
Received February 12, 2017, accepted March 10, 2017, date of publication April 4, 2017, date of current version May 17, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2690672

Narrowing Support Searching Range in
Maintaining Arc Consistency for Solving
Constraint Satisfaction Problems
HONGBO LI
School of Computer Science and Information Technology, Northeast Normal University, Changchun 130117, China

Corresponding author: H. Li (lihb905@nenu.edu.cn)

This work was supported ìn part by the Fundamental Research Funds for the Central Universities under Grant 2412016KJ034, in part by
the Education Department of Jilin Province under Project JJKH20170911KJ, and in part by the Key Laboratory of Symbolic Computation
and Knowledge Engineering, Jilin University, Ministry of Education of China.

ABSTRACT Arc consistency is the most popular filtering technique for solving constraint satisfaction
problems. Constraint check plays a central role in establishing arc consistency. In this paper, we propose
a method to save constraint checks in maintaining coarse-grained arc consistency during backtracking
search for solving the constraint satisfaction problems. We reduce the support searching range by utilizing
the information generated by an AC3.1 algorithm at preprocessing step. Compared with the existing
maintaining arc consistency (MAC) algorithms, the proposed MAC3be algorithm saves constraint checks
without maintaining additional data structures at each search tree node. Our experimental results show that
MAC3be saves both constraint checks and CPU time while solving some benchmark problems.

INDEX TERMS Constraint satisfaction problem, constraint propagation, arc consistency, residue support.

I. INTRODUCTION
Constraint satisfaction problems (CSPs) have been widely
used in artificial intelligence, operations research and other
areas of computer science. Finding a solution in a CSP is
NP-hard. Backtracking search is usually used to solve CSPs.
Exploring the whole space of instantiations is of course too
expensive, so some filtering techniques pruning values from
domains to reduce search space are integrated in backtrack-
ing search, such as arc consistency (AC), max restricted
path consistency (maxRPC) [2]–[4], restricted path consis-
tency (RPC) [5]. Besides, filtering techniques have also been
used in quantified CSP [6]–[9] which is a generalization of
the CSP that can be used to model combinatorial problems
containing contingency or uncertainty.

AC is the most popular filtering technique used in solving
constraint satisfaction problems. Maintaining arc consistency
algorithm (MAC) [10], [11], maintains AC during backtrack-
ing search, is the most popular technique to solve large and
hard CSPs. A number of AC algorithms have been proposed
in the past 30 years. These algorithms are classified into the
fine-grained and the coarse-grained. The former [12]–[14]
are based on a value-oriented propagation scheme and the
latter [1], [15]–[17] are based on a constraint-oriented propa-
gation scheme. Constraint check plays a central role in estab-
lishing arc consistency. The fine-grained algorithms use more

elaborate data structures to avoid useless constraint checks.
These data structures need to be maintained during search,
in other words, they need to be stored and restored at each
search tree node in order to cope with backtracking. It has
been recognized that an efficient MAC algorithm usually
has two features: (1) the AC algorithm it uses is efficient,
(2) it maintains few data structure during search. We use
MACN to denote a MAC algorithm uses ACN algorithm.
The AC3 algorithms are universal coarse-grained algorithms.
The AC3 family usually maintain few data structure during
search, so they are more popular when being used in MAC.
The original AC3 [1] algorithm has the worst-case time
complexity O(ed3) where e is the number of constraints and
d is the maximum variable domain size. By recording last
supports, the AC3.1 [15] algorithm avoids some repeated
constraint checks and has an optimal worst-case time com-
plexity O(ed2). However, MAC3.1 is inefficient due to main-
taining its additional data structure last during search. The
AC3rm algorithm [17] improves AC3 by making use of multi-
directional residue supports. MAC3rm maintains as few data
structure as MAC3. It has been considered as the most effi-
cient universal MAC algorithm. Although saving constraint
checks does not always save time [18], it is still important
to save constraint checks in MAC algorithms when the costs
of constraint checks are relatively expensive. Besides these

5798
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017

H. Li: Narrowing Support Searching Range in MAC for Solving CSPs

generic algorithms, some efficient AC algorithms designed
for specific constraints have been developed, such as exten-
sional constraints enumerating all tuples allowed or disal-
lowed by the constraints [19]–[23].

In this paper, we propose a method to save constraint
checks in coarse-grained MAC algorithms. The new algo-
rithm, namedMAC3be, saves constraint checkswithoutmain-
taining additional data structure. The idea is making use of
the information generated by AC3.1 at preprocessing step to
narrow the support searching range of the variable domains
at each search tree node. We use AC3.1 to find the begin-
ning support and end support for each value. The values
before beginning support and after end support will not be
checked, so the scopes of finding supports are reduced. The
experiments were run on some random, academic, patterned
and real-world instances. The results have shown that, com-
pared with the classical MAC3rm and MAC3rm2 algorithms,
MAC3be saves a number of constraint checks. When the con-
straint checks are relatively expensive, it saves up to 3 times
cpu time.

This paper is organized as follows. Section 2 provides some
technical background about constraint satisfaction problem
and AC3 algorithm frame. Section 3 recalls the details of
AC3.1 and AC3rm. The new algorithm is introduced in
Section 4. The related works are discussed in Section 5. The
experimental results and the analysis are in Section 6. Finally,
Section 7 is conclusion.

II. BACKGROUND
A constraint satisfaction problem (CSP) P is a triple
P = 〈X ,D,C〉 where X is a set of n variables
X = {x1, x2 . . . xn}, D is a set of domains D =

{dom(x1), dom(x2) . . . dom(xn)} where dom(xi) is a finite set
of possible values for variable xi, C is a set of e constraints
C = {c1, c2 . . . ce}. A constraint c consists of two parts,
an ordered set of variables scp(c) = {xi1, xi2 . . . xir } and a
subset of the Cartesian product dom(xi1)× dom(xi2)× . . .×
dom(xir) that specifies the allowed (or disallowed) combina-
tions of values for the variables {xi1, xi2 . . . xir }. An element
of dom(xi1)× dom(xi2)× . . .× dom(xir) is called a tuple on
scp(c), denoted by τ . Verifying if a given tuple is allowed by
a constraint is called a constraint check. |scp(c)| is the arity
of c. We focus on binary constraints in this work. cij denotes
a constraint involving variables xi and xj. (xi, a) denotes
the value a for variable xi. The pair of a variable xi and a
constraint cij involving xi is called an arc, denoted by (xi, cij).
nil is defined as a value not belonging to any domain.
Definition 1 (Arc Consistency [1]): Given a CSP P =

〈X ,D,C〉, an arc (xi, cij) is consistent iff ∀ (xi, a) ∈ dom(xi),
there exists a value (xj, b) ∈ dom(xj) such that (a, b) satisfies
cij. P is arc consistent iff ∀ xi ∈ X, dom(xi) is not empty and
every arc in P is consistent. (xj, b) is called a support for (xi, a)
in constraint cij.

To establish arc consistency in a CSP, AC algorithms seek
supports for every value (xi, a) in the constraints involving
xi and remove those values without any support on these

constraints. If the domain of a variable is empty, AC fails. The
AC3 algorithms iterate over the domain of xj to seek a support
for a value (xi, a) on constraint cij. The MAC algorithms
build up a search tree from level 0 to level n, where n is the
number of variables. At level 0, arc consistency is established
in the problem for preprocessing. After that, at each node
of the search tree, one variable xi and a value a in dom(xi)
are selected and an AC algorithm is used to propagate the
assignment AC(xi = a). If the propagation fails, a dead-end
is reached and a backtracking occurs, otherwise, MAC goes
to next level.

The AC3 algorithm frame is recalled in Algorithm 1 and
Algorithm 2. The propagation queue stores all the arcs that
need to be revised. At the preprocessing phase, initializing
Q adds all arcs in the problem into Q. At the searching
phase, initializing Q adds only the arcs related to current
assignment into Q. The algorithm removes and revises the
arcs in Q one by one until Q is empty or a domain wipes
out. The revise(xi, cij) procedure removes every value without
a support from dom(xi). If no value is removed, it returns
false, otherwise true. In Algorithm 1, if the revise procedure
removes some value, the affected arcs will be added into Q at
lines 8 and 9. In this frame, the difference among AC3-based
algorithms is how to seek support for values. If no support is
found, the seekSupport procedures return nil, otherwise they
return the support.

Algorithm 1 AC3
1: initialize Q;
2: while Q is not empty do
3: select and remove an arc (xi, cij) from Q;
4: if revise(xi, cij) then
5: if dom(xi) = ∅ then
6: return fail;
7: else
8: for each constraint cik such that k 6= j do
9: Q← Q

⋃
(xk , cik);

10: return success;

Algorithm 2 Revise(xi, cij)
1: change← false;
2: for each value (xi, a) ∈ dom(xi) do
3: if seekSupport(xi, a, cij) = nil then
4: remove a from dom(xi);
5: change← true;
6: return change;

III. THE EXISTING ALGORITHMS: AC3.1 AND AC3rm
In this section, we recall the two algorithms, AC3.1 and
AC3rm, which are most related to our method. Both them are
based on the AC3 frame. We introduce the details of the seek-
ing support procedures of the two algorithms in Algorithm 3
and Algorithm 4 respectively.

VOLUME 5, 2017 5799

H. Li: Narrowing Support Searching Range in MAC for Solving CSPs

AC3.1 associates each dom(xi) with a total ordering.
According to the ordering, the function head(xi) returns
the first value in dom(xi), tail(xi) returns the last value in
dom(xi), next(a, dom(xi)) returns the first value in dom(xi)
that is after a. next(tail(xi), dom(xi)) returns nil and next(nil,
dom(xi)) returns head(xi).
A data structure last(xi, a, cij) stores the last support

of (xi, a) in constraint cij. Each last(xi, a, cij) is initialized to
nil. When seeking a support for (xi, a) in cij, if last(xi, a, cij)
is still in dom(xj), it returns the last support, otherwise it
searches for a new support from last(xi, a, cij) to tail(xi).
If a new support (xj, b) is found, last(xi, a, cij) is updated
by (xj, b), otherwise, (xi, a) is removed from dom(xi). The
data structure last(xi, a, cij) ensures that every value (xj, c)
before last(xi, a, cij) is not a support of (xi, a) in constraint
cij, because either (xj, c) has been removed from dom(xj) or
(a, c) does not satisfy cij. Therefore, we have the following
straight-forward property.
Property 1: After applying AC3.1 to a CSP P at prepro-

cessing step, all the values before last(xi, a, cij) in dom(xj)
will never be a support of (xi, a) in cij.
When maintaining AC3.1 during search, in order to cope

with backtracking, every last(xi, a, cij) needs to be recorded
before each propagation and restored after each failure.
Maintaining the data structure last at each node costs O(ed)
time. This reduces the efficiency of MAC3.1.

Algorithm 3 seekSupport3.1(xi, a, cij)
1: b← last(xi, a, cij);
2: if b /∈ dom(xj) then
3: b← next(b, dom(xj));
4: while b 6= nil do
5: if (a, b) satisfies cij then
6: last(xi, a, cij)← b;
7: return b;
8: else
9: b← next(b, dom(xj));

10: return b;

TheAC3rm algorithm uses a data structure residue(xi, a, cij),
initialized to nil, to record the most recent support of (xi, a)
in cij. The residue support technique was first introduced
in [24]. Different from AC3.1, once the residue support
has been removed, AC3rm searches for a new support
from head(xi) to tail(xi). We can see that from line 3 of
Algorithm 4. Therefore, residue(xi, a, cij) does not need to be
maintained during search. Besides residue support technique,
AC3rm further explores multi-directional technique which is
based on the fact that if (xj, b) is a support of (xi, a) in cij,
then (xi, a) is also a support of (xj, b) in cij. The technique is
implemented at lines 6 and 7 of Algorithm 4.

IV. THE NEW ALGORITHM: AC3be
The time complexity of storing or restoring the data structure
last at each search tree node is O(ed). Maintaining the data

Algorithm 4 seekSupportrm(xi, a, cij)
1: if residue(xi, a, cij) ∈ dom(xj) then
2: return residue(xi, a, cij);
3: b← head(xj);
4: while b 6= nil do
5: if (a, b) satisfies cij then
6: residue(xi, a, cij)← b;
7: residue(xj, b, cij)← a;
8: return b;
9: else
10: b← next(b, dom(xj));
11: return b;

structure makes MAC3.1 less efficient. An alternative way
to this problem is not to record the last data structure before
propagation and re-initialize each last(xi, a, cij) to nil after
each failure. This strategy reduces the cost of maintaining the
data structure, but increases the number of constraint checks
for seeking supports. Our aim is to reduce constraint checks
without maintaining the data structure last.
We introduce a strategy narrowing the support search-

ing scope without maintaining additional data structures.
AC3.1 is employed at preprocessing phase and after it is
done, we record last(xi, a, cij) in a new data structure
beginning(xi, a, cij). According to Property 1, every value
before beginning(xi, a, cij) will never be a support for (xi, a)
in cij, so if we do not use last during search, we can search for
a new support from beginning(xi, a, cij) to tail(xj) instead of
searching from head(xj) to tail(xj). Note that the data structure
beginning is copied from the data structure last and it is fixed
after that, so it is not maintained during search.

The AC3.1 algorithm searches for a support in the direction
that from head(xj) to tail(xj), then it finds the new beginning
of support searching scope. On the other hand, if we modify
AC3.1 and run it in the other direction that from tail(xj) to
head(xj), it will find a new end of support searching range.
We use end(xi, a, cij) to record the new end of support
searching scope. Similar to beginning(xi, a, cij), all the values
after end(xi, a, cij) will not be a support for (xi, a) in cij.
The new algorithm, named AC3be, runs AC3.1 in both

directions at the preprocessing step and generates both begin-
ning and end data structures. When seeking for a support,
it searches from beginning(xi, a, cij) to end(xi, a, cij). The new
algorithm narrows the support searching scope at both sides
and maintains no additional data structure during search. The
only incremental part is that it runs additional AC3.1 at pre-
processing step. It is worth running that when solving some
hard instances which need a number of branches, because
AC3be benefits from the data structure end at each search
tree node. Besides, the multi-directional residue supports
can be easily integrated into AC3be, because the data struc-
ture residue is independent to beginning and end. AC3be is
designed for being maintained during search, so we eliminate
the preprocessing part which can be easily generated from
AC3.1 and present the seekSupport procedure of AC3be in

5800 VOLUME 5, 2017

H. Li: Narrowing Support Searching Range in MAC for Solving CSPs

Algorithm 5. It is obvious that both beginning(xi, a, cij) and
end(xi, a, cij) are residue supports of (xi, a), so we check if
they are still in dom(xj) before searching for a new support
at lines 3 to 6. Narrowing the support searching scope is
implemented at lines 7 and 8.

Algorithm 5 seekSupportbe(xi, a, cij)
1: if residue(xi, a, cij) ∈ dom(xj) then
2: return residue(xi, a, cij);
3: if beginning(xi, a, cij) ∈ dom(xj) then
4: return beginning(xi, a, cij);
5: if end(xi, a, cij) ∈ dom(xj) then
6: return end(xi, a, cij);
7: b← next(beginning(xi, a, cij), dom(xj));
8: while b is not after end(xi, a, cij) do
9: if (a, b) satisfies cij then
10: residue(xi, a, cij)← b;
11: residue(xj, b, cij)← a;
12: return b;
13: else
14: b← next(b, dom(xj));
15: return b;

Proposition 1: The worst case time complexity of AC3be is
O(ed3) with space complexity O(ed).

Proof: Although AC3be narrows the support searching
scope, it still checks d values to find a support in the worst
case, so the seekSupportbe procedure needs O(d) time. From
Algorithm 2, we can see that seekSupportbe is called at most
d times in each revise procedure. From Algorithm 1, we can
see that each arc (xi, cij) will be revised at most d times,
because at most d-1 values is removed from dom(xj) and each
removal leads to a revision of arc (xi, cij). We have 2e arcs in
total, so the worst case time complexity of AC3be is O(ed3).
The space complexity of AC3be is bounded by the data

structures residue, beginning and end. In each arc (xi, cij),
we have one residue support for each of the d values in
dom(xi), so the data structure residue costs 2ed space. The
other two data structures have the same space cost as residue.
Therefore, the space complexity of AC3be is O(ed). �
We summarize the differences among the data structures

mentioned in the paper.
• last(xi, a, cij): It stores the latest support for (xi, a) in cij

and needs to bemaintained during search.When it is removed
from dom(xj), AC3.1 searches for a new support from last to
tail(xj).
• residue(xi, a, cij): It stores the residue support for (xi, a)

in cij and does not need to be maintained during search.When
it is removed from dom(xj), AC3rm searches for a new support
from head(xj) to tail(xj).
• beginning(xi, a, cij): It stores the first value that is a

support for (xi, a). Every value before beginning is not a
support for (xi, a). When residue, beginning and end are all
removed from dom(xj), AC3be searches for a new support
from beginning to end.

TABLE 1. Comparison of AC3 algorithm.

• end(xi, a, cij): It stores the last value that is a support for
(xi, a). Every value after end is not a support for (xi, a).

V. RELATED WORKS AND DISCUSSION
The most related algorithms, AC3.1 and AC3rm have been
introduced in section 3. We discuss other coarse-grained AC
algorithms in this section.
• The original AC3 algorithm does not need any of the data

structures mentioned in this paper. If we remove lines 1, 2, 6
and 7 of Algorithm 4, we have the seeking support procedure
of AC3.
• The AC3r [24] algorithm is the first one that uses residue

supports in original AC3 algorithm, which are not main-
tained during search. It is a simple and effective improvement
of AC3. AC3rm makes use of multi-directionality in AC3r .
If we remove line 7 of Algorithm 4, we have the seeking
support procedure of AC3r .
• Based on AC3rm, AC3rmk [25] stores k residue supports

for each (xi, a, cij). Before searching for a new support,
it checks whether any one of these k residues is still in
dom(xj). If none of them is, it searches for a new one and
add it to the residue support list. The list is implemented by
a FIFO queue with size k . When adding a new residue into
the list and the list is full, the earliest added residue will be
removed. AC3rm2 has been shown to save both CPU time and
constraint checks on some CSP instances.
• Exploring multi-directional residues in AC3.1, the

AC3.2 [16] algorithm is considered as a combination of
AC3.1 and AC3rm. The comparison [17] between AC3.1,
AC3.2 and AC3rm shows that AC3.2 is more efficient than
AC3.1, but both them are outperformed by AC3rm due to the
heavy data structure being maintained.

Table 1 summarizes the differences between these coarse-
grained AC algorithms. last is whether the algorithm uses
data structure last and maintains it during search. residue is
whether the algorithm uses the residue support technique.
m-d is whether the algorithm uses the multi-directionality
technique. m-r is whether the algorithm uses the multiple
residue support technique. b-e is the new technique proposed
in this work, which searches for a support between beginning
and end.

VI. EXPERIMENTS
The experiments were run on a PC with Intel(R) Core(TM)
i5-3210M CPU @2.5GHz, 4GB RAM, JDK 1.7. We have
compared AC3be with AC3rm and AC3rm2 on some

VOLUME 5, 2017 5801

H. Li: Narrowing Support Searching Range in MAC for Solving CSPs

benchmark problems. The performance of maintaining these
AC algorithms for finding the first solution or proving unsat-
isfability is measured by CPU time (cpu) in seconds and
the number of constraint checks (cc). The variable ordering
heuristic is dom/wdeg [26] and value ordering is lexicograph-
ical. In the following tables, the integers in the brackets under
instance names are the number of tested instances in that
series. The best of each row is in bold. The AC3rm2 algorithm
is implemented with a static FIFO policy [25] and the later
added residues are checked earlier. The numbers of constraint
checks are present by kilo (K), million (M) and billion (B).
Timeout (out) is set to 1200 seconds. We eliminated the
instances where all algorithms are timeout.

TABLE 2. Results on random instances.

Table 2 lists the results of some random instances situated
at the phase transition [29] of search with different domain
sizes, different constraint densities and different constraint
tightness. For each class <n, d, e, t>, n is the variables
number, d is the domain size, e is the constraints number and
t is the constraint tightness. The constraints of these random
instances are defined in extension, so we generate the binary
constraints by matrices where constraint checks are cheap.
The results show that AC3be needs less constraint checks than
the others. AC3rm is the best one on these instances, although
its needs more constraint checks than the others. This is
because the implementations of AC3rm2 and AC3be are more
complicate than that of AC3rm, so the saving from constraint
checks can not overcome the loss from implementation.

Table 3 lists the results on Radio Link Frequency Assign-
ment Problem (RLFAP), Job-Shop problem and Queens-
Knights problem, which are benchmark instances from the
competition of constraint solvers.1

• The RLFAP is the task of assigning frequencies to a
number of radio links. More details can be found in [27].
• The Job-Shop problem is the task assigning jobs to

resources at particular times. More details can be found
in [28].
• The Queens-Knights problem is the task of putting on a

chessboard of size n× n, q queens and k knights such that no

1All these instances are downloaded from http://www.cril.univ-artois.fr/
~lecoutre/benchmarks.html.

TABLE 3. Results on real-world, patterned and academic problems.

two queens can attack each other and all knights form a cycle.
More details can be found in [26].

We present the average results and some representatives
results in Table 3. The constraints of these instances are
originally defined in intension. The cpu time is sensitive to the
cost of a constraint check, so we also convert the constraints
into matrices (offline). cpu1 is the time cost of the instances
with original form of constraints and cpu2 is the time cost
of the instances with matrix constraints. From the results, we
can see that AC3be saves a number of constraint checks over
the existing algorithms. When the constraints are in original
form, AC3be is the most efficient one in cpu time. When the
constraint checks are cheap, AC3rm is the best one on RLFAP
and Job-Shop problems. But on the Queens-Knight instances,
AC3be is the best even though the cost of a constraint check
is cheap.

We further investigated some representative instance to
explain why AC3be saves this number of constraint checks.
We found that some of the constraints in these instances are
highly structured. For instance, on the first constraint between
x0 and x1 of e0ddr1-10-by-5-1, the beginning supports for the
values in dom(x0) are 0, 1, 2, . . . , 106 respectively and the
end supports are all 106. The end supports for the values in
dom(x1) are 0, 1, 2, . . . , 106 respectively and the beginning
supports are all 0. Obviously, searching from the beginning
supports to the end supports on this constraint will save a
number of constraint checks than searching from 0 to 106.

In general, AC3be is not suggested to be used when the
constraint checks are cheap. Although its time complexity is
same to that of the existing algorithms, it saves a number of
constraint checks in practice, so it saves some cpu time when

5802 VOLUME 5, 2017

H. Li: Narrowing Support Searching Range in MAC for Solving CSPs

the constraint checks are relatively expensive. It saves up to
5 times constraint checks and up to 4 times cpu time.

VII. CONCLUSION
In this paper, we propose a new arc consistency algorithm,
AC3be, which is designed for beingmaintained during search.
MAC3be narrows the support searching range to save con-
straint checks without maintaining additional data structure.
Although the worst case time complexity and space com-
plexity of AC3be is same to that of AC3rm, the experimental
results show that while solving some benchmark instances,
AC3be saves a number of constraint checks in practice, so it
also saves some cpu time. When the constraint checks are
relatively expensive, it saves up to 4 times cpu time. It works
well on some instances with structured constraints.

Arc consistency is the foundation of other local consisten-
cies, such as maxRPC, RPC, singleton consistencies [31] and
max restricted pairwise consistency (maxRPWC) [30]. This
work shows AC3be avoids a number of redundant constraint
checks, so potentially, it may bring some improvements for
these consistencies where the check for a support is much
more expensive than AC.

REFERENCES
[1] A. K. Mackworth, ‘‘Consistency in networks of relations,’’ Artif. Intell.,

vol. 8, no. 1, pp. 99–118, 1977.
[2] T. Balafoutis, A. Paparrizou, K. Stergiou, and T. Walsh, ‘‘New algo-

rithms for max restricted path consistency,’’ Constraints, vol. 16, no. 4,
pp. 372–406, 2011.

[3] J. Guo, Z. Li, L. Zhang, and X. Geng, ‘‘MaxRPC algorithms based on
bitwise operations,’’ in Proc. 17th Int. Conf. Principles Pract. Constraint
Programm., 2011, pp. 373–384.

[4] J. Vion and R. Debruyne, ‘‘Light algorithms for maintaining max-RPC
during search,’’ in Proc. 8th Symp. Abstraction, Reformulation, Approx-
imation, 2009, pp. 167–174.

[5] K. Stergiou, ‘‘Restricted path consistency revisited,’’ in Proc. 21st Int.
Conf. Principles Pract. Constraint Programm., 2015, pp. 419–428.

[6] L. Bordeaux and E. Monfroy, ‘‘Beyond NP: Arc-consistency for quan-
tified constraints,’’ in Proc. 8th Int. Conf. Principles Pract. Constraint
Programm., 2002, pp. 371–386.

[7] P. Nightingale, ‘‘Consistency for quantified constraint satisfaction prob-
lems,’’ in Proc. 11th Int. Conf. Principles Pract. Constraint Programm.,
2005, pp. 792–796.

[8] L. Bordeaux, M. Cadoli, and T. Mancini, ‘‘Generalizing consistency and
other constraint properties to quantified constraints,’’ ACMTrans. Comput.
Logic, vol. 10, no. 3, p. 17, 2009.

[9] K. Stergiou, ‘‘Preprocessing quantified constraint satisfaction problems
with value reordering and directional arc and path consistency,’’ Int. J. Artif.
Intell. Tools, vol. 17, no. 2, pp. 321–337, 2008.

[10] C. Likitvivatanavong, Y. Zhang, S. Shannon, J. Bowen, and E. C. Freuder,
‘‘Arc consistency during search,’’ inProc. 20th Int. Joint Conf. Artif. Intell.,
2007, pp. 137–142.

[11] D. Sabin and E. C. Freuder, ‘‘Contradicting conventional wisdom in
constraint satisfaction,’’ in Proc. 11th Eur. Conf. Artif. Intell., 1994,
pp. 125–129.

[12] R. Mohr and T. C. Henderson, ‘‘Arc and path consistency revisited,’’ Artif.
Intell., vol. 28, no. 2, pp. 225–233, 1986.

[13] C. Bessière, ‘‘Arc-consistency and arc-consistency again,’’ Artif. Intell.,
vol. 65, no. 1, pp. 179–190, 1994.

[14] C. Bessiére, E. C. Freuder, and J.-C. Régin, ‘‘Using constraint metaknowl-
edge to reduce arc consistency computation,’’ Artif. Intell., vol. 107, no. 1,
pp. 125–148, 1999.

[15] C. Bessière and J. C. Régin, R. H. C. Yap, and Y. Zhang, ‘‘An optimal
coarse-grained arc consistency algorithm,’’ Artif. Intell., vol. 165, no. 2,
pp. 165–185, 2005.

[16] C. Lecoutre, F. Boussemart, and F. Hemery, ‘‘Exploiting multidirectional-
ity in coarse-grained arc consistency algorithms,’’ in Proc. 19th Int. Conf.
Principles Pract. Constraint Programm., 2003, pp. 480–494.

[17] C. Lecoutre and F. Hemery, ‘‘A study of residual supports in arc consis-
tency,’’ in Proc. 20th Int. Joint Conf. Artif. Intell., 2007, pp. 125–130.

[18] M. R. C. van Dongen, ‘‘Saving support-checks does not always save time,’’
Artif. Intell. Rev., vol. 21, no. 3, pp. 317–334, 2004.

[19] J. R. Ullmann, ‘‘Partition search for non-binary constraint satisfaction,’’
Inf. Sci., vol. 177, no. 18, pp. 3639–3678, 2007.

[20] H. Li, Y. Liang, J. Guo, and Z. Li, ‘‘Making simple tabular reduction works
on negative table constraints,’’ in Proc. 27th AAAI Conf. Artif. Intell., 2013,
pp. 1629–1630.

[21] R. Wang, W. Xia, R. Yap, and Z. Li, ‘‘Optimizing simple tabular reduction
with a bitwise representation,’’ in Proc. 25th Int. Joint Conf. Artif. Intell.,
2016, pp. 787–793.

[22] J. Demeulenaere, R. Hartert, C. Lecoutre, G. Perez, L. Perron, J.-C. Régin,
and P. Schaus, ‘‘Compact-table: Efficiently filtering table constraints with
reversible sparse bit-sets,’’ in Proc. 22nd Int. Conf. Principles Pract.
Constraint Programm., 2016, pp. 207–223.

[23] H. Verhaeghe, C. Lecoutre, and P. Schaus, ‘‘Extending compact-table to
negative and short tables,’’ in Proc. 31st AAAI Conf. Artif. Intell., 2017,
pp. 1–7.

[24] C. Likitvivatanavong, Y. Zhang, J. Bowen, and E. C. Freuder, ‘‘Arc con-
sistency in MAC: A new perspective,’’ in Proc. CPAI Workshop Held With
CP, 2004, pp. 93–107.

[25] C. Lecoutre, C. Likitvivatanavong, S. Shannon, R. Yap, and Y. Zhang,
‘‘Maintaining arc consistency with multiple residues,’’ Constraint Pro-
gramm. Lett., vol. 2, pp. 3–19, Jan. 2008.

[26] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, ‘‘Boosting systematic
search by weighting constraints,’’ in Proc. 16th Eur. Conf. Artif. Intell.,
2004, pp. 146–150.

[27] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. P.Warners, ‘‘Radio link
frequency assignment,’’ Constraints, vol. 4, no. 1, pp. 79–89, Feb. 1999.

[28] N. Sadeh and M. S. Fox, ‘‘Variable and value ordering heuristics for the
job shop scheduling constraint satisfaction problem,’’ Artif. Intell., vol. 86,
no. 1, pp. 1–41, 1996.

[29] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre, ‘‘Random constraint
satisfaction: Easy generation of hard (satisfiable) instances,’’ Artif. Intell.,
vol. 171, nos. 8–9, pp. 514–534, 2007.

[30] C. Bessière, K. Stergiou, and T. Walsh, ‘‘Domain filtering consistencies
for non-binary constraints,’’ Artif. Intell., vol. 172, nos. 6–7, pp. 800–822,
2008.

[31] C. Bessiére, S. Cardon, R. Debruyne, and C. Lecoutre, ‘‘Efficient algo-
rithms for singleton arc consistency,’’ Constraints, vol. 16, no. 1, pp. 25–
53, 2011.

HONGBO LI received the Ph.D. degree in
computer science from Jilin University, China.
He is currently a Post-Doctoral Researcher with
the School of Computer Science and Infor-
mation Technology, Northeast Normal Univer-
sity, Changchun, China. His research interests
include constraint programming, local consisten-
cies and heuristics for solving constraint satisfac-
tion problems.

VOLUME 5, 2017 5803

