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ABSTRACT Provisioning fault-tolerant scheduling in computational grid is a challenging task. Most of
the existing fault tolerant scheduling schemes are either geared toward proactive or reactive. Proactive
schemes emphasize on the reasons responsible for generating faults, whereas reactive mechanisms come
into effect after failure detection. Unlike most existing mechanisms, we present a novel, dynamic, adaptive,
and hybrid fault-tolerant scheduling scheme based on proactive and reactive approaches. In the proactive
approach, the resource filtration algorithm picks resources based on resource location, availability, and
reliability. Unlike most existing schemes, which rely on remotely connected resources, the proposed
algorithm prefers to employ locally available resources as they might have less failure tendency. To cope
with the frequent turnover problem, the proposed scheme calculates resource availability time based on
various newly identified parameters (e.g., mean time between availability) and picks highly available nodes
for task execution. Resource reliability is an indispensable consideration in the proposed scheme and is
calculated based on parameters such as jobs success or failure ratio and the types of failures encountered.
We employ an optimal resource identification algorithm to determine and select optimal resources for job
execution. The performance of the proposed scheme is validated through the GridSim toolkit. Comparedwith
contemporary approaches, experimental results demonstrate the effectiveness and efficiency of the proposed
scheme in terms of various performancemetrics, such as wall clock time, throughput, waiting and turnaround
time, number of checkpoints, and energy consumption.

INDEX TERMS Computational grid, fault tolerant scheduling, availability, reliability, genetic algorithm.

I. INTRODUCTION
Computational grid is a network where locally and remotely
connected machines offer their idle CPU cycles to be used
by grid users for execution of their compute intensive jobs.
Grid is a complex communication system where heteroge-
neous resources are available for use under a decentralized
management. Such type of arrangement creates problems for
availability and reliability of resources and failures become
the norm [1] rather than the exception [2]. Economic benefit
of grid is that resource owners get financial gains when their
machine or resource is utilized by other grid users. So, if
a resource in grid is reliable and is consumed most of the
time, then it’s a good source of income for the owner of that
resource. Cloud on the other hand is maintained by cloud
service providers and more the users utilize cloud services,
more they pay for it.

One of the important components of a grid is the
resourcemanager, as it is responsible for managing resources.

Jobs executing under grid require resources whose efficient,
reliable and careful selection and scheduling with respect
to fault tolerance may improve overall performance. It is
the responsibility of a scheduler to map task on suitable
and appropriate grid resources [3]. Resource management
duties are not just limited to provisioning of resources but
to ascertain an accepted level of Quality of Service (QoS).
Due to this reason it is important to constantly monitor
resource allocation so that QoS can be maintained [4], [5].
Variation in bandwidth and network delays can further be
a hindrance in enhancement of computing performance of
grid [6]. With the increase in the number of resources from
various sites, the probability of resource failure increases.
Fault tolerance becomes a mandatory task to be performed
in failure prone distributed systems like clusters, grids and
clouds [7]. Dependability of grid can be improved through
identification of reliable and available resources under a fault
tolerant scheduling design [8].
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Fault Tolerance (FT) is the capability developed in the
system to continue working despite the presence of failures.
Proactive and reactive fault tolerant schemes are widely used
by the researchers in order to handle the issue. Reactive or
post-active schemes are applied after the detection of failure.
An effective failure detection technique in this case may
improve failure handling mechanism. Due to the complexity
of grid there are number of reasons that advocate failures
of different types. A real challenge is that all types of fail-
ures cannot be incorporated in fault tolerance designs due
to complexity, performance and the fact that there could be
other possible reasons of failures not identified or explored
yet. Proactive fault tolerance is considered effective as it
focuses on the techniques that minimize the chances of fail-
ures through identification of less failure prone resources.
A combination of proactive and reactive fault tolerance tech-
nique with fault detection mechanism can improve overall
productivity of High Performance Computing (HPC) systems
like grid and cloud.

In this paper we propose a dynamic and adaptive fault tol-
erant (DFT) scheduling for computational grids. The model
consists of two main components, i) Proactive and ii) Reac-
tive FT orchestrators. Proactive FT orchestrator consists of
two modules, i) resource filtration module and ii) optimal
resource selection module. The former is an ongoing process
in which grid resources are filtered on the basis of vicinity,
availability and reliability. Unless a resource is unique or rare,
our algorithm prefers to select locally available resources due
to faster communication. Resource availability is maintained
throughMean Time Between Availability (MTBA) andMean
Time Between Unavailability (MTBU) and a resource hav-
ing high MTBA and less MTBU is selected. Reliability of
a resource is calculated by maintaining information about
successful and unsuccessful job executions and types of fail-
ures encountered. Resources having hardware failures are
avoided. Each resource is assigned ‘1’ or ‘0’ for local-
ity, availability and reliability by resource filtration module.
Resource filtration matrix then identifies either to select a
resource or otherwise. We devise a Genetic algorithm based
Optimal Resource Identification (GORI) mechanism to pick
and choose better resources for job execution. Jobs utilizing
selected grid resources will generate more financial gains for
the resource owners as these resources are optimal, highly
available and more reliable than the rest of grid resources.
Overall QoS will be enhanced due to resource selection on
the basis of their optimality, availability and reliability.

Reactive FT orchestrator is equipped with two modules,
i) failure predictor and ii) failure detector. Each grid resource
running user jobs has failure predictor module installed and
running for predicting or identifying hardware failure on the
basis of temperature of the devices available in it. If the
temperature of resource entities goes out of normal operat-
ing ranges, then failure predictor considers it a ‘prediction
failure’ and reduces checkpoint intensity and updates failure
detector about the change. If the temperature goes out of
the acceptable ranges, then failure predictor considers it a

‘hardware failure’ and informs failure detector. Failure detec-
tor appropriately coordinates with proactive FT orchestrator
and the job is moved to some other grid resource. Fail-
ure detector detects communication/link failures by sending
‘‘ping liveness’’ messages to those grid resources that are
executing jobs. Reply not received from a resource within
acceptable time frame is perceived as a ‘network failure’.
Upon identifying network failure, failure detector updates
proactive FT orchestrator about the failure and restarts the
job from the last saved checkpoint on other available grid
resources. The performance of the proposed scheme is val-
idated through extensive simulation experiments. Simula-
tion results demonstrate the performance supremacy of the
proposed scheme in terms of various performance metrics
such as throughput, waiting and turnaround time, number of
checkpoints and energy consumption.

To the best of our knowledge and literature review, none
of the existing Fault Tolerant Scheduling Schemes (FTSS)
consider resource selection based on vicinity and availability.

The major contributions of this work are as follows:

A. Design of a dynamic and adaptive fault tolerant
scheduling strategy for computational grids that fil-
ters grid resources based on vicinity, availability and
reliability.

B. Identification of optimal resource pool using ‘Rank’
selection throughGenetic algorithm.Optimal resources
are used in job execution for performance enhance-
ment, reduced energy consumption, high throughput
and more financial gains.

C. In order to identify and handle failure, following are
proposed:

1) Use of push and pull based models.
2) Temperature based discovery of suspicious

resources having more expectancy of failures
through designed failure predictor.

3) Discovery of link/communication failure through
failure detector.

4) Controlling checkpoint intensity on the basis of
information received from device temperature.

Rest of the paper is organized as follows: related work
is discussed in Section II; problem description is mentioned
in Section III; Section IV presents proposed fault tolerant
scheduling scheme. Experimental methodology is part of
Section V; results and analysis are discussed in Section VI.
Section VII concludes the paper.

II. RELATED WORK
There could bemany reasons due to which a job submitted for
execution in the grid can fail. Many researchers [2], [9], [10]
have highlighted the types of errors, failures and faults
expected in HPC environments. Reason for failures can be
hardware, software, network, performance and perhaps many
more that have not yet been conceived. Research carried out
by [11] claims that hardware is the most important cause of
failures in all HPC systems. Many fault tolerant proactive,
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reactive and hybrid (proactive and reactive) approaches have
been proposed [3], [7], [8], [10], [12]–[17] to cater and min-
imize the ill effects caused by the faults during the execution
of the jobs in grids and other HPC environments. Careful
selection of resources can help in reducing the probability
of failures. Random selection of resources leads to increased
frequency of failures causing reduction in throughput and
performance.

A. REACTIVE FAULT TOLERANCE
Reactive or post-active fault tolerant approaches mostly rely
on fault identification as the failure related action is taken
after its detection. If a grid node is unable to respond due to
communication failure, then retry or replication fault tolerant
techniques can be applied after detection of the failure. More
the time taken in detection of failure more the loss faced with
respect to performance. Retry, replication, message logging
and checkpointing are the techniques used in reactive fault
tolerance.

An adaptive checkpointing strategy was presented in [18]
for unreliable grid systems. Periodic checkpointing on stable
and unstable resource is controlled for reducing checkpoint-
ing overheads. Proposed Last Failure Dependent Check-
pointing (LFDC) algorithm adjusts starting checkpointing
interval according to the behavior of resource and the exe-
cution time required by the task for generating a cus-
tomized checkpointing frequency. Timestamp is stored for
a resource failure and is used for controlling checkpointing
intensity.

Message logging based protocol was presented by [19] to
avoid complete restoration of a process in case of failure.
Message logging protocol is executed at user level instead
of library level through constructing it on User Level Fail-
ure Mitigation (ULFM). Placing a layer of fault tolerance
over ULFM results improve portability with respect to faults.
Recording complete communication statements in sender’s
message log without dividing them into implementation
details further reduce fault tolerant overheads for collective
communications.

A replication based fault tolerance technique was pro-
posed by [20]. Proposed technique maintains fault index of
resources based on fault history. Fault index value updates
accordingly upon success or failure of task assigned on the
resource. A job submitted for execution replicates on other
backup resources also. A fault identified during execution of
a job can get results and proceed by obtaining information
from backup resources.

B. PROACTIVE FAULT TOLERANCE
Faults expected during job executions can be handled proac-
tively. Resource failure can be identified using probabil-
ity based techniques or through observing the behavior of
resources during job execution. Failure history of resources
can also be maintained for selection of reliable resources.
Resource scheduling with respect to fault tolerance leads to
Fault Tolerant Scheduling (FTS).

A fault tolerant Scheduling Indicator based Strategy (SIS)
was presented by [21]. Resource selection is made on the
basis of scheduling indicator that consists of response time
and failure rate of grid resources. When a job requests
resources, then resource is provided on the decision made
by the indicator. The technique used for minimizing faults is
to keep information about resource failure. When a resource
is required, then select those resources that have less failure
tendency.

A Multi constrained load balancing Fault Tolerant (MFT)
scheduling for grid computing environment was proposed
by [3]. The algorithm focuses on fault tolerance and load
balancing of resources. Upon submitting a job for execution
resource selection is made on the basis of initial failure rate,
number of jobs submitted, successfully executed jobs and
processing capability of the resource. A fault handler module
maintains information about resource failures. Other modules
include ‘deadline control’, ‘load balancing’, and ‘budget con-
trol module’.

A fault tolerant job scheduling system for economy based
grid environments was proposed by [22]. The proposed sys-
temmaintains a fault index of every grid resource that updates
dynamically upon successful or unsuccessful job comple-
tion. If a job completes execution within the defined time,
it is considered a success and the fault index value of the
resource is decreased. Similarly, if a job fails to complete
execution within the allotted time, it is considered a failure
and appropriately the value of the fault index of the resource
is increased. Resource selection for the job is based on the
value of the fault index. High fault index value represents high
failure probability of that resource. Furthermore the intensity
of checkpoints is also based on the value of the fault index.
The proposed fault tolerant scheduling strategy is compared
with time optimization heuristics for economy based grid
environments.

C. HYBRID FAULT TOLERANCE
Hybrid fault tolerance uses combination of proactive and
reactive approaches. Initially resources are selected using
proactive methods and in case of failures reactive techniques
are applied for appropriate handling of fault based situation.

A combination of proactive and reactive approaches (PRF)
was used by [14] for handling faults in grid based envi-
ronments. In proactive phase, the designed system selects
suitable resources by identifying their reliability and current
status. Benefits of proactive approach are that failure proba-
bilities are reduced during the job execution and number of
rescheduling are minimized. In reactive phase, failed jobs are
started from the last saved checkpoint with minimized recov-
ery time. The designed system calculates the value of every
resource in the grid based on its reliability and status. Job
performance time is also calculated on the basis of execution
time, waiting time and transfer time. A checkpoint manager
maintains checkpoint intervals during job execution.

Hybrid fault tolerance (HFT) technique for grid comput-
ing was presented by [23]. The proposed work combines
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good features of workflow level and task level fault tolerant
techniques and eliminates demerits of both. Retry, alternate
resource, checkpoint and replication are the task level fault
tolerance techniques and are considered as task level recovery
techniques. Workflow level fault tolerance techniques change
execution flow upon failures. Alternate task, redundancy,
user defined exception handling and rescue workflow are the
types of workflow level fault tolerance. Hybrid techniques
discussed in the paper are alternate task with checkpoint
and alternate task with retry. Performance metrics used in
the paper are throughput, turnaround time, waiting time and
transmission delay.

Most of the work related to fault tolerance reveals that
still there are factors like i) resource location, ii) availability
time and iii) unavailability time of resources; requiring atten-
tion and consideration of researchers. More focus on fault
tolerance or a bulky fault tolerant architecture also affects
performance. A good FTSS might suffer performance degra-
dation. Fault tolerant scheduling system must not overlook
performance related issues.Most of the fault tolerant schedul-
ing techniques pay more attention on reliable resource iden-
tification and neglect issues like resource failure detection.
Failure identification and detection is an important area from
fault tolerance point of view that could help in improving
grid dependability. A good failure detection mechanism in
addition to fault tolerant scheduling system could be a good
combination and must be considered for improved depend-
ability and reliability. The motivation is of establishing a
FTSS that could improve performance and detect failures in
addition to performing fault tolerant scheduling duties.

III. PROBLEM DESCRIPTION
Most of the discussed fault tolerant scheduling techniques
emphasize on resource selection on the basis of maintain-
ing historical data. Maintaining values of fault index and
scheduling indicator and selecting resource on these numbers
cover only one aspect of the problem. There are some other
very important factors that have been neglected in the design
of fault tolerant HPC systems and specially grids. Through-
put, waiting time and turnaround times cannot be improved
merely by focusing on resource behavior. Availability of a
resource is an important consideration for ensuring reliability
and QoS of a grid. Grid consists of locally and remotely
connected resources that can join or leave it any time.
A resource connected with grid for a long time is considered
to be highly available.

Consider a resource whose availability time in the grid is
less than its unavailability time. Most of the fault tolerant
scheduling models will select this resource for job execution
despite having less availability time, due to its high success
ratio. A resource having less availability time cannot pro-
duce high throughput. For improving grid performance, we
must take into account the factor of resource availability [2].
In most FTSS, this important factor is overlooked.

Location of resource is another important factor that has
been neglected during resource selection. Many FTSS have

claimed improvement in reducing communication and net-
work delays without considering the location of the selected
resources. Resource selection on the basis of location must be
considered for improving the performance of grid. Resources
located nearby or in close vicinity will always communicate
faster than a remotely connected resource and this property
has not been exploited for resource selection and performance
improvement in grid and other HPC environments.

Another problem identified during resource selection in
most of the fault tolerant scheduling systems is their inability
to identify optimal resources. Most of the fault tolerant sys-
tems do not consider resource optimality during selections.
Consider a set of 100 grid resources out of which 5 resources
are very fast and capable from processing and storage point
of view and the failure index or scheduling indicator of all
grid resources is equal. Merely considering failure index or
scheduling indicator will have only 5% probability of select-
ing those optimal resources. Most of the fault tolerant sched-
ulers will not select computationally faster resources due to
the consideration of resource selection on the basis of failure
index or scheduling indicator, due to which performance
enhancement and improved QoS will not be possible. The
design of fault tolerant schedulers should consider resource
selection on the basis of availability, location and optimality
in addition to reliability.

IV. DYNAMIC AND ADAPTIVE FAULT
TOLERANT SCHEDULING SYSTEM
In this section we explain the proposed system that uses
dynamic and adaptive fault tolerant scheduling scheme.
Fig. 1 shows the interaction of different grid components from
user job submission to job completion. Twomain components
of the FTSS are i) proactive and ii) reactive fault tolerant
orchestrator.

Proactive FT orchestrator further uses two main compo-
nents, i.e. i) resource filtration and ii) Genetic algorithm
based Optimal Resource Identification (GORI). Reactive FT
orchestrator submits the jobs for execution on the grid and
also contains two important components i) failure predictor
and ii) failure detector. Fig. 2 shows the main components
of the proposed model. Every grid resource executing user
jobs has failure predictor component that interacts with fail-
ure detector upon noticeable change in the temperature of
resource entities. Failure predictor passes two types of failure
related information to failure detector, i) prediction failure
and ii) hardware failure. Failure detector periodically sends
ping messages to grid resources executing user jobs and reply
not received within specified time is considered network
failure.

A. GRID USER
Grid users request computing resources through grid web
portal. Job sent by the user is received by grid scheduler.
Grid scheduler contacts Grid Information Server (GIS) that
contains information about grid resources. GIS provides
grid resource information to grid scheduler. Grid scheduler
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FIGURE 1. Dynamic and adaptive fault tolerant scheduling.

FIGURE 2. Components of dynamic and adaptive fault tolerant
scheduling.

dispatch jobs on grid resources. After completion of the job,
results are returned to the user.

B. GRID SCHEDULER
In the proposed model, jobs are dispatched on grid resources
by reactive FT orchestrator. Scheduler in the proposed model
before dispatching the job on grid resources contacts GIS
that obtains the list of reliable and optimal resources from
proactive FT orchestrator. Jobs are dispatched on identified

optimal resources. Reactive FT orchestrator shifts the jobs
to other available resources for hardware and network fail-
ures, and in case of prediction failure, checkpoint intensity
is appropriately adjusted. Information regarding failures is
shared with proactive FT orchestrator for reliability enhance-
ment of resources. After completion of the job results are
submitted to the user.

Components of proactive and reactive FT orchestrator are
shown in Fig. 2. In proactive FT orchestrator we have devised
a resource filtration mechanism in which the resources are
filtered on the basis of location, availability and reliability.
Resource filtration algorithm filters grid resources on the
basis of their location (local or remote), resource availability
time (time when resource become part of the grid), and
resource reliability based on (number of failures, failure type
and failure intensity). Failure intensity is generated by failure
index matrix whereas the information in the matrix regard-
ing type and number of failures is updated through failure
detector.

Factors considered for resource filtration are shown
in Fig. 3. After resource filtration process, filtered resources
are passed to genetic algorithm that identifies and produces
optimal resource pool. Fitness function in the genetic algo-
rithm finds the optimal resources according to the weights
assigned to hardware configurations. Rank selection tech-
nique is used for finding the fittest resources.
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FIGURE 3. Resource filtration criteria’s

Reactive FT orchestrator submits the job on the resources
identified through proactive FT orchestrator. Failure detector
and failure predictor use pull and push based mechanism
for detecting and predicting network and hardware failures.
Reactive FT orchestrator updates proactive FT orchestrator
for successfully executed jobs or resource failures. Results
are submitted to the user after the completion of the job.
Detailed working of the components of proactive and reactive
FT orchestrators is described.

C. RESOURCE LOCATION
Resources are the actual strength of a grid. Resources avail-
able in grid are i) locally available and ii) remotely available.
Locally available resources are part of the grid and work
under the authority of the grid maintainer. Remotely avail-
able resources are connected and available for use through
communication links and are bound to work under the poli-
cies of the domains of which they are a part. A change
in policy or configuration of the network of remotely con-
nected resource can raise questions about the availability and
accessibility of that resource. If a remotely accessible grid
resource is very unique then we have no choice of selection
other than this because of its uniqueness, but if it is like
other commonly available resources, than its locality must
be considered into account for appropriate ranking. Things
can further be complicated if communication link goes down
or if the communication speed reduces due to various factors
not under the control of grid maintainer. So, locally available
resources would always have an edge with respect to fault
tolerance over remotely accessible resources. To our knowl-
edge, this issue has never been exploited in resource ranking
of grids with respect to fault tolerance. Weightages assigned
to locally and remotely connected resources are mentioned
in Table 1.

TABLE 1. Location ranking.

List of notations used in the algorithms is mentioned
in Table 2:

Algorithm 1 describes the selection of grid resource based
on locality:

Algorithm 1 Locality Identification of Ri
Input: All grid resources
Output: Locally available grid resources
Begin
1: for Ri = 1 to m do
2: if (Ri e LTlcr )
3: LT lcr ← 1
4: else
5: LT lcr ← 0
6: end if
7: end for

D. RESOURCE AVAILABILITY TIME
Grid resources are part of various geographical domains that
can join or leave any time [14]. A resource that has more
tendency to leave grid without any prior information is an
important point for consideration if we rate grid resources.
To the best of our knowledge this type of resource behavior
has not been exploited previously for resource ranking with
respect to fault tolerance. Availability time of a resource is
the time since it joined the grid. A resource connected with
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TABLE 2. List of notations used in algorithms.

the grid for a longer time will have high availability time.
We can calculate availability and unavailability time of a
resource when it joins the grid for the first time or when it
rejoins the grid after leaving. Equation (1) shows the avail-
ability time of a resource ‘‘i’’.

AT
∑1→m

ri
← AT1ri + AT2ri + ....+ ATmri (1)

Time for which a resource was not available is called unavail-
ability time. A resource that leaves the grid more often for
a longer period of time will have high unavailability or less
availability. Unavailability time of a resource is the sum of
times for which it was not available. Equation (2) shows the
unavailability time calculation of a resource ‘‘i’’.

UT
∑1→m

ri
← UT1ri + UT2ri + ....+ UTmri (2)

Mean time between availability of a resource is the sum of all
available times divided by number of times it joined the grid.
MTBA calculation of a resource ‘‘i’’ is shown in equation (3).

ĀT ri← (AT1ri + AT2ri + ....+ ATmri) /m (3)

MTBA is similar to Mean Time Between Failure (MTBF),
except the later provides time between two failures [2] and

for reliable machines it should be high. Similarly, MTBA is
a time for a resource in which it was available for use in the
grid. Again for reliable resource MTBA should be high and
for unreliable resource that keeps on joining the grid for a
shorter period of time, it would be low. Mean time between
unavailability of a resource is the sum of all unavailable times
divided by number of times it left the grid. MTBU calculation
of a resource ‘‘i’’ is shown in equation (4).

ŪT ri← (UT1ri + UT2ri + ....+ UTmri) /m (4)

FIGURE 4. Availability time of grid resources.

Designed fault tolerant orchestrator keeps timing related
information of all the resources that have joined the grid.
Resources connected with the grid for the longest period
of time will be preferred for selection as compared to the
newly joined resources. Fig. 4 shows the availability times
of resources R1, R2 and R3.

FIGURE 5. MTBA and MTBU of resources joining and leaving grid.

MTBA for preferred resources should be high. MTBU for
preferred and reliable resource would be low. High MTBA
and low MTBU is a QoS parameter. Fig. 5 shows the avail-
ability and unavailability times of resource R2 and R3 with
respect to joining and leaving the grid. It can be seen in
fig. 5(a), that resource R2 is leaving the grid quickly and for
more time, due to which its calculated MTBU would be high
and is not an ideal or desirable resource from stability point
of view.
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FIGURE 6. MTBA and MTBU percentages of grid nodes.

TABLE 3. Availability ranking.

In fig. 5(b), resource R3 is shown in grid time line with
respect to joining and leaving the grid. It can be seen in
the time line that resource R3 leaves the grid for a smaller
amount of time and remains connected with the grid for a
longer period of time. Connectivity time of resource R3 on
the grid time line is mentioned and by calculating the mean
of availability we obtain a higher MTBA as compared to
MTBU. High MTBA and low MTBU are desired for reliable
resources. An ideal resource selection for computation in grid
will be the one having high MTBA and low MTBU as shown
in fig. 6. Availability of individual resource will be ranked
according to the availability ranking shown in Table 3.

Resource selection on the basis of availability is described
in Algorithm 2:

Algorithm 2 Availability Identification of Ri
Input: Availability and Unavailability time of all grid
resources
Output: Resources having High MTBA
Begin
1: for Ri = 1 to m do
2: AT

∑1→m
ri ← AT1ri + AT2ri + ....+ ATmri

3: UT
∑1→m

ri ← UT1ri + UT2ri + ....+ UTmri
4: ĀT ri← (AT1ri + AT2ri + ....+ ATmri)/m
5: ŪT ri← (UT1ri + UT2ri + ....+ UTmri)/m
6: if

(
ĀT ri > ŪT ri

)
7: AT ri← 1
8: else
9: AT ri← 0;
10: end if
11: end for

E. SUCCESS/FAILURE RATIO OF RESOURCES
Many researchers have used the approach of identifying the
reliable resource based on historical data. It is relatively easy
to maintain and identify resources having less tendency of

failure, by maintaining the count of successful execution.
Our algorithm stores history based information of the jobs
executed on the grid and their behavior during execution in
failure index matrix Table 4.

Nodes having the highest failure index will not be selected
for execution. Failure index is calculated on the basis of
factors mentioned in Table 4. Some of the values in Table
4; like i) jobs submitted for execution on a resource, ii) jobs
completed successfully, iii) failures encountered during exe-
cution, and iv) types of failures are received through failure
detector component.

As the grid resource starts executing a job, the algo-
rithm starts updating the values for identification of reliable
resources based on historical information maintained in fail-
ure index matrix. Methodology of filling the values in failure
index matrix is shown in Table 4. Initially, failure index of
all nodes will be started from 0 and will be incremented by
1 by failure detector component upon successful completion
or failure encountered. Our proposed system caters three
types of failures i.e., i) network failures, ii) prediction failures
(information obtained from failure predictor based on mon-
itoring temperature of hardware devices), and iii) hardware
failure. Data updated in failure index matrix for some nodes
is shown in Table 4. Jobs submitted on node ID ‘R6’ and
‘R7’ are 20 and both encountered 4 failures each. Depending
on the type of failure, node ID ‘R7’ has the highest failure
index value of 65, whereas node ID ‘R6’ has the lowest failure
index value of 5. Similarly, total jobs submitted on node ID
‘R1’ is 15 out of which 9 executed successfully and 6 of them
encountered failures, yielding failure index value of 10. Types
of failures are maintained in the matrix for identification and
calculation of failure index.

Three types of failures identified by our proposed system
have appropriate failure intensities. Individual failure inten-
sity is calculated using weights assigned for each failure type
and the number of failures encountered. Value of failure index
is generated by adding all individual failure intensities. Most
of the failures encountered in distributed environments are
due to hardware [11] and because of this very fact it has
appropriate importance in failure intensity for calculating
failure index. Failure index increases substantially when a
hardware failure is encountered. Hardware failure has the
highest failure index and algorithm will avoid selecting the
nodes that have encountered hardware failures.

Table 5 is extracted from Table 4 and is in ascending order
of failure index values. It can be seen in Table 5 that nodes
having low failure index will be selected as ‘reliable’ nodes.
Reliable nodes get ‘1’ weightage. High failure index is cal-
culated by the system due to hardware failure. Nodes having
hardware failures will be declared as unreliable and appro-
priately will be assigned 0 weightage as shown in Table 5 as
well as in Table 6. The value of failure index generated by
failure index matrix is highest where hardware failures are
encountered.

Selection of grid resources on the basis of reliability is
elucidated in Algorithm 3:

7860 VOLUME 5, 2017



S. Haider and B. Nazir: Dynamic and Adaptive Fault Tolerant Scheduling

TABLE 4. Failure index matrix.

TABLE 5. Reliability calculation table sorted on failure index value.

TABLE 6. Reliability ranking.

TABLE 7. Resource filtration matrix.

F. RESOURCE FILTRATION
Resources identified on the basis of vicinity (Table 1), avail-
ability (Table 3) and reliability (Table 6) are passed to
resource filtration algorithm that filters resources through
filtration matrix rules. Combinations shown in resource fil-
tration matrix (Table 7) generate matrix score ‘1’ or ‘0’ based

on location, availability and reliability of grid resources.
If reliability is ‘0’ then the values of location and availability
are ignored and ‘0’ score is assigned to that node which
disqualifies it from genetic algorithm input list. Any two or
more combinations of ‘1’ produce ‘1’ for filtration matrix
score which allows the genetic algorithm to select that node
as input for the identification of optimal resource. Similarly,
any two ormore combinations of ‘0’ generate ‘0’ for filtration
matrix which drops that particular node from input list of
genetic algorithm for optimal resource selection. Resources
selected or rejected through the filtration process are shown
in fig. 7.

Algorithm 4 filters resources based on locality, availability
and reliability.

G. INTERACTION BETWEEN COMPONENTS OF
PROACTIVE FT ORCHESTRATOR
Filtered resource list is passed to GORI, the second com-
ponent of proactive FT orchestrator. As grid resources vary
in capacity or capability from each other, GORI identi-
fies resources with respect to their capability. GORI will
generate optimal pool of resources having i) high process-
ing capabilities, ii) enhanced memory, iii) more storage
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Algorithm 3 Reliability Identification of Ri
Input: Jobs completed, Jobs failed, types of failures
Output: Reliable grid resources
Begin
1: Receive SJri, FJri, Ftri from ‘Failure Detector’
2: Update ‘Failure Index Matrix’ for Ri
3: for Ri = 1 to f do
4: SJ

∑x=1→f
ri ← SJ1ri + SJ2ri + SJ3ri....+ SJf ri

5: FJ
∑x=1→f

ri ← FJ1ri + FJ2ri + FJ3ri....+ FJf ri
6: TJ ri← SJ

∑x=1→f
ri +FJ

∑x=1→f
ri

7: SJ ri← TJ ri − FJ
∑x=1→f

ri
8: FJ ri← TJ ri − SJ

∑x=1→f
ri

9: Ft
∑n=1→x

rin ← Ftrin1+Ftrin2+Ftrin3....+Ftrinx
10: Ft

∑p=1→x
rip ← Ftrip1+Ftrip2+Ftrip3....+Ftripx

11: Ft
∑h=1→x

rih ← Ftrih1+Ftrih2+Ftrih3....+Ftrihx
12: Firin← Ft

∑n=1→x
rin ∗1

13: Firip← Ft
∑p=1→x

rip ∗2

14: Firih← Ft
∑h=1→x

rih ∗TJ ri ∗ 3
15: FI ri← Firin + Firip + Firih
16: if

(
Ft
∑h=1→x

rih ≥ 1
)

17: RI ri← 0
18: else
19: RI ri← 1
20: end if
21: end for

FIGURE 7. Resource filtration based on location, availability and
reliability.

capacity and iv) fast communication link. Benefits gained
by selecting resources through GORI are; i) job execution
time will be minimized, ii) throughput will be increased,
iii) resource selection will be faster, iv) more financial
gain, v) less energy consumption and vi) overall quality of
service will be enhanced. Jobs having execution require-
ments under strict time constraints will be able to complete
within allotted deadline period and will not encounter QoS
failure. Fig. 8 shows the interaction between two compo-
nents of proactive FT orchestrator, i) resource filtration and
ii) GORI.

Algorithm 4 Resource Filtration
Input: Output of algorithm 1, 2 and 3
Output: Filtered resources based on Locality, Availability
and Reliability
Begin
1: for Ri = 1 to k do
2: if (RI ri← 0)
3: FSri← 0
4: goto 1
5: end if
6: if (LT ri == 1&&AT ri == 1) or
7: if (LT ri == 1&&RI ri == 1) or
8: if (AT ri == 1&&RI ri == 1)
9: FSri← 1;
10: else
11: FSri← 0;
12: end if
13: end for

FIGURE 8. Interaction between components of proactive FT orchestrator.

H. GENETIC ALGORITHM BASED OPTIMAL RESOURCE
IDENTIFICATION (GORI)
Here we give the details of genetic algorithm through which
optimal resource pool of grid resources will be generated.
Genetic algorithm optimal resource identifier will provide
the list of optimal grid resources. At the start, Genetic Algo-
rithm (GA) generates initial population ‘P’ of size ‘n’ using a
function named ’initialization’. Initially it populates an empty
set ‘P’ to a size ‘n’ making sure that no two offspring’s are
same. After ‘initialization’, ‘evaluation’ function computes
fitness value against each of the generated offspring using the
following function:

Fitness (gi) = 0.45w+ 0.30x + 0.15y+ 0.1z

Where variable ‘w’, ‘x’, ‘y’, and ‘z’ are resource constraints
and their description is as follows:

‘w’ represents the capability of CPU and the weightage
assigned to it is 0.45 as it is most important resource of
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a system. ‘x’ represent the capability of memory and the
weightage assigned to it is 0.30 according to its importance.
‘y’ represents storage capacity and the weight assigned to
it is 0.15. ‘z’ represents communication link speed and has
the weightage of 0.1. The sum of weights of all resource
constraints is equal to 1, e.g. 0.45+ 0.30+ 0.15+ 0.1 = 1.

TABLE 8. Resource placement on the basis of its strength.

TABLE 9. Resource capacity/strength of nodes.

Each resource w, x, y and z according to its capability
is placed in low, medium and high category. Table 8 shows
resource placement category according to its capability or
strength and the values assigned to low, medium and high
categories. Table 9 shows resource capacity of some nodes.

TABLE 10. Values assigned to reseource capacity of grid nodes.

Table 10 shows the values assigned according to resource
capacity/strength of grid nodes. 1, 2 and 3 correspond to
strengths of low, medium and high.

After generating the fitness values the algorithm iteratively
performs three stochastic operators until the fitness value
for the selected offspring becomes greater than the given
threshold value ‘tv’. The stochastic operators are ‘select’,
‘crossover’ and ‘mutation’. Table 11 shows the fitness val-
ues of some sample strings generated by genetic algorithm
according to the strength of the resource constraints of grid
nodes.

TABLE 11. Fitness values according to resource constraints.

1) STOCHASTIC OPERATION - SELECT
There are two strategies for selection of the offspring’s which
will participate in next generation. One is ‘rank selection’
i.e. pick up the best every time; and the other is ‘roulette
wheel selection’ which randomly selects the participants for
next generation. The stochastic operation for selection of
offspring’s used in our algorithm is ‘Rank selection’ strategy.
By having select operator, we make sure that stronger (with
more fitness value) strings will participate more in the next
generation while the weaker ones will die off.

2) STOCHASTIC OPERATION - CROSSOVER
Next we apply crossover among the string structures. For
crossover, the input ‘c’ is used which is the percentage of
crossover to be applied in set ‘P’. Crossover takes place in
two parts. In the first part, the strings to be combined are
chosen at random. In the second part, crossover point between
the chosen pairs is also chosen at random between 1 to ‘sl’,
where ‘sl’ is the length of the string. Crossover takes place by
swapping partial bits of the selected pairs across the crossover
point. Crossover generates bulk amount of new information
in the new generation.

3) STOCHASTIC OPERATION - MUTATION
After ‘crossover’, ‘mutation’ is applied which is a process of
randomly inverting a bit’s position with appropriate percent-
age of mutation. The percentage of mutation applied in our
algorithm is ‘mr ’. Genetic algorithm will provide the number
of optimal resourcesRnr as required by the user. Furthermore,
input ‘P’ in genetic algorithm is not constant and keeps on
increasing/decreasing due to the reason that resources in the
grid keep joining and leaving, and our designed resource
filtration algorithm keeps updating the list of available and
reliable resources. Once the genetic algorithm passes the
required threshold value ‘tv’, the algorithm compares the
ranks of offspring’s in ‘PS’ with the required number of
resource ‘Rnr ’. If the rank lies between the range 1 to ‘Rnr ’,
the algorithm returns the corresponding solution to optimal
resource pool.
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Here we present the Genetic algorithm based Optimal
Resource Identification algorithm.

Algorithm 5 Genetic Algorithm Based Optimal Resource
Identification (GORI) [6]

Input: Output of algorithm 4
Output: Optimal resource pool
Begin
1: initialization();
2: evaluation();
3: while (max(fitness(gi in P)) > tv)
4: PS = 8;
5: select(); // rank selection
6: crossover();
7: mutation();
8: P = PS;
9: evaluation();
10: end while
11: for i = 1 to P do
12: if (Rank(gi in P) == member(1..Rnr ))
13: send gi to optimal resource pool;
14: end if
15: end for

Algorithm 5 (GORI) - Initialization Function [6]
1: start initialization()
2: while (|gi| ≤ P)
3: for j=1 to ≤ n do
4: generate new gi using rj in Rm;
5: end for
6: if (gi not in P)
7: add gi to P;
8: end if
9: end initialization()

Algorithm 5 (GORI) - Evaluation Function [6]
1: start evaluation()
2: for j=1 to ≤ P do
3: fitness (gi) =

∑
(0.45w, 0.30x, 0.15y, 0.1z);

4: end for
5: end evaluation()

I. FAILURE PREDICTOR
Failure predictor module resides on all grid resources and
interacts with reactive FT orchestrator. Resources that are
involved in the process of job execution effectively use the
proposed prediction services, as it is of no use to run fail-
ure predictor module on those grid resources that are not
involved in processing of jobs. The designed failure pre-
dictor module uses temperature of the devices for predic-
tion of failures. Designed technique focuses on hardware
based failures as their expectancy and devastation is more

Algorithm 5 (GORI) - Select Function [6]
1: start select()
1: for i=1 to ≤ P do
2: if ( Rank ( gi ) <= ( 1-c ) P )
3: add gi to PS ;
4: end if
5: end for
6: end select()

Algorithm 5 (GORI) - Crossover Function [6]
1: start crossover()
2: for i=1 to ≤ C.P do
3: select (gm, gn) pair from PS at random;
4: find crossover point cp (0 < cp < sl) at random;
5: end for
6: for k=1 to ≤ cr do
7: add rk from gm to gn;
8: add rk from gn to gm;
9: end for
10: for k = cr+1 to k ≤ Jrn do
11: add rk from gm to gn;
12: add rk from gn to gm;
13: end for
14: end crossover()

Algorithm 5 (GORI) - Mutation Function [6]
1: start mutation()
2: for i=1 to I ≤ mr .P do
3: select gm from PS at random
4: for j=1 to j ≤ Jrn do
5: if (Random ( 1, 0 ) == 1 )
6: replace rj by rk (rj6=rk ; rk in P);
7: end if
8: end for
9: end for
10: end mutation()

in all HPC systems than of other types of failures [11].
Researchers have used the idea of hardware failure prediction
on the basis of temperature [11], [24], [25]. All modern
day architectures have temperature sensors built in to the
hardware. Temperature of CPU, memory, storage devices
and mother board etc. can be obtained using softwares like
‘lm-sensors’ (linux monitoring – sensors), ‘lavalys’ [26] and
‘openhardwaremonitor’ [27].

All grid resources that are involved in the execution process
of jobs will periodicallymonitor their temperatures of i) CPU,
ii) Memory, iii) Hard Disk and iv) Motherboard. If tempera-
tures of all devices are working under normal ranges, then
it will be considered as ‘information’ and job will continue
processing with its normal checkpointing intensity. In normal
checkpointing a job will send its checkpoint information after
every 25% of its execution. If the temperature of the devices
starts increasing or decreasing and passes out from the normal
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FIGURE 9. Temperature timeline.

temperature operating ranges, then this change is considered
as ‘prediction failure’. Failure predictor informs failure detec-
tor about failure prediction which updates the value of failure
indexmatrix. Further actions taken for ‘prediction failure’ are
i) reduce checkpoint intensity to 5% and ii) save checkpoint
immediately.

TABLE 12. Decisions and actions on temperature ranges.

On reducing checkpoint intensity e.g. 50% to 25%, the
number of checkpoints increases. Similarly, reducing check-
point intensity to 5%, total number of checkpoints will be
5. From performance point of view, less number of check-
points is recommended. Fig. 9(a) shows temperature timeline
of a node where temperature based decisions are changing
from ‘information’ to ‘prediction failure’ to ‘hardware fail-
ure’ because of the change in temperature of the device.
In fig. 9(b), we can see that a node can go from ‘information’
to ‘prediction failure’ to back ‘information’ depending on
device temperature. Decision and action taken on the basis
of variation in temperature are shown in Table 12.

Failure of the device is declared when failure predictor
observes device temperature beyond the maximum or min-
imum temperature operating range. It is the indication that
device can fail any moment. Failure predictor will report this
situation to failure detector as a ‘hardware failure’. Working
of failure predictor is presented in Algorithm 6.

J. FAILURE DETECTOR
Failure detector component receives ‘prediction failure’ and
‘hardware’ failure information from failure predictor. Upon
receiving ‘prediction failure’ information of a resource, e.g.
Ftrip, it updates the failure index matrix of proactive FT
orchestrator. Values of i) failure type, ii) failure intensity and
iii) failure index of failure index matrix are updated upon
receiving the information from failure detector. For hardware
failure of resource, the value of Ftrih is updated in failure
index matrix of proactive FT orchestrator and values of i)
failure type, ii) failure intensity and iii) failure index are
also appropriately updated. Functionality of failure detector
is shown in algorithm 7.

Proposed system handles three types of failures, e.g. i)
hardware, ii) prediction and iii) network. Hardware and pre-
diction failures are identified on the basis of temperatures.
Failure predictor component runs on those resources that are
executing jobs and measures and sends the information to
failure detector. Failure detector itself detects ‘network fail-
ure’ that might occur due to problem in communication link
or network due to which a grid resource is unable to respond.
Failure detector uses ‘ping liveness’messages at regular inter-
vals to grid resources involved in execution of jobs. A sent
liveness message to a grid resource if not received by the
detector is considered as ‘network failure’. Failure detector
updates the value of Ftrin in failure index matrix. Due to
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Algorithm 6 Failure Predictor
Input: Temperature monitoring of grid resource entities
Output: Send ‘Hardware’ and ‘Prediction failure’ types
failure info. to ‘Failure Detector’
Begin
1: Monitor tempentities of Ri where entities e (CPU,
Memory, Hard Disk, Motherboard)
2: if (tempentities→ 1tempnormal)
3: Set decision = ‘information’
4: Set action = ‘routine checkpointing’
5: Checkpoint intensity = 25%
6: goto step 1
7: end if
8: if (tempentities→ 1templower OR tempentities→

1tempupper )
9: Set decision = ‘failure prediction’
10: Set action = ‘save checkpoint’
11: Set timemonitor to 10 seconds
12: reduce checkpointing intensity to 5%
13: send Ftrip to ‘Failure Detector Module’
14: goto step 1
15: end if
16: if (tempentities ≤ 1templower OR tempentities ≥

1tempupper )
17: Set decision = ‘hardware failure’
18: Set action = ‘save checkpoint’
19: send Ftrih to ‘Failure Detector Module’
20: end if

‘network failure’ it is not possible to approach the resource so
request for new resource is made to proactive FT orchestrator
through reactive FT orchestrator. Job restarts from the last
saved checkpoint on the newly provided resource. So, ‘net-
work failures’ are detected through failure detector whereas
temperature based ‘hardware’ and ‘prediction failures’ are
identified through failure predictor.

K. INTERACTION BETWEEN ENTITIES OF GRIDSIM AND
PROPOSED MODEL
In order to integrate the feature of fault tolerance in the
grid, we incorporate new entities in Gridsim toolkit. The
protocol responsible for interaction between Gridsim entities
and entities of our proposed fault tolerant scheduling model
is shown in fig. 10 and is described as follows:

1) At the start of Gridsim, all available simulated
resources of grid are registered with GIS.

2) User submits the job for execution to the grid.
3) Job submitted for execution is received by ‘Grid Sched-

uler’ (Gridsim component).
4) Scheduler requests GIS to provide information about

resources for the execution of the job.
5) GIS further requests proactive FT orchestrator for pro-

visioning of information regarding resources needed
for the execution of the user job.

Algorithm 7 Failure Detector
Input: Receive temperature based failure information from
‘Failure Predictor’
Output: Increment failure type ‘Hardware’, ‘Prediction’&
‘Network’ in ‘Failure Index Matrix’
Begin
1: Receive Ftrip, Ftrih from ‘Failure Predictor’ of Ri
2: if (Ftrip received for Ri)
3: Ftrip++ for Ri in ‘Failure Index Matrix’;
4: end if
5: if (Ftrih received for Ri)
6: Ftrih++ for Ri in ‘Failure Index Matrix’;
7: request for new resource to ‘Proactive FT

Orchestrator’;
8: restart the job from last saved checkpoint;
9: end if
10: for (each Ri executing jobs) do
11: ping all Ri for liveness after 30 second;
12: if (ping reply from Ri not received)
13: Ftrin++ for Ri in ‘Failure Index Matrix’;
14: goto step 7;
15: end if
16: end for

6) In order to response the request of GIS made
in 5, proactive FT orchestrator uses two of its sub-
components, e.g. i) Resource Filtration and ii) Genetic
algorithm based Optimal Resource Identification

a) ‘Resource Filtration’ component identifies rank-
ing on the basis of i) resource locality, ii) avail-
ability and iii) reliability according to Table 1,
Table 3 and Table 6.

b) Weightage values are placed in ‘Resource Filtra-
tion Matrix’ that filters out i) remotely connected
resources, ii) resources having Low MTBA and
iii) unreliable resources. Filtration matrix score
is generated for each resource on the basis of
entered values.

c) Resources having 1 value in filtration matrix
score are the filtered resources.

d) Filtered resources are sent to GORI for selection
of optimal nodes.

e) Optimal resource pool generated by GORI is
passed to GIS.

7) GIS passes optimal resource pool to ‘Grid Scheduler’.
8) Scheduler selects required number of resources and

forwards them to reactive FT orchestrator.
9) Reactive FT orchestrator dispatches the job to the grid

resource(s) with job id.

a) Each grid resource is equipped with failure
predictor component. Resources executing user
jobs keep monitoring the temperature entities of
CPU, Memory, Storage devices and Motherboard
through temperature sensors.
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FIGURE 10. Sequence diagram for interaction between Gridsim and fault tolerant scheduling entities.

b) Normal checkpointing (after 25% execution of
the job) is continued for the devices working
under normal temperature operating ranges.

c) If the temperature entity of a resource increases
or decreases from normal temperature operat-
ing ranges, then it is considered as ‘prediction
failure’, and change in the behavior of

temperature is notified to failure detector.
Failure detector updates failure index matrix
(Table 4) and reduces checkpoint intensity to 5%,
e.g. from 25% to 20%.

d) If the temperature entity of a resource goes
beyond the maximum or minimum temperature
operating ranges, then failure detector is informed
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about this change that considers it a ‘hardware
failure’ and after saving the checkpoint, shifts the
job to other available resource and updates failure
index matrix (Table 4).

e) Reactive FT orchestrator contains a sub-
component named failure detector for detecting
network failures. Grid resources executing user
jobs are periodically send ‘ping liveness’ mes-
sages by the failure detector. Reply not received
within acceptable time is considered a network
failure. Information about this failure is updated
in failure index matrix (Table 4) and job is
switched to other available resource from its last
saved checkpoint.

10) Information about the completion of job execution is
passed to ‘Grid Scheduler’ from reactive FT orches-
trator. Failure index matrix (Table 4) is updated
accordingly.

11) ‘Grid Scheduler’ forwards jobs completion results back
to the user.

V. EXPERIMENTAL METHODOLOGY
We employ GridSim simulator-5.2 [28] to validate the perfor-
mance of proposed fault tolerant scheduling scheme. Support
for modeling and simulation of heterogeneous grid resources,
modeling of application as well as of users is provided in
the simulator. GridSim provides infrastructure support for
i) creating application tasks, ii) management and mapping of
tasks and resources. ’ResFailure’ module of GridSim simula-
tor was further modified using java 8 platform for induction
of failures and failure types. Resource location, availability
time, unavailability time, number of failures and failure types
are entered in an ’XML’ file and then brought into modi-
fied application through ’ArrayList’ class. Resource filtration
was performed according to algorithm and filtered resources
were passed to genetic algorithm for optimal resource
identification. Jobs were then executed on the resources iden-
tified through the proposed model. We use following per-
formance metrics (i.e., wall clock time, throughput, waiting
time, turnaround time, and number of checkpoints) to gauge
the performance of the proposed system. We used number of
jobs (i.e., gridlets) and fault injection percentage parameters
to vary the experiment configuration. Same experimental
setupwas used for evaluation of all FTSS systems of Table 14.

A. RESOURCE MODELING
All grid resources having different capabilities, characteris-
tics and configurations are modeled in an ’XML’ file. Data
in ’XML’ file is taken from ’Failure Trace Archive (FTA)’
datasets [29] and data sources available from ’World Wide
Grid (WWG)’ testbed [29].

B. WORKLOAD MODELING
A job entered for execution in GridSim is referred to as
’Gridlet’ having length expressed in Million Instructions Per
Second (MIPS), I/O operations in bytes and an originator or
user ID. The workload modeling in our experiments contains

a set of gridlets from 200 to 800 with a gradual increment of
200 gridlets. Locally connected resources have 100 Mbps to
1Gbps link speed and remotely connected resources have up
to 10 Mbps link speed.

TABLE 13. Number of failures for failure injection percentages.

Number of failures represents fault injection. For a set of
200 gridlets having 5% fault injection, the dataset in ’XML’
file contains 10 failures, 10% fault injection has 20 failures
and so on. Fault injection percentages used in experiments
gradually increases from 5% up to 30% with an increment
of 5%. Table 13 represents the number of failures for various
sets of gridlets. Number of instructions, e.g. size of a gridlet
is fixed in all experiments for measuring the performance of
different fault tolerant techniques.

TABLE 14. Performance evaluation creiteria.

C. PERFORMANCE EVALUATION METRICS
As mentioned earlier, to evaluate the performance of pro-
posed model the metrics used are i) throughput, ii) waiting
time iii) turnaround time and iv) number of checkpoints. We
evaluate the performance of the proposed scheme compared
with existing models [3], [14], [21], [23]. The metrics consid-
ered for performance evaluation in existing models are shown
in the Table 14.

VI. RESULTS AND ANALYSIS
On the basis of metrics identified in para ‘C’, different
experiments were conducted and results were compared with
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the FTSS of Table 14. The list of experiments performed,
their comparison with other existing FTSS, and discussion
on results and comparison is mentioned below:

A. EXPERIMENT – I: WALLCLOCK TIME
In this experiment we initially entered 200 jobs on the grid
and induced 5% faults in the system with three different fault
tolerance considerations, e.g. i) reactive, ii) proactive and
iii) hybrid (proactive and reactive) fault tolerance.

FIGURE 11. The average wallclock time, as a function of number of jobs
and fault injection percentage.

Fig. 11 demonstrates the average jobs wallclock time as a
function of number of jobs and fault injection percentage. The
proposed hybrid scheme clearly outperforms both proactive
and reactive approaches because it strives to engage locally
available and reliable resources for job execution. Moreover,
the average wallclock time increases with the increased num-
ber of jobs (i.e., gridlets) and fault injection percentage. The
higher the gridlet count, the more time it requires to execute.
With the increased fault injection percentage, more jobs need
to be re-schedule. Reactive fault tolerant approach has the
highest average wallclock time because it does not consider
handling faults proactively.

B. EXPERIMENT – II: THROUGHPUT
Throughput is the amount of work accomplished in a given
time interval. Average throughput is an important factor
that helps in determining the performance of a FTSS.
A robust and efficient FTSS would be that provides high
throughput. If a fault tolerant scheduling system takes more
time in selection of resources and takes prolonged times
in saving and retrieving checkpoints etc, then throughput
reduces.

Average throughput of four existing FTSS is compared
with our designed system. A set of 200 gridlets were sent for
execution on ‘SIS’, ‘PRF’, ‘HFT’ and ‘MFT’ FTSS. Same
jobs were also executed in our proposed system (DFT). Faults
with different percentages from 5 to 30% were sequentially
introduced in the systems during execution and throughput
obtained in the presence of those faults was recorded. Results
depicted in fig. 12. and fig. 13 shows the result when average

FIGURE 12. Average Throughput with 200 jobs.

FIGURE 13. Average Throughput with 400 jobs.

throughput was calculated for 400 jobs with faults induced
from 5 to 30%.

Graph of fig. 12 shows that average throughput is decreas-
ing with increase in fault injection percentage and number
of jobs entered for execution in the system. Throughput
of our proposed system provides best result and reason
is the selection of locally available resources that have
very small or negligible communication delays, resulting
in increased throughput. The model named ‘PRF’ has the
lowest average throughput. This is due to non considera-
tions of communication delays. When a job fails, then due
to slow communication links that job has to wait for more
time for completing checkpoint operations. Upon comple-
tion of checkpoint operations, the job starts from last saved
checkpoint but delayed operations results in reduced average
throughput. Overall average throughput difference between
the compared FTSS is around 19%. Results shown in the
graph of fig. 13 also shows similar type of trend observed
in fig. 12.

C. EXPERIMENT – III: WAITING TIME
Waiting time of a job in the grid is the time from its submis-
sion to the time when it started execution. If grid scheduler
is fast and can find resource(s) quickly, preferably optimal
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resource(s) in less time, for the submitted job then waiting
time of the job will be low. Grid schedulers that take more
time in selection of resources are responsible for increased
waiting time. A better fault tolerant scheduling system will
reduce the waiting time of jobs by maintaining a list of suit-
able resources in advance, e.g. before the arrival of resource
request from jobs. Similarly, in case of failures, the jobs
will be switched in relatively lesser times to other resources,
provided they also implement a good checkpointing
mechanism.

FIGURE 14. Average Waiting Time with 200 jobs.

FIGURE 15. Average Waiting Time with 400 jobs.

Graphs of fig. 14 and fig. 15 show that our proposed model
provides least average waiting time for all scenarios, e.g.
with 200 and 400 jobs. A general observation is that waiting
time or average waiting time of jobs is going to increase
with the increase in number of jobs. Addition of the factor
of fault injection with increasing intensities, e.g. 5% to 30%
further increases waiting time. Fault tolerance schedulers,
where jobs are dispatched on optimal resources and have
reduced checkpoint intensities will provide better results. Our
proposed model preferably selects locally connected and reli-
able resources and further selects optimal resources to be used
in execution of jobs. This leads to less probability of network
failures. Similarly, checkpoint intensity of 25% is reduced to
20% upon receiving information about ‘prediction failures’.
Reduction in 5% checkpoint intensity increases the number of
checkpoints from 4 to 5. As resources are connected locally so

it takes small amount of time in saving checkpoint informa-
tion. Benefit obtained is least average waiting time compared
to rest of the models.

The FTS model presented by [14] has the highest average
waiting times in the fig. 14 and fig. 15. This is due to the com-
plexity involved in resource selection. Resources are selected
by generating an overall resource value through a complex
system that results in delayed selection of resources. Delays
in resource selection increase the waiting time and overall
impact is delay in average waiting as well as in average
turnaround time.

D. EXPERIMENT – IV: TURNAROUND TIME
Turnaround time is the calculation of time period from job
submission to completion. Turnaround time of a resource
is the sum of waiting time (WTt ), communication link
time (CL t ), failure handling time (FPt ), and job execution
time (JE t ). Following equation can be used for calculating
the turnaround time of a job as:

TATJ i = WT t + CL t + FPt + JE t ; (5)

FIGURE 16. Average Turnaround Time with 200 jobs.

FIGURE 17. Average Turnaround Time with 400 jobs.

Turnaround time of a job will always be greater than
any of the individual times mentioned in equation (5).
Fig. 16 and fig. 17 show the graph of average turnaround
time of the models mentioned in Table 14 along with
their comparison with our proposed model. Our proposed
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model outperforms in turnaround time then the rest of
the models. This is due to less waiting time already dis-
cussed in graphs of sub section C. Communication time
in our FTSS is negligible as our algorithm prefers locally
connected resources. Our proposed model completes job
execution in less time due to executing jobs on optimal
resources identified through GORI. Sum of all above men-
tioned time produces least turnaround time compared to rest
of FTSS.

FTSS [14], [21] lack proper failure detector due to which
it takes more time in selection of resources that leads to
increased turnaround time. Communication link is another
important factor due to which the turnaround time increases
in FTSmodels of [14], [21], and [23]. In grid, communication
with remote resources is slow which increases turnaround
time of the job.

FIGURE 18. Number of checkpoints with varying number of jobs and
faults.

E. EXPERIMENT – V: CHECKPOINTS
In this experiment we initially entered a set of 50 jobswith 5%
faults for execution on FTSS of Table 14 and on our proposed
model. The number of jobs was incremented by 50 up to 300
along with the increment in fault percentage of 5% up to 30%
respectively with regular intervals depicted on horizontal axis
of the graph. The number of checkpoints used by FTSS of
Table 14 and our proposed model was recorded and depicted
in fig. 18.

Our proposed model selects available, reliable and optimal
resources for execution of jobs. Normal checkpoint intensity
in our model is 25% that further reduces 5% and comes down
to 20% upon identification of prediction failures. For the case
of network and hardware failures, our system shifts the job
on other available resource. So, the number of checkpoints
required in our model are least compared to the rest of the
models. Themodel named ‘SIS’ [21] used the highest number
of checkpoints and our proposed model used least number
of checkpoints. FTS model presented in [21] uses resource
failure history and maintains a value representing number
of successful and unsuccessful jobs executed on a resource
and takes scheduling and selection decisions on this basis.
It does not consider number of failures so at each failure it will

increase number of checkpoints. Fig. 18 shows checkpoints
required in each FTSS.

FIGURE 19. Energy consumption of different FTSS.

F. EXPERIMENT VI – ENERGY CONSUMPTION
In this experiment energy consumption of designed system
and FTSS of Table 14 is compared. A compute intensive
job under fixed time constraint of 3600 seconds was sent
for execution on FTSS of Table 14 and our model with
assumptions of no failures. All FTSS divided the job into
sub jobs and executed sub jobs on various available grid
resources. Number of resources selected for job execution by
each FTSS, and CPU power dissipation of those resources
according to their thermal design power was calculated.
Energy consumption of resources under each FTSS was
recorded during execution and is shown in the form of a graph
in fig. 19.

It can be observed from fig. 19 that our model selected
fewer resources due to which overall energy consump-
tion in our system was less compared to other systems.
Our system selected computationally faster resources that
resulted timely job execution completion with less number of
resources. Less number of optimal resources consumed less
energy and completed execution within defined time period.
Other FTSS though completed jobs within the allotted time
period but due to random selection of resources with dif-
ferent processing capabilities utilized more resources result-
ing in increased usage of energy consumption. Increased
energy utilization further enhances the cost of communica-
tion. Our model consumed less energy compared to all other
models.

Unit wise consumption of energy, cost and time is also
recorded during execution and is shown in fig. 20. All FTSS
consumed 3600 units of time visible in the graph. Energy
consumed based on number of resources and cost calcula-
tion in units show that our model consumed least energy
and was cost effective compared to rest of the systems.
Selection of computationally fast resources through genetic
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FIGURE 20. Cost, energy and time consumption.

algorithm resulted in less number of required resources for
job execution. Overall cost and energy consumption was
less compared to other FTSS that randomly selected more
resources having less computational capabilities resulting in
increased cost due to more energy requirements.

VII. CONCLUSION
In this paper, we proposed a dynamic and adaptive fault
tolerant scheduling for computational grids. Our fault tol-
erant scheduler is a combination of proactive and reactive
fault tolerant orchestrator. Proactive fault tolerant orchestra-
tor identifies reliable resources through use of two new con-
cepts i) location and ii) availability. Computationally optimal
resources are identified through genetic algorithm. Reactive
fault tolerant orchestrator dispatches resources for execution
and periodically checks them for errors through monitoring
temperature of the devices. Proposedmodel was implemented
using GridSim. Results obtained through experiments and
their comparison with existing models leads us to the con-
clusion that our proposed model is suitable for use in compu-
tational grids. Our designed model offers several benefits like
increased reliability in addition to failures. Better availability
of resources in a heterogeneously connected environment and
provision of optimal resource selection that ensures improve-
ment in quality of service. In future, we will extend the idea
by including artificial neural network based intelligent fault
detection and prediction for handling fault tolerance in grid
and other HPC based systems, like cloud.
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