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ABSTRACT Underwater optical cameras are widely used for security monitoring in ocean, such as
earthquake prediction and tsunami alarming. Optical cameras recognize objects for autonomous under-
water vehicles and provide security protection for sea-floor networks. However, there are many issues
for underwater optical imaging, such as forward and backward scattering, light absorption, and sea snow.
Many underwater image processing techniques have been proposed to overcome these issues. Among these
techniques, the depth map gives important information for many applications of the post-processing. In this
paper, we propose a Kinect-based underwater depth map estimation method that uses a captured coarse depth
map by Kinect with the loss of depth information. To overcome the drawbacks of low accuracy of coarse
depth maps, we propose a corresponding reconstruction architecture that uses the underwater dual channels
prior dehazing model, weighted enhanced image mode filtering, and inpainting. Our proposed method
considers the influence of mud sediments in water and performs better than the traditional methods. The
experimental results demonstrated that, after inpainting, dehazing, and interpolation, our proposed method
can create high-accuracy depth maps.

INDEX TERMS Underwater Kinect camera, depth map, inpainting, local mode filtering.

I. INTRODUCTION
The ocean contains a large amount of resources, which will
be vital for the future of human life. Hydrothermal deposits
contain elements such as gold, silver, zinc, and lead, and
exist at about 200 locations around Japan. These deposits
have been estimated to be 750 million tons, with an esti-
mated 450 million tons in Japan’s Exclusive Economic Zone.
There is estimated to be about 50,000 km2 of cobalt-rich
crust, amounting to 2.4 billion tons. Furthermore, there is
estimated 50,000 km2 of methane hydrates with a volume of
12.6× 1012 m3. This amount of minerals could last approxi-
mately 100 years in Japan [1].

All of these minerals need to be developed and ocean
mining machine monitoring systems are very important.

Monitoring system need to track the position of terrain around
mining machines and resources on the seabed. Sonar, laser,
and optical cameras are typically used to monitor underwa-
ter terrain. In recent years, sonar has been widely used to
map the terrain of the ocean. Sonar imaging [2] has many
benefits, such as allowing for long-range imaging and being
robust for turbid water. However, it is not suitable for short-
range imaging because it has low resolution and limited
color information. Laser imaging [3] is also widely used in
underwater scientific research. However, it relies heavily on
system configuration and is hard to equip inminingmachines.
Therefore, optical cameras [4]may be the only suitable option
for underwater short-range imaging equipment. However, it is
difficult to use the camera for security monitoring during
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the machine mining systems operation [53], [54]. We briefly
introduce the above three types of underwater imaging in the
following.

A. SONAR IMAGING SYSTEM
Sonograms [2] are formed by sonar imaging devices, which
emit beam pulses to the sea floor. Sonar beams are narrow at
the sending device and are wide when they reach their targets.
Sonar imaging devices receive acoustic reflections from the
ocean floor. As the sonar beam moves, reflections depict a
series of lines in the direction of movement. Then the device
stitches beam lines to form a single image of the targeted
objects. This sonar imaging process is time consuming and
only distance information is used for imaging, which causes
the loss of 3D information of the object.

B. LASER IMAGING SYSTEM
Range-gated or time-gated laser imaging is a method used
to improve image quality and visibility in turbid conditions.
In range-gated laser imaging systems, the camera is adja-
cent to the light source, whereas the underwater target is
behind the scatteringmedium [5]. Range-gated systems select
reflected light from the object arriving at the camera and
block optical back-scatter light [6]. Range-gated systems
include a broad-beam pulse illumination source, a high speed
camera, and a synchronization gate duration control [6].
Tan et al. [5] presented a sample plot of range-gated imaging
timing. Laser imaging systems capture grayscale images only,
as the color information is missed. Also, lasers are affected by
strong scattering and absorption in highly turbid water.

C. OPTICAL CAMERA SYSTEM
Optical imaging sensors [4] can provide a great deal of high
speed information. They are commonly used in many terres-
trial and airborne robotic applications. However, the interac-
tion between electromagnetic waves and water means that
optical imaging and vision systems need to be specifically
designed for use in underwater environment.

Underwater images have specific characteristics that
should be considered during collection and processing. Light
attenuation and scattering, non-uniform lighting, shadows,
color distortion, and suspended particles or abundance of
marine life near the target are frequently found in typical
underwater scenes.

One effect of the inherent optical properties of the ocean
is that it becomes darker with depth because as water
depth increases, the sunlight is absorbed and scattered. For
example, euphotic depth is less than 200 meters in clean
ocean water. In addition, the spectral composition of sunlight
also changes with water depth. Long wavelengths (red color)
have larger absorption than short (blue or green color) wave-
lengths. Therefore, most underwater images taken under nat-
ural light (sunlight) will appear blue or green. Consequently,
additional illumination is required in deep or turbid water.

Above all, optical cameras have various features and
advantages. However, it is difficult to recover time variations

adverse to visibility in the presence of floating turbidity
sediments. In this paper, we propose a Kinect-based under-
water optical imaging method. The underwater dark channel
used prior to descattering. At the same time, we use inpainting
to refine depth maps. Finally, depth maps are super-resolved
using weight enhanced image mode filtering.

II. RELATED WORK
The challenge of acquiring high-quality depth information
in real-world environment is an important computer vision
task. Depth information or depth map estimation methods
can be categorized as active or passive. Passive methods
use cameras to capture images and learning algorithms to
recover visual depth information [7]. Passive methods suffer
from some issues for practical applications. For example, they
require strict image reflection and are inefficient for texture-
less objects. On the other hand, active approaches, such as
structured light sensors and time-of-flight (ToF) cameras are
subject to errors, such as noise, ambiguity, scattering, and
motion blurring [8]. In the following, we give a survey of the
most related work.

A. PASSIVE METHODS
1) SINGLE MONOCULAR IMAGE-BASED DEPTH ESTIMATION
Traditional single image-based methods use Markov ran-
dom field (MRF) techniques to learn depth information.
Saxena et al. [9] used discriminatively trained global and
local image features to model individual depth points and the
relationship between depths and neighbors. Liu et al. [10]
performed a semantic segmentation of images and used
semantic labels to determine the depth. Girshick et al. [11]
presented a regions with convolutional neural network
(R-CNN) features method for estimating depth information.
Liu et al. [12] proposed a deep continuous conditional ran-
dom fields (CRF) model to combine adjacent superpixels.
Inspired by [12], Liu et al. [13] presented a deep convolu-
tional neural field model for estimating the depth map by
considering the capacities of CNN and CRF. He et al. [14]
analyzed numerous natural sky images and determined that
most color images contain a dark channel. Based on this find-
ing, they proposed using a dark channel for depth estimation.
However, most single image-based depth estimation methods
are time consuming.

2) STEREO IMAGE-BASED DEPTH ESTIMATION
Many stereo image-based depth estimation methods have
been proposed over the past few decades. Stereo image-based
depth estimation algorithms can be generally grouped into
either global or local approaches. Global-based approaches
treat depth assignment as a problem of minimizing the global
energy function for all disparity values. Salmen et al. [15]
introduced a modified dynamic programing algorithm for
calculating depth maps from stereo images. Perez and
Sanchez [16] proposed an extended belief propagation algo-
rithm that had good immersive feeling. Wang et al. [17]
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proposed a hierarchical bilateral disparity structure algorithm
for improving graph cuts without any loss to depth maps.

In contrast, local-based approaches are also known as
window-based approaches. They calculate depth at a given
pixel within a predefined support window. These methods
include matching cost computation, cost aggregation, dis-
parity selection, and disparity refinement steps. Winner take
all (WTA) optimization is usually used for disparity selec-
tion. Lee et al. [18] used a three-mode cross census for
WTA optimization. Matsuo et al. [19] proposed a local-based
approach that used absolute differences and the Sobel oper-
ator in matching cost, and then used box filtering with WTA
and joint bilateral filters for refinement. Werner et al. [20]
used a normalized cross correlation algorithm to compute
matching cost, WTA optimization for disparity selection, and
cross bilateral filters for refinement.

3) MULTIPLE IMAGES-BASED DEPTH ESTIMATION
Multiple-image-based depth estimation is widely used in
photometric stereo or other applications. Tsiotsios et al. [21]
proposed an occlusion-aware depth estimation algorithm for
light-field camera-based multiple image depth estimation.
This method can capture sharp object boundaries correctly.
Wang et al. [22] proposed a taking a three-lighted image from
turbid water and recovering the scene as well as removing
scattering.

B. ACTIVE METHODS
There are generally three types of depth cameras: LiDAR
cameras, structured-light based cameras (e.g., Kinect), and
ToF cameras. We review these cameras and related depth
refinement methods.

1) LiDAR
Furukawa and Ponce [23] proposed an algorithm for cal-
ibrating multi-view stereopsis and outputting high-quality
depth maps. Strecha et al. [24] proposed a partial dif-
ferential equation-based formulation to refine high- and
low-resolution LiDAR depth information. Chen et al. [25]
introduced a self-adaptive method to upsample LiDAR point-
projected sparse depth maps. Bevilacqua et al. [26] used
a primal-dual optimization method to estimate a complete
depth map using image gradients and visibility indicators.

2) KINECT DEPTH CAMERAS
A depth map captured by Kinect has random depth
information missing because of occlusions. Berdnikov
and Vatolin [27] proposed a deepest neighbor method and a
spatial interpolation method to solve the problem of miss-
ing depth information due to occlusions. Maimone and
Fuchs [28] investigated a two-pass median filter with a non-
fixed window to fill missing depth. Matyunin et al. [29]
proposed a simple temporal filtering algorithm for depth
restoration. Dakkak and Husain [30] devised an iterative dif-
fusion method to merge the RGBD segmented regions of the
depth map. Camplani and Salgado [31] proposed using a joint

bilateral filter to remove noise and recover depth values in
the temporal domain. Yu et al. [32] introduced a shape-from-
shading method to refine noisy depth maps. Lee and Ho [33]
proposed an image inpainting method to fill missing depth
map information. Yang et al. [34] used an adaptive autore-
gressive model to recover colored depth maps. Li et al. [35]
proposed a fast global smoothing technique for global depth
map interpolation.

3) ToF DEPTH CAMERAS
ToF camera-based depth map refinement methods can
be divided into two categories: MRF-based methods and
advanced filtering methods. Diebel and Thrun [36] used a
two-layer MRF method to model the correlation of range
measurements and refine the depth map using the conjugate
gradient method. Huhle et al. [37] proposed a third-layer
MRF to improve the depth map. Garro et al. [38] proposed
a graph-based segmentation method to interpolate missing
depth information. Yang et al. [39] proposed a hierarchical
joint bilateral filtering method for depth map upsampling.
Zhu et al. [40] designed a dynamic MRF for improving depth
map spatial and temporal accuracy. He et al. [41] proposed a
guided image filter to smooth depth information with a refer-
ence image. Lu et al. [42] incorporated amplitude values of a
ToF camera and designed a data term to fit the characteristics
of a depth map. Park et al. [43] considered the use of a non-
local term andweighted color image filtering to recover depth
information. Aodha et al. [44] used a generic database of
local patches to increase depth map resolution. Min et al. [45]
proposed a weightedmode filteringmethod to modify a depth
map histogram. Lu et al. [46] proposed a local multipoint
regression method to estimate the depth information of each
point. Ferstl et al. [47] used an anisotropic diffusion tensor
obtained from a reference image. Liu et al. [48] investi-
gated geodesic distance to compute the filtering coefficient of
similar pixels.

III. DEPTH MAP ENHANCEMENT ARCHITECTURE
In this paper, we propose the following pipeline for underwa-
ter depth map refinement shown in Figure 1.We remove color
image and inpainting processing scattering from the depth
maps. So, we use the processed color image and depth map
to create an unsampling depth map. We discuss the steps of
our proposed method in detail in the following.

A. GUIDED IMAGE DESCATTERING
Traditional guided-image depth map refinement requires
high-quality images, but underwater images are highly dis-
torted by turbidity. To this end, we propose an underwater
imaging model that follows a standard attenuation model
to accommodate wavelength attenuation coefficients. In this
paper, we adopted a modified Jaffe-McGlamery model,
[49] which has been estimated as a description of water’s
absorption effects on an observer. For underwater imaging,
observed irradiance is linear and is attenuated in the route of
sight and by scattered ambient light as depicted in Figure 1.
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FIGURE 1. Pipeline of proposed approach for obtaining a noise-free depth map.

Therefore, a modified Jaffe-McGlamery model suits under-
water lighting conditions.

The modified Jaffe-McGlamery model can be written as

Y (i) = X (i)e−kd(i) + ρ · X (i)(1− e−kd(i)), (1)

where X (i) is the real scene at pixel i of the related captured
image Y , ρ is the normalized radiance of a scene point, d is
the distance from the scene point to the camera, and k is
the total beam attenuation coefficient, which is nonlinear and
wavelength-dependent. In most highly turbid water, the value
of k is usually chosen to be 0.78.

During our previous experiments, we found that the lowest
pixel value of RGB channels in turbid water is not always the
red color channel. Sometimes the blue color channel is the
lowest. Consequently, we only need to take the dual-channel
(red and blue) to compute a coarse depth map.

Our method is based on [50], where the depth map is
initialized using an underwater median dual channel prior
(UMDCP). As mentioned before, we can estimate the coarse
depth map d̃(x) as:

d̃(i) = median
�(m,n)

(
min
c∈{r,b}

Yc(i)
ρX (i)

)
(2)

where � is a 7×7 pixels sliding window. For each pixel
located at (m, n) of the sliding window �, the lower value
from the red and blue color channels is chosen. The pro-
posed method can prevent a halo effect around occlusion
boundaries.

Accordingly, the refined coarse depth map is obtained by

d(i) = 1− τ d̃(i) (3)

where τ = 0.98 for most scenes. Then, an enhanced image
can be obtained by:

X (i) =
Y (i)− ρX (i)
max (d(i), d0)

+ ρX (i) (4)

where d0 usually is equal to 0.1.

B. COARSE DEPTH MAP INPAINTING
During our experiments, we found that there are some occur-
rences of missing depth information in images obtained by
Kinect. Image inpainting [51] as a powerful tool for filling the
lost information. In this section, we explain the mathematical
model of inpainting method in this article. Given a small
enough missing area ε, the first order approximation dq(p)

of the inpainted coarse depth map in pixel p, the coarse depth
map d(q), and gradient∇d(q) values of pixel q, the inpainting
model can be expressed as:

dq(p) = d(q)+∇d(q)(p− q) (5)

Next, we inpaint the pixel p as a function of all pixels q in the
neighborhood Bε(p) by summing the estimates of all pixels q.
We calculated the inpainted coarse depth map by adding a
normalized weighting function ω(p, q) as:

d(p) =

∑
q∈Bε(p) ω(p, q)[d(q)+∇d(q)(p− q)]∑

q∈Bε(p) ω(p, q)
(6)

The weighted function ω(p, q) is defined as:

dir(p, q) =
p− q
||p− q||

· N (p) (7)

dst(p, q) =
d20

||p− q||2
(8)

lev(p, q) =
T0

1+ ||T (p)− T (q)||
(9)

ω(p, q) = dir(p, q) · dst(p, q) · lev(p, q) (10)

where T is the distance map of the pixels in the region to
be inpainted. N (p) is the gradient T at the pixel p. The terms
dst and levmeasure reference distances d0 and T0. In practice,
d0 and T0 are usually set to 1. To iteratively apply Eq. (6) to
all the losing pixels in the coarse depth map.

C. FINE DEPTH MAP ESTIAMTION
The coarse depth map is repaired after inpainting; however,
the small-scaled coarse depth map needs to be enlarged to
match the high-resolution color image. In this paper, we
propose a weighted enhanced image mode filter to refine
the enlarged depth map after interpolation. The relaxed his-
togram H (p,j) at reference pixel p and the j-th bin can be
defined as:

H (p, j) =
∑

q∈M (p)

Gr (j− d(q)) (11)

where Gr is a Gaussian function andM (p) is the neighboring
pixels around the pixel p. The local histogram HL(p,j) is
defined as:

HL(p, j) =
∑

q∈M (p)

Gr (j− d(q))GS (p− q) (12)
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FIGURE 2. Side-view of the experimental setting.

FIGURE 3. Experimental result of scatter removal. (a) Input image;
(b) Image after descattering.

where GS is the spatial Gaussian function. Finally, the global
mode of the histogram HG(p,j) for the weighted enhanced
image mode is generated by

HG(p, j) =
∑

q∈M (p)

GI (X (p)− X (q))GS (p− q)Gr (j− d(q))

(13)

where GI is a weighted function of enhanced image X (p)
different from the coarse interpolated depth map d(p) to be
filtered.

IV. EXPERIMENTAL RESULTS
In this paper, we used Kinect for Windows [52] and took
images of an object in a water tank. The equipment setting

FIGURE 4. Experimental result of inpainting. (a) Captured depth map;
(b) After inpainting.

FIGURE 5. Comparison of the experimental results. (a) Interpolation;
(b) Proposed method.

is shown in Figure 2. We set the Kinect on the top of the
water tank. There were two bricks, a milk bottle and a
Chinese-style cup lid on the water tank. In the experiment,
we added a lot of deep-sea soil to the water tank. As shown in
Figure 3(a), the captured color image contains many noise
and scatter. The result of after descattering is shown in
Figure 3(b), and the inpainting result is shown in Figure 4(b).
From Figure 4(a), we found that the captured depth map
contains depth information missing. The boundaries of two
bricks and Chinese-style cup are missing. Hence, inpaint-
ing was adopted into these coarse depth map to complete
the depth information. Next, the weighted enhanced image
mode filtering was used to upsample the final depth map in
Figure 5. Other depth reconstruction experiments are shown
in Figure 6. We can conclude that the proposed method
performs well to recover the color image and the depth map.
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FIGURE 6. Experimental results of underwater depth map reconstruction.

V. CONCLUSIONS
In this paper, we have solved the issue of the occlusion under-
water depth map using Kinect. The issue is caused by relative
displacement of the projector and camera. We considered an
approach different from traditional depth recoverymethods to
recover the high-resolution depth map using images captured
in turbid water. Experimental results in real-world scenes
show that our method outperforms existing conventional
methods, and is suitable for restoring underwater image depth
information. In the future, we will do a three-dimensional
restoration of the sea floor as well as descattering of heavily
scattered images.
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