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ABSTRACT This paper presents a total-amount synchronous control (TASC) strategy for nonlinear systems
with uncertainty based on finite-time control theory. In combination with a new type of terminal sliding-mode
control strategy, finite-time convergence of TASC is realized. First, the specific mathematical expression of
the system terminal sliding-mode surface is given. On the basis of this, according to the sliding-mode surface
expression, the sliding-mode variable structure control laws of n regular nonlinear systems are derived,
avoiding the singularity problem that can easily appear in ordinary terminal sliding-mode controllers.
Meanwhile, the initial system is located on the sliding-mode surface. The approach process in sliding-mode
control is eliminated, and the existence of the sliding phase is proved according to the Lyapunov stability
theory. Finally, the effectiveness of the algorithm is verified by a numerical example.

INDEX TERMS Finite-time convergence, nonlinear system, synchronous control, terminal sliding-mode

control.

I. INTRODUCTION

The synchronous behavior of biological groups attracts inter-
est from researchers in biology, control, physics and other
fields, research on synchronization has developed rapidly
over the last two decades. Synchronization of dynamic sys-
tems is still a hot topic in the automatic control field. Synchro-
nization means that all individual state variables of a system
tend to the same value under the action of control laws [1].
Early literature focused mainly on synchronization of nomi-
nal systems without uncertainty; for example, Scardovi and
Sepulchre [2] investigated the synchronization of a net-
work of identical linear state-space models under a possibly
time-varying and directed interconnection structure. In addi-
tion, In the absence of the double stochasticity assumption,
Li et al. [3] investigated discrete-time single-integrator by
means of the matrix transformation and the Lyapunov tech-
niques. Fax and Murray [4] provided an approach that realizes
a dynamical system that supplies each agent with a common
reference to be used for cooperative.

However, the synchronization of systems in reality will
inevitably be subjected to external disturbance and param-
eter perturbations. Researchers have therefore conducted
much in-depth research on synchronization in the presence
of uncertainty. Taking the effect of inherent unmodeled

disturbances into account, X.Wang developed a reduced
order observer based consensus protocol with a performance
constraint, The anti-disturbance and output asymptotic syn-
chronization of the closed-loop system are guaranteed [5].
Zhou et al. [6] investigated the locally and globally adaptive
synchronization of an uncertain complex dynamical network,
Several network synchronization criteria are deduced. By uti-
lizing the concept of impulsive control and the stability results
for impulsive systems, Liu et al. [7] studied robust impulsive
synchronization of uncertain dynamical networks, several cri-
teria for robust local and robust global impulsive synchroniza-
tion are established for complex dynamical networks. Most
existing studies have aimed for asymptotic synchronization,
namely that individual state variable asymptotically converge
to a given control state of the system. It also means that
an individual trajectory will need an infinitely long time
to coincide with a given reference trajectory. However, in
practice, in many control systems (such as flexible space-
craft control, robot operation control, motor control, mechan-
ical processing control, etc.), the required control process
ends within a finite time. In addition, actual control systems
require fast dynamic response, and their error can converge to
zero in an adjustable finite time. Compared to asymptotically
stable control law, the closed-loop system with finite time
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convergence usually demonstrates faster convergence rates
and better disturbance rejection properties [8]-[10]. There-
fore, the study of finite-time synchronization is more valuable
for practical engineering applications.

Sliding-mode variable-structure control is a kind of discon-
tinuous nonlinear control. When moving on a sliding-mode
surface, the system has superior invariance and robustness
[11], [12]. In addition, the algorithm is simple and robust
in real time, facilitating engineering implementation. Yu and
Long [13] investigated the distributed finite-time consen-
sus problem of second-order multi-agent systems (MAS) in
the presence of bounded disturbances. Mondal et al. [14]
proposed a robust consensus controller for heterogeneous
higher-order nonlinear multi-agent systems using sliding
mode control, when the agent dynamics are involved with
mismatched uncertainties. Du et al. [15] investigated the
consensus tracking problem of multiple nonholonomic high-
order chained-form systems using super-twisting algorithm.

These synchronization behaviors are all aimed at making
individual state variables tend to be uniform. However, in
some actual situations, synchronization of a single variable
is not required, but the total amount of system output must be
maintained constant. For example, in electric locomotive trac-
tion, under certain circumstances, it is required that the total
traction be maintained constant. Whereas the sum of state
variables of whole system is maintained constant, the total-
amount synchronization problem has not yet been reported
in the literature.

This paper represents a preliminary exploration of this
problem, using the results of dynamic system synchroniza-
tion efforts proposed in existing studies for reference. The
research idea is to convert the total-amount synchroniza-
tion problem into a system finite-time convergence prob-
lem. To realize finite-time convergence of the error system
and at the same time avoid the singularity problem of the
common terminal sliding-mode controller, as reported in the
literature [16], this research has used a nonsingular terminal
sliding-mode control strategy. Because the initial system state
is located on a sliding-mode surface, the approach process of
sliding-mode control is eliminated, guaranteeing the robust-
ness of the whole process.

The rest of this paper is organized as follows. The second
part presents a system description and the system design goal.
The third part describes the design of the terminal sliding-
mode surface. The fourth part discusses the design of the
terminal sliding-mode controller, including a stability proof.
The fifth part consists of a simulation example, and the sixth
part concludes the paper.

Il. SYSTEM DESCRIPTION

Because most electromechanical and mechanical systems
in engineering practice have regular properties, this paper
mainly studies the following n independent second-order
regular nonlinear systems, as shown in Fig. 1. Fig. 1 shows
the overall framework of Total-Amount Synchronous Con-
trol, the Total-Amount Synchronous controller clearly sums
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FIGURE 1. TASC block diagram.

the outputs of all systems, views it as the total value, and
then compares with the reference instruction. The controller
generates the realtime control input for each system on the
basis of the comparison; therefore, all systems are essentially
coupled.

In Fig. 1, the general expression for the i — th differential
equation of the system is:

Xi1 = Xp2
X = filxi, 1) + Afi(xi, 1) + aju; + di(t)
Zi = X1
(i=12,...,n) (1)
where x; = [x;1, x,-z]T(i =1, 2,...,n) is the state vector; u;

is the control inputs; fi(x;, ) is a known nonlinear function
of system state; z; is the i — th system output,Af;(x;, ) and
d;(t) are respectively the uncertainty and the external dis-
turbance of an unknown object, which satisfy the inequality
|Afi(xi, t)| < Fy, |di(x, t)| < D;, where F;, D; are known non-
negative functions.

Previous studies have focused only on synchronization
between individuals. In this paper, the design goal of n inde-
pendent systems is as follows: under the existence of param-
eter perturbations and external disturbances, the controller
is designed so that a linear combination of n regular non-
linear system outputs can track a given reference trajectory

n
T*within a finite time T, i.e., lim(}_ z; — T*) = 0.

=T ;—

Ill. DESIGN OF THE TERMINAL SLIDING-MODE SURFACE
In traditional sliding-mode control, a linear switching func-
tion is usually selected. After the controller forces the system
trajectory onto the sliding-mode surface, the tracking error
can gradually converge to zero, and the speed of gradual con-
vergence can be adjusted arbitrarily by choosing the param-
eters of the sliding-mode surface. However, no matter how
the parameter state is adjusted, the tracking error does not
converge to zero within a finite time [17]. Therefore, some
researchers have proposed a terminal sliding-mode control
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FIGURE 2. Sliding-mode controller output in case 1. (a) Control law U, of system 1. (b) Control law U, of system 2. (c) Control law U5 of system 3.

(d) Control law U, of system 4.

strategy by introducing a nonlinear function into the design
of the sliding-mode surface, on the basis that guaranteeing
the stability of sliding-mode control makes the system state
converge to the desired state in a limited time.In traditional
synchronous control, people focused the individual state, e.g.,
the speed and position tend to be identical. However, this
work is the first to expand the individual synchronization to
total synchronization. Based on the finite time convergence
characteristics of the terminal sliding mode, this research
applies terminal sliding mode theory to the design of the
synchronous controller in order to realize the convergence of
synchronous errors in finite time.

The deviation between the linear combination of the output
variables of systems and the given reference trajectory 7* is
defined as E, ie,E = [e, ¢, ..., " DT where:
+z2,—T" 2

The following form of interactive switching functions with
global information is used:

e=z1+22+...

s(x, 1) = C*E — W (1) 3)

5438

where C* = [c1, ¢, ..., chl,cn=1lci(i=1,...,n—1)is
a constant to be designed. Define W(¢) = C*P(t) and P(t) =
T, p®F, ..., p"=D()T], select the nonlinear function
p(t) so that it satisfies the following Assumption 1.

Assumption 1 [16]: p(t) Ry — R,plt) €
C"0,00),P,...,p"™ € L, for a certain constant
T > 0, p(t) is bounded on time [O T1;p(0) = e(O) p(O)
e0), ..., p"™ = "(0), and whent > T,p = 0,P
o,... ,p(") = 0,C"[0, o0) expresses the set of all nth — order
derivable continuous functions defined on [0, 00), Where e(0)
is the initial error.

The continuous function p(¢) is selected as shown in the
Equation (4),

Z 6(0)(k)tk + Z(Z (Tj l+n+l (O)(Z))tj+n+l

p(0) = =0 1=0
t<T
0, t>T

“
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FIGURE 3. Output and tracking error in case 1. (a) Output and reference signal. (b) Tracking error of output state variables.

where the parameter a;; can be determined by the conditions
in Assumption 1. The following is the design process of the
terminal function p(¢#) which is determined by Equation (1)
when n 2. From Equation (4), function p(t) can be
described as shown in the Equation (5).

. 1 . aopl . apy ..
eg+eot + 3 ) 2+ (—e + %eo + %eo)t3
aio aiy .
() = a+(T4eg+ T—€o+ 2 eyt +
(S eq + 21e'o+ eo)t, t<T
T5
0, t>T

&)

According to Assumption 1, through design of aj;,p(?), P(t),
can be made equal to zero at ¢ Ts, and thereby the
following system of linear equations can be obtained:

ago + a0 +azo = —1
3agp + 4aio + Sazg =0
6a00 + 12a19 + 20az0 =0

Q)

aopr +ai +az = —1
3ap1 +4ai1 + S5axn = -1
6ap1 + 12a11 + 20az1 =0

1
apy +app+axn =—5

3ap + 4ayy + Saxp = —1
6ag; + 12a12 4+ 20a; = —1

@)

®

According to this system of linear equations, the value of
parameter a;;(j = 0, 1,2; 1 = 0, 1, 2) can be determined:

apo = —10 ap) = —6 ap = —1.5
ajp=15 ajg =8 ap =15
axy = —6 ax) = -3 az = -0.5
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The terminal sliding-mode surface of the system can then be
determined. The corresponding parameter a;; of the nth —
order system can also be determined with reference to the
previous solution process, and its derivation is not repeated
here.

After the terminal sliding-mode surface of the system has
been determined, the next stage is to design a sliding-mode
controller so as to ensure the existence of the sliding-mode
phase.

IV. DESIGN OF TOTAL-AMOUNT SYNCHRONOUS
CONTROLLER

In sliding-mode control, the control law u = [ug, us, .. ., u )’
should enable all state trajectories of the system to reach
the sliding-mode surface s(x,7) = O in finite time. After
reaching the sliding-mode surface, the system begins sliding-
mode motion under the action of the sliding-mode control
law. During the sliding phase, the system has invariance
to parameter perturbations and external disturbances. From
Equation (2), the tracking error e and its derivative can be
obtained

=zu+n+...+2,—T* ©)

=X +x0+...+xq—T*
=xpt+xn+...+xp0-T" (10)
e=xnp+in+...+xp-—TF (11D

From Equation (1)
é = filx1, t) + Afi(x1, t) + ajuy +di(t)
+0x2, 1) + Afa(xa, 1) + axun + da(2)
+:

+ G, 1) + Afu(xn, ) + aptty, + dn(t) — T* (12)
5439
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FIGURE 4. Output and tracking error in case 1 under linear switching function. (a) Output and reference signal. (b) Tracking error of output state

variables.

Through the derivation of Equation (3), the following can
be obtained:

Sx,t) =cie—p)+eé—p
= +xn+...+xo—T"—p)

+f1(x1, ) + Af1(x1, 1) + ayjuyg + di(2)

+2002, 1) + Af2(x2, 1) + azup + da(t)

+:

+ (e, 1) + Afp(xn, 1) + apuy, + dy(t)

~T*—p (13)

Theorem 1: For the class of n independent regular nonlin-
ear systems described by Equation (1), if the sliding-mode
variable structure control law of Equation (14) is used, the
tracking error of a closed-loop system can be guaranteed to
converge to zero in finite time:

1 .
up = —(a)) " epxnn — ZCI(T* +p)+filxr, 1)
1 ..
+ (F1 + Dy + n1) sgn(s) — ;(T* + Pl
1 .
uy = —(a2) e1xm — ZCI(T* +p) +fo(x2, 1)

l ..
+(F2 + Dy + m2) sgn(s) — ;(T *+p)]

1 .
Uy = —(an) " e1xm — ;q(T* +P) + fnCon, 1)
1 ..
+ (Fn+ Do+ mp)sgn(s) = —(I" +p)1 - (14)

where 01, M, ..., Ny are arbitrary constants greater than
zero and sgn(-) is a symbolic function.
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Proof: To prove the stability of the proposed control law,
the Lyapunov method is used. Consider a positive definite
Lyapunov function:

The time derivative of this is

given by:
1%

Lyapunov function

= s§

slci(e —p)+¢é—pl

slei(n + x4 oo+ x0 — T* = p)
+h1(x1, 1) + Afi(xr, 1) + aug + di (1)

+ 2, 1) + Afa(x2, 1) + azuz + da(2)

+:

S Gons 1) + AfXn, 1) + ity + dy(8) = T* — ]
Substituting Equation (13) into the above yields:
V = s[Afi(x1, 0 + di(0) + Afa(x2, ©) + dao(1)
+.. + Afa(en, ) + dn(2) — (F1 + D1 + n1) sgn(s)
— (F2+Da+n2)sgn(s) — ... — (Fp + Dy + 1) sgn(s)]
s[—n1sgn(s) — n2sgn(s) — ... — nusgn(s)]
—m+m+...+n)lsl =0

Let &(t) = E(t) — P(t);according to the definition of the
sliding-mode surface s(x,t), s(x,t) = C(E — P) = C§&
is obtained. According to Assumption 1,£(0) = O,and a
closed-loop system goes into the sliding stage in its initial
moments. According to the sliding-mode equivalence princi-
ple, s(x,7) = 0 and the system is on the sliding surface at
any time ¢ > 0. Select p(t) according to Equation (4), so that
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FIGURE 5. Sliding-mode controller output in case 2. (a) Control law U, of system 1. (b) Control law U, of system 2. (c) Control law U5 of system

3. (d) Control law U, of system 4.

Vt > T, allhave P(t) = 0 It can be guaranteed that the output
tracking error converges to zero in a limited time.

This completes the proof. g

Remark 1: The sigmoid function H(s) = 1/(1 + ¢7™)
is used to replace the symbol function sgn(s). where r is a
positive parameter to be designed, and r is used to adjust
the slope of the sigmoid function, s represents the sliding-
mode surface. For sliding-mode variable structure control,
replacing the traditional switching function with a contin-
uous sigmoid function can effectively reduce the chattering
phenomenon arising from the controller.

Remark 2: 'V is a positive definite function, but V is a
negative definite function, thus ensuring the existence of the
sliding-mode surface. On the other hand, the following can be
obtained from Assumption 1: s(x, 0) = c1(e(0)—p(0))+e(0)—
p(0) =0, $(x, 0) = c1(e(0) — p(0)) + €(0) — p(0) = 0 In other
words, the initial system state is located on the sliding-mode
surface, eliminating the arrival stage of sliding-mode control
and making the whole process of sliding-mode control more
robust.
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V. SIMULATION EXAMPLES
Considering four regular nonlinear systems, the system dif-
ferential equations can be described as follows:

X11 = x12
X120 = —11xf, 4+ 133u; + di (1) + Afi(x12, 1) (15)
21 =X11
X1 = x22
X0 =— —x20 + 111ug + da(t) + Afa(x22, 1)
14+et
22 =X
(16)
X31 = x32
X32 = —18x3, + 100u3 + d3(t) + Af3(x32, 1) (17)
73 = X3
X41 = X42
fp = —11(1 + e xgp + TTug + da(?) (18)
+ Afa(xa2, )24 = x41
5441



IEEE Access

C. Zhang et al.: TASC Based on Terminal Sliding-Mode Control

125
100 \
N L
5 75
£
5]
on
=
2 50
Q
£
25
0
0.0 0.5 1.0 1.5 2.0 2.5
time(s)
(b)
FIGURE 6. Output and tracking error in case 2. (a) Output and reference signal. (b) Tracking error of output state variables.
120
Z\
80 \ | \(‘/\‘ f{\ % 100
\ \\ / \ [ \ z,| |
R R 2, |
al L I~ [ T‘,,/,H
o \ A ‘/\ /{/@‘ g
k= N A AV A /| ©
2 WA [/a\l N\ 1 e
= N/ BR\S/ A\ M| & so
g_‘ N/ \ /) ;\/‘ “\\y/ g
< 40 /| | }/ \ I | E
\o / \ ‘{ | F /
-80 \ \I \ / | \ /
\/ \ | / ¥
V y V V 0
R 5 10 15 20 25 30 35 40 45 50 0 5 15 20 25 3 8 40 45 50
time(s) time(s)
(a) (b)

FIGURE 7. Output and tracking error in case 2 under linear switching function. (a) Output and reference signal. (b) Tracking error of output state

variables.

where the perturbation portion is:

0, t<1
di(t) = . .

30sin2xpixt), t>1

1 t<1
dy(t) =1

20 =1 15 sin(er?et, 1> 1

0, t<1
d3(1) =

3cos(2t), t>1

0, t<1
dy(t) = . .

20« sin2*xpixt), t>1

and the parameter perturbation portion is:

Afi(x12, 1) = e sint,
Afa(xsn, t) = arcsin(2t),

Afr(x22,t) = sinxy;.
Af3(x32, 1) = cos(3t).

5442

Select c; = 15, then s = 15e 4+ e — 15p(t) — p(¢)

i+ sio = (2 gy g+ i)
[ (4 — € — (—=e€ —= € —€
0+ €0+ 5o 7360 1 730+ 55¢0
+ (730 + 7xé0 + F:éo)ﬁ
p(t) = 6 3. 5
—(Feo+F60+ﬁ60)t, 0<tr<T
0, t>T

According to Equation (14), the control laws are obtained:

1 15 .. . 5
uy = —m[lSX]z—Z(T +P)—11X12
1. .
+(F1+ D1+ nsgn(s) — (17 +p)]
! [15 15(T*+1'3) 25
up = ——[15x — — - —X
2T T TR T e 2

1 ..
+ (F2 + D2 + m) sgn(s) — Z(T* + Pl
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1 15 .. - 3
uz = —m[15X32 — Z(T + P) — 18x3,
|
+(F3 + D3 + m3) sgn(s) — (1" + )]
1 15 . .
w = =150 — (0 4 P) = 1101+
|
+ (F4 + D4 + 14) sgn(s) — Z(T* + )]

Let the external perturbation upper bounds be
D1 = 50, D, = 30,D3 = 40, D4 = 50 and the parameter
perturbation upper bounds be F; = 1(i = 1, 2, 3, 4).Using the
saturation function instead of the actual switching function,
let the boundary layer thickness be § = 0.02, the initial
system conditions be x; = [0.15,0],x, = [0.05,0],x3 =
[0.4, 0], x4 = [0.25, 0] and the terminal time be T=2.0.

Case 1: the reference trajectory is a constant value,

=100

Figure 2 shows the output waveform of the control law
for the four systems. The figure shows that after replacing
the symbol function with the saturation function, the control
signal is softened to some extent, and the chattering ampli-
tude is very small. Figure 3(a) shows the waveform of the
output state variables for every system. Figure 3(b) shows the
waveform of the output tracking error. It is clear from Fig 3(b)
that the terminal sliding-mode control technique can make the
output tracking error converge to zero within a finite time T.
Fig 4 shows that the sum of each individual state converges
to given value is 18s under linear switching function.

Case 2: The reference trajectory is a time-varying value,
Ty = 100sin(r 4 pi/2)

When the output waveform of the TASC controller shown
in Figure 5 is compared with that of the tracking error in
case 1, when the reference trajectory is a time-varying value
T; = 100sin(t + pi/2),the controller also shows good
tracking performance. For t=1.75 s, the tracking error is in the
range of engineering error, and the tracking error converges
to zero at t=2 s, as shown in Figure 6. Figure 7 shows that the
convergence time of the linear switch function is 18 s. More-
over, the terminal sliding-mode control technique suppresses
the influence of uncertainties such as external disturbances
and parameter perturbations on the system.

VI. CONCLUSION

This paper presents a method that extends the synchronous
problem of individual states such as position and velocity
to the synchronous consistent problem of state total amount.
The problem of maintaining constant the sum of the output
state variables of n regular nonlinear systems with parame-
ter perturbations and external disturbances is discussed. The
research idea is to convert the total-amount synchronization
problem into a system finite-time convergence problem. In
combination with a terminal sliding-mode control strategy, a
simple TASC controller is derived. The controller can guar-
antee that the system state is on the sliding-mode surface at
any time and that the output tracking error can converge to
zero within a finite time T. In addition, the convergence time
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can be selected as any expectation value during the design
process.
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