. Biason et al.: Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

Fig. 1. Energy and context centric framework, showing the processing and communication blocks
within each IoT device.

Energy Harvesting sources. Its ultimate goal is to make an
efficient use of the available energy resources, thus delaying
or avoiding any battery depletion event, while maintaining
the required QoS of data communication. To achieve this,
the ECM needs to intelligently balance different technical
aspects. For example, in-node data processing can be used
to reduce the amount of data to be sent over the wireless
interface, thus saving some transmission energy, though usu-
ally at the cost of losing part of the signal information, i.e.,
through lossy temporal compression or feature extraction of
the locally sensed signals [42]. In addition, the energy drained
by the data processing algorithms shall also be taken into
account, to correctly evaluate the overall energy trade-off
between compression and transmission. Finally, compression
and transmission policies shall also consider the channel state
as well as the intermittency of the energy source when EH is
used, and accordingly schedule transmission events so as to
avoid possible energy wastage [8], [43], [44]. By taking all
these aspects into account, the ECM will determine the best
combination (or a suitable approximation thereof) of in-node
data processing (e.g., compression level) and transmission
scheduling policies to provide the desired tradeoff between
energy efficiency, communication reliability and throughput.

At the inter-node level, the ECM acts on the in-network
data processing block with a network-wide perspective. Here,
the aim is to find the proper combination of traffic filtering,
packet routing (path selection), data aggregation (i.e., spatio-
temporal compression) and data fusion algorithms. With fil-
tering we aim at refining data flows into what the end user (or
the application) actually needs. For example, a powerful node
may be able to compute some relevant features of a flow and
send those to the IoT gateway in place of the original data.
Both filtering and aggregation are meant to avoid redundant
transmissions over the physical links, exploiting the redun-
dancy inherently present in the data. Data fusion basically
solves a distributed estimation problem for a certain physical
measurement or process through the distributed (and joint)
processing of data from heterogeneous sources. The routing
functionality shall be designed jointly with these aspects to
facilitate aggregation and fusion opportunities, while meeting

energy, computation, delay and throughput requirements. We
remark that, although data aggregation is a mature research
field [45], the way we look at it is novel. Specifically, we
take inspiration from network function virtualization [46]
in the Internet and advocate that similar concepts can be
successfully applied to the considered IoT settings. That is,
routing, filtering, aggregation and fusion functionalities shall
be dynamically assigned to the nodes (and possibly rotated
among them) according to their available computation, com-
munication, memory and energy resources. We aim at dis-
tributed techniques to achieve this at runtime, while meeting
the QoS constraints dictated by the application.
EnergyHarvesting (EH):Energy harvesting functionalities

enable the continuous collection of energy from the environ-
ment or from an external and controlled energy source, and
hold the promise of energy neutral network operation [47].
EH technologies successfully exploited in the context of IoT
include light (solar or indoor), thermal and vibration, andmay
widely differ in terms of usage and efficiency. The EHmodule
influences every system module and processing functional-
ity, e.g., scheduling and compression algorithms, and con-
sequently is an integral part of the optimization framework.
A realistic, but still useable, characterization of the inherent
features of the EH process (e.g., intermittency of the energy
source) is of vital importance, along with their performance
implications, and the optimization of the system using tools
such as learning [48] and sub-optimal approaches [49]. In
addition to the scavenging of ambient energy, the framework
also includes wireless energy transfer (WET) and coopera-
tion techniques, where energy can be purposely transferred
from an energy-rich node (e.g., a dedicated gateway) to other
devices [50]. We foresee the possibility of employing WET
to further boost the network performance [51], [52], in partic-
ular following the wireless powered communication network
paradigm described in [53]–[55].
Context-Learning and Self-Adaptation (CLSA): This mod-

ule is aimed at acquiring context information regarding, e.g.,
the type of signal(s) generated by the node’s sensors, the
nature of the cross-traffic coming from other nodes, and
the nature and conditions of the available communication
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channels. This information is then used to identify the
scenario of use and, then, adapt the optimization actions
taken by the ECM. The idea is to come up with self-
adapting policies, according to different contexts. Context-
awareness [29], [56], [57] can be achieved by means of
learning techniques [58], [59], by observing the type and
format of the data flow generated by each IoT device. A fun-
damental feature of the proposed framework is the capability
of offloading processing and protocol functionalities to the
most energy-rich and computation-capable devices, thereby
making this vision practically implementable on realistic IoT
platforms. For example, intensive learning tasks could be
carried out by the IoT Gateway, which could in turn offload
some of the computational burden to Internet Cloud servers if
needed. Conversely, energy constrained IoT nodes will only
have to execute basic (possibly pre-computed) policies or to
perform a limited number of operations. This approach will
be pursued by additionally focusing on the decentralization of
learning, routing and processing functionalities to those IoT
nodes possessing more energy and computation capabilities.
Scheduling/MAC: The scheduling/MAC module manages

the data transmission events and tunes the transmission
parameters according to the expected channel and interfer-
ence conditions and to the energy perspective of the device
[43], [44], [60], i.e., the current energy reserve, the probability
of gathering new energy from ambient sources or via WET,
and the energy cost of compression algorithms, which will
be dynamically and jointly managed with channel scheduling
decisions [61], [62]. The MAC protocol shall be designed
to exploit the possible advanced (e.g., multi-packet) recep-
tion capabilities of the receiver [22], radio duty cycling and
the presence of a wake-up radio, if available. Also, self-
adaptation to traffic type and channel asymmetries (downlink
vs uplink), as well as different Tx/Rx capabilities (e.g., direc-
tional operation) are key considerations. For example, Time
Division Multiple Access (TDMA) could be adopted under
heavy traffic, whereas random access may be a better option
when traffic is sporadic. The CLSA module will be utilized
to this end.

A. SCENARIOS OF INTEREST
The IoT includes a very wide range of scenarios with dif-
ferent requirements and specifications. Here, we focus on
some reference use cases that, despite their simplicity and
level of abstraction, are representative of a broad range of
applications.

1) MANY TO ONE – ENERGY ‘‘RICH’’
This first scenario concerns a single-hop network, where
many nodes report data to a common receiver, which is (often)
neither energy nor resource constrained. The sensor nodes
may be either connected to the energy grid or battery-powered
and, in the latter case, they could have energy harvesting capa-
bilities. They can also perform some computation, although
simple. In this context, it makes sense to assume that most
of the signals generated by the nodes are time series as

they are involved in the monitoring of some spatio-temporal
physical process. Common applications for this scenario can
be found in smart cities, e.g., traffic monitoring and envi-
ronmental applications (noise level, humidity, vibration, light
intensity and infrared, etc.). This architecture may also apply
to assisted living and smart building scenarios, e.g., for indoor
activity tracking.

2) MANY TO ONE –‘‘SMART DUST’’
We consider a single-hop network, but we distinguish
between two categories of nodes. Type 1 sensors have very
little energy available and form the so-called ‘‘smart-dust’’:
they can be densely deployed, harvest energy from the envi-
ronment and use it to transmit ‘‘once in a while’’. The
scarce available energy does not allow them to perform heavy
computation. The data sent by these devices is collected by
type 2 nodes, which have the same capabilities as those in
scenario A), and communicate towards a powerful common
receiver. In this case, the aggregated capabilities of type 1
devices are much larger than that of a single type 1 node,
and processing techniques and scheduling protocols should
leverage on this. This architecture may model, e.g., smart
farming applications, where a lot of sensors with low com-
putational capabilities are spread in the fields to measure
acidity, soil moisture and temperature, etc., but also smart
logistics operations where goods are to be tracked or checked
for integrity, etc.

3) MULTI-HOP NETWORKS
In this case the IoT nodes may not be able to communi-
cate directly with the gateway, and thus efficient routing
protocols, that take into account the available energy and
computational resources, are needed. A common application
for this architecture is structural health monitoring, where
sensors are embedded in a building or infrastructure (e.g.,
a bridge [63]) and monitor its status. Another case may be
in smart cities, where sensors are directly connected with
a gateway, but self-starting multi-hop routing is required to
grant connectivity in the cases of gateway failures or poor
channel quality (due to obstacles and interference). Although
multi-hop connectivity has been around for years, and proven
to work in some practical systems, it still represents a chal-
lenge from an energy point of view, because of the non
negligible overhead required to maintain multi-hop routes
in dynamic environments and/or the high packet-forwarding
cost incurred by those nodes close to the sink. Under this
premise, we will limit our interest to connectivity that spans
only a few hops (up to three), which does not require complex
routing algorithms and can instead exploit the presence of
a limited number of relay nodes to alleviate the burden of
packet forwarding.

IV. REFERENCE SCENARIOS AND ASSUMPTIONS
In the following, we consider a channel access exam-
ple which elucidates some aspects of the proposed frame-
work. In this section, we will first introduce the considered
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mathematical models for the in-node data processing, energy
consumption of the devices, and communication channel
(Sections IV-A–IV-C). Then we will delve into data mining
and classification algorithms in Section V-A, and, finally,
we will use these results to study a channel access problem
where multiple sources transmit heterogeneous data to a gate-
way (Sections V-B–V-D). This example refers to scenario A,
where nodes possess some computation capabilities, that are
exploited to compress the source signals.

A. IN-NODE PROCESSING
In the above scenario A, IoT nodes are capable of processing
data. One possible way to exploit their computation capa-
bilities is to apply lossy compression to the time series they
sense from the environment. This makes it possible to trade
some accuracy in the data representation for an increased
energy efficiency of the data transmission to the gateway.
Note that to ensure a bounded reconstruction error at the
receiver, while using the appropriate compression level, a
reasonably accurate rate-distortion function for the sensed
signals is required. Rate and distortion are formally defined
as follows.
Definition 1 (Rate): Given a time series x and its com-

pressed representation y, we define the compression rate as:

ηc =
Nb(y)
Nb(x)

, (1)

where Nb(x) and Nb(y) are the number of bits required to rep-
resent the original time series x and the compressed signal y,
respectively.
Definition 2 (Distortion): Given a time series x and its

reconstructed version x̂, we define the distortion over N time
samples as:

ε̂ =
maxi=1,...,N

{∣∣xi − x̂i∣∣}
maxi{xi} −mini{xi}

· 100, (2)

which corresponds to the maximum distance between the
samples of x and x̂, normalized to the range of the values.

Rate-distortion curves are signal- and algorithm-
dependent. For any given compression method, they can be
empirically obtained by applying the algorithm to a given
signal using different levels of compression (rate) and mea-
suring the corresponding reconstruction error (distortion).
The set of rate-distortion pairs can be then fit using a suitable
function. In this paper we use the following model, whose
shape resembles that of the rate-distortion curve of a Gaussian
source [64]:

D = b
(

1
ηαc
− 1

)
, (3)

where α, b > 0. Once α and b are known, (3) permits to gauge
the distortion for any rate, i.e., any level of compression.
This knowledge, depending on the specific application, can
be exploited at the end nodes or at any intermediate point
acting as a centralized manager that optimizes the network
protocols. In Fig. 2, we show empirical rate-distortion points

Fig. 2. Empirical fits for the rate-distortion Eq. (3) for three signal
classes.

for three signal classes along with the corresponding fitting
curves, obtained adapting Eq. (3).

B. ENERGY AND POWER CONSUMPTION
To design energy efficient algorithms and protocols it is
key to identify and characterize all the sources of energy
consumption and supply. It is hard to define an exhaustive and
general model for the energy dynamics of an IoT device, since
its energy consumption highly depends on the technology
it employs, its operating conditions, and the algorithms it
uses. Next, we describe a parameterized model that tries to
capture all the major sources of energy expenditure, namely,
communication, data acquisition, processing, and circuitry.

1) SENSING
Let Ns be the number of sensing events performed in a given
time window Ts. The sensing energy is defined as:

Es = Ns · Esens (4)

where Esens is the energy spent by the device to collect one
sample. For periodic sensing, Ns ' round(Ts/Tp), where Tp
is the nominal sensing period, while for aperiodic sensing,
where the acquisition of samples is triggered by some event,
Ns is a random variable whose distribution depends on the
specific sensing process and on the observation window Ts.
Often, Esens is very small compared to the energy drained

by the RF architecture, and Es becomes negligible. However,
there exist devices such as cameras that may spend non
negligible amounts of energy to collect a new image every
few tens of milliseconds.

2) DATA PROCESSING
In our example, we only focus on in-node compression oper-
ations, whose energy cost can be quantified using the results
in [6], and define the energy consumption due to processing
as:

Ep = E0 · L0 · Nc(ηc), (5)
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where E0 is the energy consumption per CPU cycle (that
depends on themicro-controller unit), L0 is the number of bits
used to represent the original signal, andNc(ηc) represents the
number of clock cycles per bit needed to compress the input
signal and is a function of the compression ratio ηc. Note that
Nc(ηc) depends on the compression algorithm.

For what concerns channel coding, typically the energy
it requires is assumed to be negligible with respect to the
overall energy consumption and only the energy needed by
the receiver for decoding is taken into account [65], hence
we consider this contribution only in terms of variation of the
number of bits to be transmitted over the air (i.e., redundancy
bits added for FEC/CRC).

3) TRANSMISSION
The energy cost of any wireless transmission period can be
modeled as:

Etx =
τ · Ptx
ηA

, (6)

where τ is the transmission duration, Ptx is the average radi-
ated power, and ηA ∈ (0, 1] is a constant that models the
efficiency of the antenna’s power amplifier. This source of
energy consumption should be considered for all transmis-
sions performed by the IoT device, and thus also includes
retransmission attempts and all control messages, e.g., related
to scheduling maintenance/generation of the access schedule
in coordinated access schemes.

4) RECEPTION
When receiving a packet, the device spends energy to receive
the radio signal, which can be modeled analogously to
Eq. (6), and to reconstruct the original data from its com-
pressed/encoded version. This latter contribution is highly
algorithm-dependent and, to the best of our knowledge, there
exists no general expression to characterize it. Also the energy
required by advanced decoding algorithms (e.g., interference
cancellation) should be taken into account. However, in the
example application that follows we mainly focus on the
energy consumed for transmission, because the applications
we target (scenario A of Section III-A) assume single-hop
networks where the data sink is an energy-rich device.

5) CIRCUITRY
We also consider the ‘‘basal’’ energy spent by the circuit
in each of the node’s possible operating states,
x ∈ {sleep, idle, active}. A simple way to model it is the
following:

Ec = Tx · εc,x , (7)

where εc,x is the rate of circuitry energy consumption when
the node is in mode x, and Tx is the time spent by the device
in that mode. Also, going frommode x1 to mode x2 consumes
energy, which is modeled as a constant contribution only
depending on the two modes:

Eswitch = kx1,x2 , (8)

The switching time is assumed to be negligible, and for this
reason Eswitch does not depend upon it.

C. CHANNEL MODEL
We consider communication channels that are independent
among users and affected by path loss and block fading (e.g.,
Rayleigh fading). Since we are focusing on Scenario A, it is
meaningful to assume that Channel State Information (CSI)
is available at the nodes, which can exploit it to, e.g., perform
power control. If the energy available to an IoT node is
sufficient to transmit, the packet can be sent to the receiver
but may not get through because of bad channel conditions (or
collisions, in case of random access). If the latency require-
ments are strict or the communicationmodel does not account
for retransmissions, the information contained in a corrupted
or lost packet cannot be recovered.

V. FROM THEORY TO PRACTICE: A COMBINED
LEARNING AND RESOURCE
SCHEDULING PROBLEM
In this section, we elaborate on the automatic classifica-
tion of sensor signals. Our objective is to reliably predict
the rate-distortion function of a generic temporal signal by
analyzing a small window of samples.

A. CONTEXT CLASSIFICATION
We foresee a usage model where data is gathered and, upon
collecting a few samples (e.g., 500 samples are used for the
results that follow), the time series is automatically classi-
fied in terms of rate-distortion behavior for a selected com-
pression algorithm. Having this function, or at least a good
estimate of it, makes it possible to decide upon the most
suitable compression algorithm to use and to automatically
tune it. In addition, besides compression at the source, the
estimated rate-distortion tradeoff can be exploited to design
and/or adapt the network protocols, which shall be jointly
optimized with the compression algorithm, as we shall see in
Section V-B. With respect to the energy-centric framework
of Section III, this rate-distortion classifier falls within the
‘‘In-node data processing’’ and the ‘‘Contex Learning &
Self-adaptation’’ blocks of Fig. 1.

For the purposes of this example, we collected diverse
univariate real world time series, which were acquired from
publicly available datasets. These have been selected as a
representative set of the signal types for common IoT scenar-
ios, including: 1) environmental sensing, e.g., temperature,
humidity, soil moisture, precipitation measures, wind speed,
solar radiation, 2) biomedical applications, e.g., electrocar-
diograms (ECG), photoplethysmograms and respiration sig-
nals, 3) smart electricity grids and smart cities, e.g., power
consumption of home appliances and measures of build-
ings structural strain. In total, we have run experiments on
7010 time series taken from these application domains.

Every signal in the database is sampled at a constant rate
which is signal-specific, but our aim is to come up with algo-
rithms that are agnostic to it. For our experiments, we split

VOLUME 5, 2017 6901



A. Biason et al.: Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

Fig. 3. Flow diagram of the proposed classification procedure.

each time series into non-overlapping temporal windows of
N samples, so that each time window is an array of N real
values, i.e., x = (x1, x2, . . . , xN ) ∈ RN . With ‘‘input time
series’’ we refer to one such window of data for a specific
signal type. Based on preliminary results on compression
schemes, and considering the analysis in [6], we group the
signals into three classes, namely: i) noise-like signals, such
as wind speed and structural strain, where the temporal cor-
relation is low and the time series show an erratic behavior
(difficult to predict and with no evident trend or periodic
components); ii) quasi-periodic signals, such as ECG traces
and other biomedical time series, where a similar pattern is
repeated over time, with variations in shape and duration; and
iii) trend signals, such as temperature, humidity, and other
environmental quantities, which exhibit a slowly varying
behavior and have a noticeable trend component. The signals
in each class are expected to perform similarly when going
through the process of (temporal) compression. Moreover,
each time series, after being classified, can be associated
with a certain rate-distortion curve, which is representative
of the class it belongs to. The rationale is that this curve can
be used to optimize the operation of networking protocols,
e.g., to minimize the energy expenditure entailed by data
collection algorithms, given an error tolerance for the signal
reconstructed at the sink.

From the analysis in [6], we consider two lossy
compression algorithms, which are suitable for IoT
sensing-and-report applications, namely, i) Lightweight Tem-
poral Compression (LTC) [7] and ii) compression based
on Discrete Cosine Transform (DCT). LTC is among the
most lightweight compression techniques forWSNs, whereas
DCT-based algorithms usually provide the best accuracy, but
are more energy demanding. Both compression schemes take
as input the data to compress, x, and an error parameter, ε, and
output a model y for the compressed signal. Themodel is then
transmitted and used at the sink to obtain the reconstructed
signal x̂.

The classification procedure that we developed is based
on the extraction of features from the original time series. In
particular, it consists in a sequence of operations including:
feature extraction, feature normalization, feature selection,
and a final classification phase, which is carried out either
using a Feed Forward Neural Network (FFNN) or a Support
Vector Machine (SVM). A flow diagram of the proposed
approach is shown in Fig. 3.

The feature extraction phase is performed through
the Highly Comparative Time Series Analysis (HCTSA)

framework of [11], which includes a large collection of meth-
ods for time series analysis and makes it possible to convert
a time series into a vector of (thousands of) informative fea-
tures, each obtained from a specific operation on the temporal
signal. Each HCTSA operation is encoded as an algorithm
taking as input a time series x = (x1, x2, . . . , xN ), and
returning a single real number fi, called a signal’s feature. The
collection of all the output features for an input time series is
referred to as feature vector f = (f1, f2, . . . , fM ) ∈ RM . For
our experiments, we considered a set of over 7000 time series
of fixed length N = 500 samples, obtained from consecutive
non overlapping portions of the three signal classes above.
We have first run the feature extraction procedure on the input
time series applying all the operations in the HCTSA library,
which outputs 5254 features per time series. These are then
normalized using an outlier robust sigmoidal transform and
stored into a matrix F̂. The automatic classifiers are obtained
by training SVMs and FFNNs using the features in F̂ and
evaluating the classification accuracy for each signal class.

Fig. 4. Classification accuracy using a 10-fold cross validation approach
for: 1) an SVM and an FFNN classifier trained on all the 5254 features
extracted (i.e., on the entire matrix F̂), 2) an SVM classifier trained on the
L principal components of F̂, 3) SVM and FFNN classifiers trained on the
twenty most representative features, selected through a greedy
procedure and 4) an SVM classifier trained on L ≤ 10 principal
components of the reduced and normalized S × 20 signal-feature matrix.

Fig. 4 shows that using either an SVM or an FFNN,
the classification accuracy achieved using all the 5254 fea-
tures is very high, i.e., higher than 99.8%. The use of the
full feature set is however computationally demanding and
impractical, especially if this classification task has to be
carried out at the network edge (i.e., at the IoT nodes).
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We thus have to substantially reduce the number of relevant
features to compute, in the hope that this will still lead to high
classification rates. Driven by this, in Fig. 4 we also show
the classification accuracy obtained when the SVM classi-
fier is trained using the first L Principal Components (PCs)
of F̂, with 1 ≤ L ≤ 10, which grows from 73.43% using
just the first PC to 96.76% when using the first ten PCs.
Computing feature vectors of ten elements (the first ten PCs)
is certainly appealing, but this still entails the fact that the
whole feature set has to be obtained first, which is still
computationally prohibitive. For this reason, we applied a
greedy feature-selection scheme to extract the twenty most
representative features from the 5254 that were originally
derived from the signals, obtaining a reduced and normalized
S× 20 signal-feature matrix, where S is the number of signal
examples. This feature selection procedure is heuristic and
better feature sets may be extracted through more involved
(but computationally demanding) approaches. Nonetheless,
it makes it possible to identify twenty pre-defined features
from the original dataset, thereby considerably reducing the
processing cost. We then trained SVM and FFNN classifiers
using the so identified twenty features and the corresponding
classification results are also shown in Fig. 4. As we can see
from this plot, SVM and FFNN classifiers in this case still
lead to good accuracies, about 97%.

Hence, upon training the classifier, each source can
retrieve, with high accuracy and low computation cost,
the rate-distortion function that best represents its signal.
This only requires the inspection of small windows of data
(500 samples in our tests) and the process can be repeated
from time to time to track changes in the signal statistics.
Classifiers shall be trained offline by a powerful node, but
they are lightweight to execute and have a small memory
footprint.

B. A CHANNEL ACCESS OPTIMIZATION PROBLEM
Our final goal is the definition of an agile MAC protocol,
which dynamically tunes its parameters according to the
evolution of the channel access scenario, by possibly fol-
lowing a principle of optimality, and switching between
coordinated (e.g., TDMA-like) and random (e.g., Aloha-like)
access schemes. The rate-distortion curves of Section IV-A
are utilized to quantify the trade-off between distortion and
energy consumption. Here, we present the main algorithms
and results derived in [66], which solve a coordinated access
optimization problem, and represent a first step towards the
design of an agile MAC protocol.

We consider a centralized MAC scheduling, where a cen-
tral entity (e.g., the IoT gateway) computes and disseminates
the actions that every node performs, namely, the access
schedule, the transmission powers and the source rates. The
goal is to find a policy that simultaneously prolongs the
network lifetime and satisfies some QoS requirements in
terms of signal distortion at the receiver.1 However, these

1For example, a practical QoS requirement may be to keep the signal dis-
tortion below a certain threshold for all the sources, with a fixed probability.

are generally conflicting objectives, since lowering the signal
distortion is generally possible through an increased energy
consumption, which in turn impacts the network lifetime.
In practice, there is a trade-off between the total amount of
information transmitted and its quality. We also recall that in
the following example we do not consider external renewable
energy sources, thus the lifetime of the devices is always
finite.

Next, we discuss how to find the policy that defines the
MAC protocol, noting that our procedure is rather general
and can also be employed in other settings. Formally, the
optimization problem requires to explicitly assign the energy
to be consumed at every time instant, taking into account the
expected amount of data to transmit in the future, the future
energy requirements, and other non-controllable factors (e.g.,
future channel conditions).We consider a slotted time system,
comprising U IoT sources that send compressed signals to
a common gateway at every time frame. Frames are divided
into U slots in a TDMA fashion, and the slot durations are
defined by the gateway and assigned at the beginning of each
frame. In addition, within every slot, a node must decide
the transmission power to use and the compression level
for the signal it transmits. In practice, the slot duration and
the transmission power influence the maximum number of
bits that can be sent over the communication channel (e.g.,
using Shannon’s capacity formula, the maximum number of
transmitted bits scales linearly with the duration and logarith-
mically with the power). This consequently imposes a bound
on the signal distortion, which is intrinsically related to the
length of the transmitted signal.

From our previous description, it becomes apparent that
there are many variables to optimize (transmission powers,
durations, and the compression levels for every source node).
To address this problem, we decompose it into two connected
sub-problems, as follows.

1) Energy-Allocation Problem (EAP). This is the main
optimization process, which aims at allocating the
energy that the sources consume in every transmission
frame. In addition to the current frame, EAP should
also consider what may happen in the future and the
corresponding energy requirements.

2) Frame-Oriented Problem (FOP). Provided that EAP
fully defines the energy to be used in each frame,
the frame-oriented problem has two objectives: first,
it finds the optimal slot allocation; second, it specifies
the transmission powers and the compression levels for
all nodes in order to make the best use of the allotted
energy.

An illustrative example of how EAP and FOP interact
with one another is provided in Fig. 5. The two prob-
lems are strictly connected, as the outcome of one block
influences the choices of the other. However, they can be
iteratively and independently optimized to solve the over-
arching optimization problem and find the desired trade-off
between distortion and lifetime. The rationale behind this
approach and the involved trade-offs are discussed in the
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Fig. 5. Structure of the MAC layer optimization problem.

rest of this section. More technical details can be found
in [66].

C. FRAME-ORIENTED PROBLEM (FOP)
FOP optimizes the number of access slots, the transmission
powers/durations and the distortion level for each source. The
energy consumption is fixed, since all the energy assigned by
EAP is meant to be fully used within each frame. Therefore,
there is no lifetime issue in this phase. To more precisely
define our objective, we introduce a network notion of distor-
tion, that we call Dnet. Since there are U sources transmitting
their signals to a common receiver, it would be natural to con-
sider the average distortion across all of them as our objective.
This however does not ensure fairness among nodes and may
lead to very unbalanced schedules. Amore effective approach
consists in defining the objective as the maximum level of
distortion:

Dnet , max
i=1,...,U

Di (9)

Note that minimizing (9) amounts to enforcing a min-max
utility optimization approach. This is particularly sensible in
heterogeneous systems, where, otherwise, some nodes might
be heavily penalized (e.g., because of the near-far effect, of
their different traffic patterns or rate-distortion curves).

FOP solves the following optimization problem, minimiz-
ing Dnet, subject to slot and energy constraints (the problem
is fully specified and solved in [66]):

minimize : Dnet

variables : tx durations

txpowers

subjectto : TDMA-slot division

energy imposed by EAP

Note that the most important constraints concern the TDMA
structure of the frame (the number of time slots, which trans-
lates into a bound on the overall transmission duration of
the nodes), and the maximum available energy dictated by
EAP (this imposes constraints on transmission powers and
durations). We also note that allocating the same slot duration

to all nodes may be highly inefficient, as some of them may
underuse the allocated resources.

Finally, we remark that the transmission power is a local
parameter that has to be optimized according to: i) the effi-
ciency of the transmission chain (e.g., the non-linearity of the
power amplifier) and ii) the expected channel gain. Indeed,
the frame-oriented problem implicitly depends on the state
of the communication channels. In addition to the path loss
coefficients, which represent the average channel quality,
random fading should also be taken into account, as it may
strongly influence the system behavior. In particular, in [66],
both cases with and without full CSI are solved. When only
statistical CSI is available, a probabilistic approach has to
be employed to guarantee a sufficiently low distortion with
a certain (positive) probability.

D. ENERGY-ALLOCATION PROBLEM (EAP)
EAP deals with the trade-off between network lifetime
and signal distortion. The optimal working point generally
depends on the application. For example, some scenarios may
require very low or even zero distortion (e.g., the transmission
of a binary information source, like an alarm), whereas oth-
ers may accept lossy compression to a certain degree (e.g.,
the transmission of environmental signals). We model this
trade-off as a multi-objective optimization problem, using a
scalar λ to balance distortion and network lifetime. When
λ → 1, the network lifetime becomes the sole objective,
whereas the distortion is the only objective for λ→ 0.
Furthermore, we generalize the notion of single-frame net-

work distortion of Section V-C to multiple frames and we
do so by taking the average of the network distortions as
our optimization goal, i.e., the average over multiple frames
of the maximum signal distortion in every frame. To solve
EAP, we decompose the average distortion problem into U
sub-problems, one for every source node. Then, a solution
is found through a random alternate optimization algorithm,
which optimizes the energy of one node at a time. In practice,
EAP and FOP are tightly coupled and a single iteration of
EAP requires to solve FOP multiple times.

E. NUMERICAL RESULTS
To understand how the various parameters influence the sys-
tem performance, we show an example network composed
of three groups of nodes G1, G2 and G3, placed at differ-
ent distances from the gateway, with different rate-distortion
curves, and with different QoS requirements. The transmis-
sion parameters are taken from the datasheets of two real
devices, namely, the RN-131C 802.11 b/g Wireless LAN
Module and the RC2400HP RF Transceiver Module. The
parameters of the rate-distortion curves of Eq. (3) are derived
according to the results of Section V-A.

In Fig. 6, we show the signal distortion curves as a function
of the network lifetime, obtained solving the MAC layer
optimization problem. Because of random fading, the channel
conditions may be bad, and small distortions may be achieved
only using a lot of energy (e.g., by increasing the transmission
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Fig. 6. Average network distortion as a function of the network lifetime using the optimal policy (solution of EAP and FOP) and a suboptimal
approach for different numbers of users and QoS requirements. All curves are normalized with respect to an initial battery level B0.

power) or performing long transmissions. Therefore, to avoid
wastage of resources, we do not allow a node to transmit its
data if the channel coefficient is below a certain threshold,
which depends on the QoS requirements of the nodes, and
on the number of sources (we consider an equal number of
nodes in the three groups). In this work, we intend the QoS
in terms of data delivery probability. Accordingly, the QoS
requirements are said to be loose/strict when the service can
tollerate high/low packet dropping probability, respectively.
Therefore, the value of the channel-gain threshold below
which the transmission is not attempted is high (low) when
the QoS requirement is loose (strict).

The continuous lines were obtained following the opti-
mization approach described in the previous section, which
involves solving EAP and FOP iteratively, until convergence.
Instead, the dashed lines are found using a simpler policy, that
does not directly take into account the uncertainty about the
future states and, in turn, is suboptimal. Indeed, as the num-
ber of nodes U increases or the QoS requirements become
stricter, the distortion obtained with the suboptimal policy
(dashed lines) is much higher than the optimal one. This
emphasizes the importance of using a proper optimization
approach at the MAC layer of energy constrained networks.

Note that, in all cases, the distortion is an increasing func-
tion of the lifetime, as expected. Moreover, when the lifetime
is short, the curves are constant because 1) either a zero
distortion has already been reached (cases with U = 3), or
2) it is not possible to consume all the energy available in

Fig. 7. Number of discarded users as a function of the frame duration for
different numbers of users and QoS requirements.

the batteries (e.g., because of the constraints imposed by the
communication channel and of the limited frame duration).
We observe that, in these regions where the distortion remains
constant for increasing values of the network lifetime, the best
operating point is clearly at the knee of the curve, where we
get the longest lifetime for the same value of average network
distortion. Moving beyond this point implies higher lifetimes
at the cost of an increased distortion, and the operating point
is then subject to application preferences.
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A different effect can be observed in Fig. 7. In the x-axis
we increase the frame duration, whereas in the y-axis we show
the corresponding number of users that have to be discarded.
Indeed, with short frames, it may not be possible to satisfy
the QoS requirements of all nodes, especially when they are
strict. Thus, some nodes are to be discarded and must wait
for future transmission opportunities. Note that, the longer
the frame, the smaller the number of discarded nodes.

VI. CONCLUSIONS AND LESSONS LEARNED
In this work, we have proposed a novel energy- and
context-centric framework for the IoT, with the overall objec-
tive of prolonging the device energy subsistence, while guar-
anteeing a desired level of QoS. According to this framework,
the protocol design effort should: 1) target the reduction of
the radio on-time (e.g., through data compression, smart radio
duty-cycling, wake-up radios), 2) jointly manage scheduling
(transmission) and higher layer processing (e.g., compres-
sion) to avoid energy wastage due to collisions, and 3) opti-
mally tune the energy consumption in the presence ofwireless
channel impairments and intermittent energy sources (e.g.,
energy harvesting). Although the final objective is to build a
comprehensive optimization framework, the large variety of
possible application scenarios makes the specific formulation
of the optimization problem context-dependent.

The results obtained in the initial development of such a
framework have corroborated the effectiveness of the pro-
posed approach. We focused on a scenario where multiple
resource constrained sensors periodically report data to a
common receiver, as common in monitoring applications,
and can perform some (simple) computation. The in-node
processing is data driven: the device dynamically decides
upon the compression algorithm to use according to the type
of signal it generates, whose propertiesmay change over time.
We used diverse real world time series to build a classifier
based on a reduced set of features extracted from the signals
themselves. We showed that good classification results can
be obtained by using lightweight classifiers with humble
storage requirements, such as pre-trained neural networks or
support vector machines. The rate-distortion curves obtained
through this process have been utilized in the design of the
MAC layer through the definition of a scheduling problem
that jointly considers channel and distortion requirements.
We developed an optimization framework to optimize the
performance (in terms of lifetime and/or average distortion
at the receiver) of a network of heterogeneous devices. The
numerical evaluation, based on realistic hardware parameters
and signal models, shows that our approach can significantly
outperform context-unaware systems, especially as the num-
ber of devices increases.

We believe that a resilient and effective IoT network can be
realized only through the usage of context-aware protocols,
that tune their settings and operating mode according to
application requirements and to the dynamic conditions of the
network and of the acquired signal. The energy dynamics of
the devices also play a major role, and have a strong influence

on all layers of the protocol stack. We are currently in the
process of extending the framework through the addition of
functionalities such as energy harvesting, protocol adaptation
and wake-up radios.
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