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ABSTRACT This paper presents a supervised data imputation based on the class-dependent matrix factors,
which are generated duringmatrix factorization. The proposed ridge alternating least squares imputation uses
class information to create substituted values, which approximate the characteristics of their corresponding
classes, for missing entries. In the training phase, the incomplete data with label information are divided
into different classes based on their labels, such that basis matrices become class-dependent. Subsequently,
iterative projection pursuit is proposed to perform imputation for testing data by computing the linear
combination of these class-dependent basis matrices and their corresponding reconstruction weights. The
class-dependent basis matrix with the minimum loss during reconstruction is regarded as the correct
imputation for a testing sample, of which the substituted values are derived from the matrix factors of its
class. Experiments on open data sets showed that the proposed method successfully decreased the imputation
error by 40.52% on average, better than typical unsupervised collaborative filtering, while maintaining
classification accuracy.

INDEX TERMS Incomplete data analysis, privacy preservation, supervised collaborative filtering, collabo-
rative filtering (CF), alternating least squares (ALS), supervised data imputation, data imputation, singular
value decomposition (SVD), supervised nonnegative matrix factorization (NMF), recommendation system,
low-rank matrix approximation, matrix completion, matrix factorization, iterative projection pursuit.

I. INTRODUCTION
Incomplete data analysis is an important topic in data analyt-
ics. When samples contain missing values, they become non-
vectorial data. Subsequently, typicalMathematical operations
are inapplicable under such circumstances. How to handle
such a problem is interesting in data analytics. Although this
topic arose in the earlier 1970s [1], it has received much
attention recently due to the need for privacy preservation
in cloud computing [2]. Data are deliberately removed or
masked to protect personal private information and to avoid
being maliciously manipulated in cloud data centers [3], [4].
At present, several approaches have been devoted to incom-
plete data analysis, and they can be roughly classified into
two categories. One is single imputation [5], and the other
is multiple imputation (e.g., Markov Chain Monte Carlo

(MCMC) [6]). Regarding single imputation, it contains
various techniques, for example, deletion, fixed-value
replacement (e.g., means or medians), hot decks (i.e., inserted
values are selected based on the same dataset), cold decks
(i.e., insertion is derived from another dataset), stochastic
regression (e.g., interpolation), and matrix completion (e.g.,
imputation based on low-rank matrix approximation [7]).
Recently, matrix completion has gained considerable atten-
tion due to its success in collaborative filtering.

Collaborative filtering (CF) is one of the subtopics in
incomplete data analysis. It has been widely used in rec-
ommendation systems [8], [9] because it is difficult to ask
every user to give ratings to all the products in the database.
Collaborative filtering relies on matrix factorization
approaches, e.g., nonnegative matrix factorization (NMF),
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singular value decomposition (SVD), and alternating least
squares (ALS). These methods are frequently adopted in
data imputation areas. With constraints, such as nonnegative
elements and the number of factors, NMF, SVD, and ALS
have equivalent results.

In earlier research [10], [11], matrix factorization focused
on finding bases, where an observed M -by-N matrix X was
decomposed into two low-rank matrix factors, i.e.,UT andV,
as shown in (1). The dimensions of the two matrix factors are
M -by-D and D-by-N , respectively. The former signifies the
basis matrix, whereas the latter is regarded as the coefficient
matrix.

X ≈ UTV. (1)

The techniques for finding/updating the basis and coeffi-
cient matrices ranged from plain ALS regression [12] and
multiplicative update methods [13], [14] to stochastic gradi-
ent descent ALS [15]. These three methods were the corner
stones of collaborative filtering. The common advantage of
these methods is simplicity and easy implementation. One
may refer to [16] for brief introduction on plain ALS regres-
sion and stochastic gradient descent ALS.

To prevent theALSmodel from overfitting, the research [8]
and [9] examined regularization while performingmatrix fac-
torization. Paterek [8] investigated theALSmodel by append-
ing additional biases to the cost function while finding matrix
factors. These additional biases were jointly discovered along
with matrix factors during factorization. Zhou et al. [9]
proposed the weighted ALS model, where two ridge param-
eters were respectively imposed upon the matrix factors
during factorization. Such an idea was similar to that of
ridge regression. Ridge terms stabilize the system when the
inverse of matrices is computed. To further standardize and to
ensure uniqueness of the discovered bases, orthogonal matrix
factorization was developed by Ding et al. [17]. However, it
is difficult to generate unique and orthogonal bases due to
the incomplete information among observed matrices. This
deepens the difficulty of matrix factorization in incomplete
data analysis, especially when new class-dependent samples
arrive.

The aforementioned typical factorization methodologies
did not embed label information in the model. Such a type of
collaborative filtering is unsupervised. Unlike unsupervised
methods, supervised learning takes advantages of label infor-
mation and encodes it into the process if labels are observed.
Such information helps systems discriminate inputs after
training. Data imputation is subsequently based on the sta-
tistical distribution of the corresponding classes.

To embed label information into the analysis, this work
proposes a supervised ALS imputation for generating class-
dependent substituted values. The contributions of this work
are summarized as follows.

� Unlike semisupervised CF, which mixes training
data and testing data to perform data imputation/
classification, the proposed method separates the testing

stages from the training stage. This avoids redundant
computation.

� When new samples with missing entries arrive, the pro-
posed method can use class-dependent basis matrices to
perform vector approximation by using the developed
iterative projection pursuit. The imputed data are based
on class-dependent bases obtained in the training phase.

� Class-dependent data are imputed by class-dependent
basis matrices. This generates data distributions that
reflect statistical characteristics.

The rest of this paper is organized as follows. Section II
introduces typical collaborative filtering based on ALS.
Subsequently, the proposed supervised ALS imputation is
detailed in Section 3. Section 4 shows the experimental
results, and conclusions are drawn in Section 5.

II. COLLABORATIVE FILTERING BASED ON ALS
This section begins with plain ALS [12], and then ridge
ALS [9] is subsequently introduced. Firstly, consider the case
of complete data X. Given an M -by-N matrix X without
missing values, whereM specifies the number of dimensions,
and N denotes the number of observed samples, ALS matrix
completion is expressed as

EALS (U,V) =
∥∥∥X− UTV

∥∥∥2
F

(2)

where UT and V are respectively M -by-D and D-by-N
unknown matrices, D is the intermediate dimension, ‖·‖F
represents the Frobenius norm, and T is the transpose oper-
ator. As mentioned earlier in (1), UT and V are low-rank
matrices. This implies D < M and D < N . The objective
of ALS matrix completion is to find UT and V, such that the
error EALS becomes minimized. Namely, UT and V are used
to approximate X. This is equivalent to decomposition of X
into matrix factors, UT and V.
Differentiating EALS with respect to UT and V yields

∂EALS
∂V

= −U
(
X− UTV

)
(3)

and
∂EALS
∂UT = −V

(
X− UTV

)T
. (4)

Zeroing the equations gives

V =
(
UUT

)−1
UX (5)

and

U =
(
VVT

)−1
VXT. (6)

Notably, asUT andV are unknown matrices, heuristic initial-
ization of U is necessary to compute V. Recursive update of
UT and V based on (5) and (6) leads to a converged solution.
Moreover, D is an unknown variable, which needs to be
predefined before recursion.

For ridge ALS, or equivalently ‘‘ALS with Weighted-
Regularization (ALS-WR)’’ [9], it uses a ridge parameter
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to regularize and prevent UT and V from overfitting. The
purpose of ridge parameters is like that in Kernel Ridge
Regression (KRR) [18]. Let ρU and ρV represent the ridge
parameters for UT and V, respectively. Thus, (2) becomes

ErALS (U,V) =
∥∥∥X− UTV

∥∥∥2
F
+ ρU ‖U‖2F + ρV ‖V‖

2
F .

(7)

Likewise, differentiating ErALS with respect to UT and V
yields

∂ErALS
∂V

= −U
(
X− UTV

)
+ ρUV (8)

and

∂ErALS
∂UT = −V

(
X− UTV

)T
+ ρUU. (9)

Zeroing the equations gives

V =
(
UUT
+ ρUI

)−1
UX (10)

and

U =
(
VVT
+ ρVI

)−1
VXT (11)

where I is an identity matrix.
The effect of ridge parameters stabilizes the inverse and

avoids singular matrices. As mentioned earlier, the system
can iteratively update UT and V based on (10) and (11) to
generate a solution. Other variations of ridge ALS are also
applicable to computation of solutions, for example, further
regularized ridge ALS, called regularized SVD in [8], and
ridge ALS with stochastic gradient descent [10].

For matrix X with missing values, the procedure is still the
same, as shown in (12) and (13). The difference is that an
element-wise mask G is imposed on X. If an element of X is
missing, then such an entry is temporally substituted with a
zero first.

V =
(
UUT
+ ρUI

)−1
U× G (X) (12)

and

U =
(
VVT
+ ρVI

)−1
V× G (X)T . (13)

Furthermore, when the system computes the error of impu-
tation, the missing entries are ignored.

ErALS (U,V) =
∥∥∥G (X− UTV

)∥∥∥2
F
. (14)

Finally, the missing elements of X are replaced with the
corresponding elements of the generated matrix, i.e., UT V.
This completes the matrix approximation.

TABLE 1. Attributes of the datasets.

TABLE 2. Stopping thresholds (average RMSEs) for iterative updating
during training and testing.

III. PROPOSED RIDGE ALS IMPUTATION BY
ITERATIVE PROJECTION PURSUIT
AssumeX is anN -by-M data matrix with missing values, and
y is an N -by-1 vector containing the corresponding labels.
Also assume that the number of classes is L. The proposed
ALS classifier for supervised data imputation is based on typ-
ical ridge ALS matrix approximation, in which X is divided
into X`, and ` = 1, ..,L. The size of X` is M × N`, where
N1 + N2 + . . .+ NL = N .
Based on ridge regression, for each class, class-dependent

matrix factors U` and V` are generated during the training
phase as follows.

V` =
(
U`UT

` + ρU`I
)−1

U` × G (X`) (15)

and

U` =
(
V`VT

` + ρV`I
)−1

V` × G (X`)T . (16)

Only data matrix X` can be used for formation of
U` andV`. Initialization ofU` in this study is based on class-
dependent means plus a vector Z that contains small random
numbers.

U` =
[
µ`,1 µ`,2 . . . µ`,D

]T
+ ZT (17)

where

µ`,d =

N∑̀
n`=1

G
(
Xn`
)
. (18)

Moreover, d is the index of the intermediate dimension D,
n` signifies the index of the samples in class `, µ denotes
the mean, and Xn` is the n`-th column of Xn` . Let t denote a
new M -by-1 sample without missing values. If t belongs to
span(UT

` ), this means a linear combination of the vectors in
UT
` exists when U

T
` contains all the bases. The combinational

coefficients can be collected in a 1-by-D vector v, such that
t = UT

` × vT` . Besides, v
T
` belongs to V`, where V` can

be viewed as all the possible combinations of the vectors in
UT
` when sufficient samples are observed during the training

stage. Thus, vT` = V`×a`, where a` is an N`-by-1 coefficient
vector.
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TABLE 3. Imputation errors of the testing samples in the ECG dataset by using the poly2 kernel.

TABLE 4. Imputation errors of the testing samples in the ECG dataset by using the poly3 kernel.

TABLE 5. Imputation errors of the testing samples in the ECG dataset by using the RBF.

TABLE 6. Imputation errors of the testing samples in the SCN dataset by using the poly2 kernel.

However, UT
` and V` are both low-rank matrices. The

objective is to find a`, so thatUT
`V`a` can sufficiently approx-

imate t. That is,

t ≈ UT
`V`a`. (19)

In fact, as t belongs to span(UT
` ), the following representation

is equivalent

t ≈ UT
`V`a` = UT

` v
T
` . (20)

The system can determine the class of the new sample by
measuring the reconstruction error.

e` = t− UT
` v

T
` (21)

where

vT` =
(
U`UT

` + ρ`I
)−1

U`t. (22)

With recursive reconstruction and regression, the system
can jointly approximate the testing sample and perform
classification.

Equation (22) is the solution to ridge regression (RR), i.e.,

ERR (v`) =
∥∥∥t− UT

` v
T
`

∥∥∥2
F
+ ρ`

∥∥∥vT`∥∥∥2F . (23)

For t with missing values, both data imputation and clas-
sification should be performed during the above-mentioned
process. Iterative projection pursuit based on RR is therefore
proposed in our algorithm. Iterative projection pursuit recur-
sively examines the closest distance between the vectors,
formed by the class-dependent basis matrices, and the testing
incomplete vector. When the most similar vector is found, it
is used to represent the incomplete vector. The procedure is
listed as follows.

Step 1. Initialize t̂` by filling in the missing entries of t
with zeros.

Step 2. Compute v` for each class based on

vT` [i] =
(
U`UT

` + ρ`I
)−1

U`t̂` [i] (24)

where i specifies the i-th iteration.
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TABLE 7. Imputation errors of the testing samples in the SCN dataset by using the poly3 kernel.

TABLE 8. Imputation errors of the testing samples in the SCN dataset by using the RBF.

TABLE 9. Summary of the imputation error.

Step 3. Impute the missing values by reconstructing t.

t̂` [i] = UT
` × vT` [i] . (25)

t̂` [i+ 1] = t⊕ t̂` [i] . (26)

The operator ⊕ in (26) means to replace the missing values
of t with the imputed ones of t̂.
Step 4. Repeat steps 2–4 until e converges

e` [i+ 1] = G
(
t− t̂` [i+ 1]

)
. (27)

The following stopping criterion is used in our study.

εRMSE` =

√√√√( M∑
m=1

e2`,m [i+ 1]

)
/M . (28)

Equation (28) represents average root-mean-square
errors (RMSEs), where e`,m denotes the m-th dimension of
the error vector for class `.

Step 5. Predicted class is determined by selecting ` with
the minimum error.

`∗ = argmin
`

ε`. (29)

IV. EXPERIMENTAL RESULT
Experiments on open datasets were carried out for evaluat-
ing the performance. The information of these datasets is
listed in Table 1. The first column shows the name. The rest

FIGURE 1. Imputation errors of the ECG database.

columns specify the number of classes, samples, and dimen-
sions, respectively. Dataset ‘‘MIT/BIH ECG’’ is available at
PhysioNet (www.physionet.org), and ‘‘Scene Classification
(SCN)’’ [19] was downloaded from the official LibSVM
website. The experiment used randomly selected 80.00% of
the data for training, and the rest 20.00% were for testing.
Both of the two datasets were normalized before further
postprocessing.

The percentage of missing values ranged from 10.00%
to 30.00%. Missing entries were randomly and uniformly
generated. Notably, missing entries in the incomplete train-
ing data and the incomplete testing data were not exactly
the same to guarantee randomness. Regarding ridge param-
eters, ρU, ρV, and ρ` were empirically all 0.50. Furthermore,
the threshold of the average RMSEs for both unsupervised
and supervised collaborative filtering was 0.01 during the
training stage (see Table 2). The intermediate dimensions
D during collaborative filtering were 1–9, with a separation
of two. To further enhance the accuracy rates of classifi-
cation, the imputed data by either unsupervised or super-
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TABLE 10. Classification accuracy for the ECG dataset by using the poly2 kernel.

TABLE 11. Classification accuracy for the ECG dataset by using the poly3 kernel.

TABLE 12. Classification accuracy for the ECG dataset by using the RBF.

TABLE 13. Classification accuracy for the SCN dataset by using the poly2 kernel.

vised collaborative filtering were sent into Support Vector
Machines (SVMs) for training. The kernels included the
second-order polynomial (poly2) function, the third-order
polynomial (poly3) function, and the radial basis func-
tion (RBF). For RBFs, the radius for ECG and SCN data
was 1.00 and 10.00, respectively. In total, three systems were

examined. One is typical unsupervised collaborative filtering
with SVMs, another is the proposed ridge ALS imputation
with SVMs, and the other is the proposed ridge ALS imputa-
tion without SVMs.

In the testing phase, the testing samples were imputed first
by unsupervised and the proposed supervised collaborative
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TABLE 14. Classification accuracy for the SCN dataset by using the poly3 kernel.

TABLE 15. Classification accuracy for the SCN dataset by using the RBF.

FIGURE 2. Imputation errors of the SCN database.

filtering, respectively. Subsequently, the imputed data were
sent into the SVMs for classification. For the proposed
supervised collaborative filtering at the testing stage, average
RMSEs were used as the stopping criterion. It was empiri-
cally set to 0.02, less strict than that in the training phase.
When the threshold is smaller, imputation errors become
smaller. Notably, typical unsupervised collaborative filtering
used smaller thresholds than the proposed method did.

The average imputation error after the test is summarized
in Tables 3–8. The error was calculated based on the differ-
ence between the imputed values and the correct answers.
The experimental results showed that the proposed super-
vised CF generated smaller errors than the unsupervised
CF did in all the cases. The average imputation error of
the proposed supervised CF was 0.067134, whereas that of
the unsupervised CF was 0.112878. The proposed method

decreased the imputation error by 40.52% on average. The
detail is shown in Table 9, and the results are displayed
in Figs. 1 and 2. For classification, observations revealed
that the proposed supervised CF + SVM could achieve
approximately the same accuracy as the unsupervised CF +
SVM did. The former generated an accuracy rate of 75.37%,
and the latter yielded an accuracy rate of 75.53% on average.
When the proposed supervised CF did not employ SVMs, the
accuracy was 71.94%. The numerical results are displayed in
Tables 10–15.

V. CONCLUSION
This work presents supervised collaborative filtering, where
class-dependent basis matrices are used for data imputation.
The proposed ridge ALS imputation relies on class-
dependent regressionweights, derived from coefficient matri-
ces, to jointly impute and classify new incomplete samples.
To search the weight, this study develops iterative projection
pursuit. It recursively examines the closest distance between
the vectors, formed by the class-dependent basis matrices,
and the testing incomplete vector.

Experiments on open datasets were conducted to compare
the performance between the proposed system and the base-
line, including imputation errors and classification accuracy.
The experimental results showed that the proposed method
yielded smaller errors than the baseline while simultaneously
maintaining classification accuracy. Such findings verified
the effectiveness of the proposed method.
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