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ABSTRACT It is important to determine when and why stereotyped movements indicative of developmental
disabilities occur in order to provide timely medical treatment. However, these behaviors are unpredictable,
which renders their automatic detection very useful. In this paper, we propose a machine learning system that
runs on a smartwatch and a smartphone to recognize stereotyped movements in children with developmental
disabilities. We train a classifier by tagging data from an accelerometer and a gyroscope in a smartwatch to
one of six stereotyped movements made by children and recognized by special educational needs teachers.
This classifier can then recognize when a child wearing a smartwatch is making one of the stereotyped
movements. These schemes were implemented as a suite of apps used by parents and caregivers. In tests
on children and young people with developmental disabilities, the system achieved an average recognition
accuracy of 91% when individual training data was used.

INDEX TERMS Activity recognition, assisted living, machine learning.

I. INTRODUCTION
Developmental disabilities affect a diverse group of people
suffering from chronic conditions caused by mental or phys-
ical impairments. They typically experience difficulties with
a number of issues, including language, mobility, learning,
self-help, and independent living. In the United States, it has
been estimated that approximately 15% of children aged 3 to
17 have one or more developmental disabilities, and that this
percentage is increasing over time [1]. For example, the last
12 years have witnessed an increase of 17.1% [1].

Developmental disabilities can be detected early in life,
and usually persist indefinitely [2]. One of the major issues
for children with such disabilities is the care required from
parents, especially because these children have trouble with
self-advocacy and defending their own rights [3]. A recent
survey suggested that, on average, parents of children with
developmental disabilities spend more than 12 hours each
weekday, and over 36 hours across each weekend, taking
care of their children [3]. Thus, relieving so significant a big
burden on these parents is important.

Children with developmental disabilities typically exhibit
stereotyped movements: they may perform the same actions

over and over again, utter the same phrase repeatedly, and
constantly insist on the same routine [4]. Severe stereotyped
movements are likely to be interpreted as aggressive, and
can result in injury to the child or others. Less severe move-
ments are still likely to be considered socially inappropriate,
which complicates the child’s social integration. Stereotyped
movements also interfere with the acquisition of new skills by
disturbing the child’s concentration. Unfortunately, it is often
unwise to prevent or interrupt these movements, as the child
can then become anxious, agitated, or aggressive [5].

Stereotyped movements can be treated in various ways, but
all of them require the collection of accurate data to deter-
mine when and under what circumstances the movements
occur [6]. Therapists have typically measured this behavior
using methods such as rating scales while observing the child
directly or on video, but this approach is often inaccurate and
certainly time consuming. Rating scales are subjective, and
fail to capture differences in the form, amount, and duration
of behaviors across children. The problems can be addressed
by automated detection of stereotyped movements.

Many attempts have been made in the literature to rec-
ognize postures assumed by the human body, including in
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activities such as ambulation and exercise. The most
widespread approach involves using machine learning
algorithms to convert sensory data into higher-level activity
information [7], [8]. Due to the widespread uptake of smart-
watches, many people already wear accelerometers and other
sensors on their persons, offering a greater number of oppor-
tunities for activity detection. This is particularly relevant to
children with developmental disabilities, who tend to release
unfamiliar things from their bodies but may tolerate watch-
shaped things, and many already wear identity bracelets [9].

Smartwatches also provide facilities absent from other
wearable sensors, such as multi-modal user interfaces and
Bluetooth connectivity. Smartwatches potentially offer the
facility to detect stereotyped movements that are otherwise
unobtrusive. However, to the best of our knowledge, no
study has been reported on the use of commercially available
smartwatches for monitoring children with developmental
disabilities.

In this paper, we investigate the suitability of smartwatches
for detecting stereotyped movements in children with dis-
abilities. We propose an activity recognition scheme divided
into training and recognition phases: in the training phase, a
classifier is constructed to establish the relationship between
sensor data and activities, and in the recognition phase, this
classifier decides the activity that is taking place. We go on
to present the results from a study of seven children with
developmental disabilities, where we look for six well-known
stereotyped behaviors. Our scheme was implemented as a
suite of apps designed for use by parents and caregivers.

The rest of this paper is organized as follows: We review
related work in Section II, propose activity recognition
schemes in Section III, and provide implementation details
in Section IV. We assess the effectiveness of these schemes
by means of a case study in Section V, and draw conclusions
in Section VI.

II. RELATED WORK
There are two well-known approaches to the recognition
of human physical activity, involving external and wearable
sensors [10]. External sensors need to be placed appropriately
to record the poses ormotions being recorded, and no data can
be obtained if the subject moves out of the prescribed range.
Wearable sensors have long been used for motion capture in
automation, and have more quotidian applications [10].

Bao and Intille [11] placed bi-axial accelerometers at five
points on a subject’s body to recognize 20 common physical
activities in daily life. They concluded that the thigh and
wrist were the best locations for sensors for this application.
Yang [12] developed an activity recognition system that uses
a single three-axis accelerometer in a cellphone to identify
when the subject was sitting, standing, walking, running,
driving, and cycling. Tapia [13] proposed a system for rec-
ognizing physical activities based on multiple body-worn
sensors and a decision-tree classifier where feature vectors
are chosen based on information gain to recognize simple
physical activities.

Lukowicz et al. [6] used body-worn microphones and
accelerometers, placed at different locations on a subject’s
body, to recognize workshop activities. They combined data
from accelerometers with those concerning the intensity of
signals from microphones to associate environmental sounds
with the subject’s activity. Chung et al. [14] proposed a
system that uses features obtained from a chest-mounted
three-axis accelerometer to classify running and walking
activities. Naranjo-Hernández et al. [15] employed a three-
axis accelerometer located on the back of the subject to
monitor human activities with the aim of promoting a healthy
lifestyle for elderly people. Curone et al. [16] developed a
classifier that detects activities irrespective of the orientation
of sensors. Ravi et al. [17] compared a number of classi-
fication algorithms using various feature vectors used for
activity recognition. However, all these schemes were mainly
developed to recognize ordinary human activities, because
of which their feasibility for the recognition of stereotyped
movements is questionable.

Accurate recognition of stereotyped movements in sub-
jects with developmental disabilities is difficult because these
movements follow unpredictable patterns that may not be
repeated. Albinali et al. [18] recognized stereotyped motor
movements using a wireless three-axis accelerometer and a
gyroscope on a patient’s chest and wrist. They observed and
recorded stereotyped hand flapping and body rocking in both
laboratory and classroom environments. Gonalves et al. [19]
compared the effectiveness of theMicrosoft Kinect sensor for
gesture recognition algorithms with a system with a three-
axis accelerometer attached to the subject’s right arm for the
detection of stereotyped movements recognized using statis-
tical methods. Plötz et al. [20] used a data logger connected
wirelessly to sensors on the subject’s limbs to detect clinically
significant behaviors. However, none of these methodsmakes
use of smartwatches for activity recognition.

Several schemes have been developed for activity recog-
nition using smartwatches. Xu et al. [21] proposed a system
to recognize finger, hand, and arm gestures using a bespoke
smartwatch. They also showed that their smartwatch could
recognize characters written using the wearer’s index finger.
Shen et al. [7] traced arm motion using a system based on
inertial sensors and a model of the anatomy of the arm to
construct a hidden Markov model.

Smartwatches can be used to detect risky situations and
dangerous physical activities with the aim of preventing
accidents. Lee et al. [22] developed a system for detecting
driver drowsiness based on a smartwatch. It correlates levels
of drowsiness with driving behavior obtained from sensors
in the smartwatch. Lee et al. [23] (not the same group)
developed a location tracking system that correlated domes-
tic activities with the room occupied by the subjects and
movements characterized by sensor data from a smartwatch.
Lee and Song [24] tested the accuracy of machine learning
algorithms for normal persons without developmental dis-
abilities, but conducted no detailed analysis including preci-
sion, recall, and Cohen’s kappa. To the best of our knowledge,
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no study has handled the detection of stereotyped movements
using a case study on children with developmental disabilities
through smartwatches.

III. ACTIVITY RECOGNITION
A. BASIC IDEA
Most smartwatches are now equipped with sensors, of which
the most common are gyroscopes and accelerometers, which
provide data we use to recognize a variety of activities. Our
method of activity recognition involves a training phase fol-
lowed by a recognition phase. In the training phase, sensor
data is collected while stereotyped movements are acted out
by teachers specializing with children with developmental
disabilities. We consider six stereotyped movements: clench-
ing a fist, waving a hand, swinging an arm, raising an arm,
lowering an arm, and throwing [2]. Other movements are
classified into a garbage set.

Feature values are obtained from the sensor input data
to reduce the effect of irrelevant and redundant data, which
increases learning accuracy. To find the best features to
use, we determined the information gain, which represents
the level of certainty in a particular prediction, for each of
41 feature vector calculations. Table 1 summarizes the fea-
ture vectors used in our study [13]. Based on this empirical
analysis, we selected 1) the number of sensors, 2) the number
of features, and 3) the feature vector types to use.

TABLE 1. Feature vectors [13].

A classifier was then constructed for activity recogni-
tion. We chose a decision tree algorithm [25] because it
shows a good tradeoff between accuracy and computation
time [11], [12], [18].

B. TRAINING PHASE
Training consists of three phases:

1) Data collection: Signals from the three-axis accelerom-
eter with a sensing range of +/-2g and a gyroscope
corresponding to each activity were collected at 20 Hz.
A moving average technique was used to reduce noise;
a 10-point moving average filter was used to match the
number of processed data items in real-time.

2) Feature extraction: The processed data was split into
time windows with a 50% overlap [18], and the value of
each feature vector was calculated from every 10 data
points. Thus, four feature vectors were calculated for
each input second. The feature vectors used are shown
in Table 1.

3) Classifier construction: A classifier was built from the
feature vector values and the corresponding activities.

We performed preliminary experiments on three persons
to determine the sensor types, feature vectors, and machine
learning algorithm to use.

1) CHOICE OF FEATURE VECTORS
Feature vectors have been widely used in activity recogni-
tion [12], [13], [21]. We derive an information gain value for
each feature vector to determine how well the given feature
characterizes an activity [26].

Let N f be the number of feature vectors, let N I
i be the

number of instances of feature vector i, and let N⊕i be the
number of instances when stereotyped behavior is deemed to
have occurred. If N	i = N I

i − N
⊕

i , the entropy of all feature
vectors E can be calculated as follows:

E = −

∑Nf
i N⊕i∑Nf
i N Ii

log2

∑Nf
i N⊕i∑Nf
i N Ii

−

∑Nf
i (N	i )∑Nf
i N Ii

log2

∑Nf
i (N	i )∑Nf
i N Ii

. (1)

We can then derive the information gainGi for feature vector i
as follows:

Gi = E − (−
N⊕i
N I
i

log2
N⊕i
N I
i

−
N	i
N I
i

log2
N	i
N I
i

). (2)

We considered 41 feature vectors [13], based on both the
three-axis accelerometer and gyroscope data, for six activ-
ities, and calculated the average information gain for each
activity. Table 2 shows the six best feature vectors for each
sensor type and their information gain values.

TABLE 2. Top 10 feature vectors.

The accuracy of recognition is likely to increase if more
feature vectors are used, but determining these vectors
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requires computation. Thus, there is a tradeoff between accu-
racy and time. We performed experiments to determine the
effect of the number of feature vectors computed for each
sensor on recognition accuracy. We collected training data
from three subjects for each activity, and then calculated the
average recognition accuracy using the three-axis accelerom-
eter and the gyroscope.

TABLE 3. Recognition accuracy depending on the number of feature
vectors(%).

TABLE 4. Average computation time depending on number of feature
vectors(s).

Table 3 shows the effect of the number of feature vectors
used on recognition accuracy, and Table 4 shows the average
feature vector computation time, on a Samsung Galaxy S7
smartphone.We found that the time difference between activ-
ity occurrence and its detection may have an undesirable
effect on activity notification when activity determination
time exceeds 0.15 seconds. We therefore used three feature
vectors for each sensor type.

2) DETERMINATION OF SENSOR TYPE
We compared the accuracy of recognition of stereotyped
movements obtained using the accelerometer and the gyro-
scope on a smartwatch, as well as a combination of both
sensors. The results are shown in Table 5. Using both sensors
yielded the best performance, which was to be expected
because the three-axis accelerometer and the gyroscope mea-
sure different characteristics of motion. We used both sensors
in the experiments reported in the remainder of this paper.

TABLE 5. Recognition accuracy against sensor types(%).

3) DETERMINATION OF CLASSIFIER
We tried four different classifiers from the WEKA
Toolkit [27]: the naive Bayesian (NB) classifier, the
k-nearest neighbor (kNN) classifier, the support vector

machine (SVM), and the C4.5 decision tree (DT). For the
SVM technique, a radial basis function (RBF) kernel was
used, and feature vectors were normalized to between 0 and 1.
The accuracy of each algorithm for each activity is shown in
Table 6. On the basis of these results, we chose to use the
C4.5 decision tree classifier [26].

TABLE 6. Recognition accuracy for each classifier (%).

C. RECOGNITION PHASE
As shown in Table 4, the recognition required a good deal
of computation. It was therefore performed on a smartphone
connected to a smartwatch, as shown in Fig. 1. Data from
the smartwatch sensors was sent to the smartphone. This data
was averaged, the feature vectors were calculated, and the
classifier determined the child’s activity.

FIGURE 1. Process of the recognition phase.

IV. IMPLEMENTATION
We implemented our scheme on the Android operating sys-
tem running on a SONY SWR50 smartwatch and a Samsung
Galaxy S7. As shown in Fig. 1, our implementation can be
divided into five functionalities: data collection, feature vec-
tor calculation, activity recognition, data logging, and alarm-
ing. To gather sensor data, a smartwatch needs to support the
data collection functionality, but most functionalities are built
on a smartphone to support the high computation required
for activity recognition. The smartwatch was connected to
a smartphone via Wi-Fi, a cellular network, and Bluetooth,
so that gathered data could be delivered to the caregiver’s
smartphone. The children could be alarmed by way of sound
or vibration when specific activities were detected by the
smartphone.

Our implementation can be summarized as follows:
1) Data collection: It involved collecting raw sensor data

from sensors in a smartwatch at a rate of 20 Hz and
delivering them to the smartphone.
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2) Feature vector calculation: By processing raw sensor
data, it calculated feature vectors.

3) Activity recognition: A classifier recognized activities
that matched feature vectors.

4) Data logging: Tuples of (time, activity) were recorded
when activities were recorded.

5) Alarming: When specific activities were detected, they
sent an alarm message to the smartwatch, which
allowed users to be notified through a vibration.

Fig. 2 shows the interfaces for training and recognition.
The screen shown in Fig. 2 (a) allows a user to select one
of nine activities for training. The screen shown in Fig. 2 (b)
appears, and the user can start, pause, or finish training

FIGURE 2. Examples of user interfaces of our implementation.
(a) Training phase: selection of activity. (b) Training phase: collection of
clenching training dataset. (c) Recognition phase: start of recognition.
(d) Recognition phase: clenching activity is detected.

as shown in Fig. 2 (b). After training, the feature vectors
and their labels recorded on the smartphone are output to a
machine learning tool [27] to produce the classifier.

At the start of the recognition phase, the screen shown in
Fig. 2 (c) is displayed on the smartphone. Recognition starts
when the button is clicked. When a stereotyped movement
occurs, a graphic of the movement is displayed on the screen.
Fig. 2 (d) shows the image for clenching. This can be used
to alert caregivers. An interface for preventing the frequency
with which different stereotypedmovements were recognized
is also provided.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL ENVIRONMENT
We tested our system at a summer camp for young people
diagnosedwith developmental disabilities, as shown in Fig. 3.
Our experiments were designed to evaluate the: (1) accuracy
of activity recognition, (2) factors affecting accuracy, such as
number of feature vectors and sensors, and (3) the effect of
different ways of constructing the classifier.

FIGURE 3. A picture of the case study.

Seven young people (three females and four males)
between the ages of 13 and 24 (17.3 on average, with a
standard deviation of 3.9) participated in the experiment for
two days. The participants were guided by specialized teach-
ers to perform six stereotyped movements (clenching a fist,
swinging arms, throwing things, waving hands, raising arms,
and lowering arms) in arbitrary order. In this way, on the first
day of the experiment, 37,028 items of training data were
collected, and 17,436 feature vectors were computed to train
the classifier. We compared the results from each classifier by
assessing the same movement by two special needs teachers.
These teachers were asked to resolve any difference in their
assessments, but in fact differed only 1% of the time.

We use the words positive and negative to refer to the
classifier’s predictions, and true and false to refer to the
decision made by the special needs teacher. Thus, each test
had four possible outcomes—(true, positive), (true, negative),
(false, positive), and (false, negative)—and tp, tn, fp, and fn
were, respectively, the number of tests for each outcome.
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Precision and recall [28] were then calculated as follows:

Precision =
tp

tp+ fp
(3)

Recall =
tp

tp+ fn
(4)

Cohen’s coefficient κ was used to measure the probability
of agreement between teachers and the classifier. A value of
κ above 0.8 is known to indicate very good agreement [29].
Let po be the relative agreement between observations, and
pe be the hypothetical probability of chance agreement; then,
κ can be expressed as κ = (po − pe)/(1− pe).
We compared the accuracy of results obtained by three

classifiers: one trained on data from the same subject, a
second trained on all data, and a third trained on all data
except those for the given subject. Along with having two
teachers assess each participant’s movements as they were
made, the movements were recorded on video for subsequent
assessment.

B. EXPERIMENT 1: RESULTS FROM CLASSIFIERS
TRAINED WITH THE SUBJECT’S DATA
Tables 7 and 8 are, respectively, the confusion matri-
ces [30], [31] for the immediate and video analyses for a
classifier trained with each subject’s own training data. The
overall recognition accuracy, obtained by dividing tp by the
number of tests, was 86.31% derived for immediate analysis,
and 91.13% for video analysis.

TABLE 7. Confusion matrix for overall recognition result by immediate
analysis in Experiment 1(C: Clenching, S: Swinging Arm, T: Throwing,
W: Waving Hands, R: Raising Arm, and L: Lowering Arm).

TABLE 8. Confusion matrix for overall recognition result by video analysis
in Experiment 1(C: clenching, S: swinging arm, T: throwing, W: waving
hands, R: raising arm, and L: lowering arm).

We also calculated the values of precision, recall, and κ .
Table 9 shows the results of immediate analysis and Table 10
of the video analysis. The video analysis gave better results
for all activities, with an average precision of 0.89 and a recall
of 0.88.

The accuracy, precision, and recall values for each subject
are shown in Table 11. The average accuracy was 86.69%.

TABLE 9. Precision, recall, and Cohen’s kappa coefficient values of
immediate analysis in Experiment 1.

TABLE 10. Precision, recall, and Cohen’s kappa coefficient values of
Video Analysis in Experiment 1.

TABLE 11. Accuracy, precision, recall, and κ values per participant in
Experiment 1(video analysis).

Participant 3 showed worse performance than the others. This
participant tended not to follow the teacher’s instructions, and
her movements were ambiguous. By excluding Participant 3,
the average accuracy, precision, and recall were improved to
88.62%, 0.89, and 0.91, respectively.

We think that video analysis yielded better results because
it is possible to replay a questionable movement as many
times as necessary with this medium. Note that the recog-
nition of the ‘‘swinging arm’’ and ‘‘throwing’’ movements
was relatively poor; these were whole-arm movements that
are difficult to detect using wrist-worn sensors.

C. EXPERIMENT 2: EXPLOITING OTHER TRAINING DATA
Sometimes, it is difficult to acquire training data from a sub-
ject, which makes it necessary to use a classifier constructed
from other training data. Therefore, we conducted one-
left-out experiments, where the movements of each subject
were assessed by a classifier trained on data from the other
six subjects.
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Tables 12 and 13 show confusion matrices for this experi-
ment, and Tables 14 and 15 show the precision, recall, and κ .
The average accuracy of these classifiers was 73.67% for
immediate analysis and 76.83% for video analysis, lower than
the average accuracy of classifiers trained on the subjects’
own data, as we might expect.

TABLE 12. Confusion matrix for one-left-out result by immediate analysis
(C: clenching, S: swinging arm, T: throwing, W: waving hands, R: raising
arm, and L: lowering arm).

TABLE 13. Confusion matrix for one-left-out result by video analysis
(C: clenching, S: swinging arm, T: throwing, W: waving hands, R: raising
arm, and L: lowering arm).

TABLE 14. Precision, recall, and Cohen’s kappa coefficient value for each
activity in immediate analysis in Experiment 2.

TABLE 15. Precision, recall, and Cohen’s kappa coefficient value for each
activity in video analysis in Experiment 2.

Precision and recall for the ‘‘lowering arm’’ measurement
were significantly less than those in Experiment 1. This
was because the manner of this movement was particularly

variable among subjects. Compared with Experiment 1, κ fell
to between 0.64 and 0.76.

D. EXPERIMENT 3: USING THE SAME CLASSIFIER
FOR EACH PARTICIPANT
In this experiment we constructed a classifier based on all the
participants’ training data, and then used the classifier to rec-
ognize the movements of all participants. The results, given
in Tables 16, 17, 18, and 19, showed a small improvement
over those of Experiment 2, probably because each subject’s

TABLE 16. Confusion matrix for Experiment 3 by immediate analysis
(C: clenching, S: swinging arm, T: throwing, W: waving hands, R: raising
arm, and L: lowering arm).

TABLE 17. Confusion matrix for Experiment 3 by video analysis
(C: clenching, S: swinging arm, T: throwing, W: waving hands,
R: raising arm, and L: lowering arm).

TABLE 18. Precision, recall, and Cohen’s kappa coefficient value for each
activity in immediate analysis in Experiment 3.

TABLE 19. Precision, recall, and Cohen’s kappa coefficient value for each
activity in video analysis in Experiment 3.
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training data were used. The accuracy did not significantly
improve the ‘‘clenching’’ and ‘‘raising arms’’ movements,
which could be because they were made in a similar manner
by all subjects.

VI. CONCLUSIONS
In this study, we showed that a commercially available
smartwatch in communication with a smartphone can be
used to detect and classify stereotyped movements in chil-
dren and young people with developmental disabilities by
employing a movement recognition scheme with training
and recognition phases. In the training phase, a classifier is
constructed to encode the relationship between a particular
stereotyped movement and data from a gyroscope and a
three-axis accelerometer in the smartwatch. In the recog-
nition phase, this classifier determines when stereotyped
movements occur.

We conducted a case study on seven young people with
developmental disabilities to look for six well-known stereo-
typed movements: clenching a fist, waving hands, raising,
lowering, or swinging of arms, and throwing things. When
the classifier was trained using movements identified from
videos (rather than on the spot, which was less consistent), the
classifications yielded an accuracy between 77% and 91%, a
precision between 0.76 and 0.91, a recall between 0.75 and
0.89, and values of Cohen’s kappa between 0.72 and 0.88.

Using training data for users separately improves the accu-
racy of recognition, probably because the form of stereotyped
movements is significantly different from child to child;
however, we found that more restricted movements, such as
clenching a fist, could be detected effectively with a classifier
trained on data obtained from many subjects.

At present, we are extending the proposed method to a
context-aware video surveillance system that records video
clips when stereotyped movements occur. For future work,
we plan to sort out stereotyped movements that correspond
to the parts of usual activity to determine risky situations.
The use of mobile devices in this application means that
power consumption needs to be considered; thus, we also
plan to make our scheme adaptable to changing energy
budgets.
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