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ABSTRACT The failure detection rate (FDR) is the most common testability index used to evaluate
the equipment testability level. According to the testability test theory of FDR, a widespread supposition
is that the FDR value of a system is an unknown constant. However, there have been a few attempts
to research the sample property of failure detection and the statistical characteristics of FDR to prove
this fundamental premise. Considering the real maintenance effects on the failure occurrence process, the
value of FDR catches time-varying characteristics, which can be depicted as a special statistical process.
A failure occurrence model based on the non-homogeneous Poisson process (NHPP) is proposed to depict
failure occurrence samples under the assumption of minimal maintenance policy. The binominal cumulative
probability function (CDF) is used to depict the each failure detection action. Combining the NHPP based
failure occurrence model and the failure detection model based on a binominal distribution, we can simulate
the failure detection samples and statistical characteristics of FDR based on the Monte Carlo method. This
paper mainly focuses on the expectation and variance of FDR, which are two key statistical characteristics.
To validate the FDR time-varying characteristics, we perform a simulation using two Shop Replaceable
Units in a level flight indicator of a helicopter to evaluate the FDR value. Based on theoretic and simulative
methods, the FDR expectation of the level flight indicator has an increasing or decreasing tendency in the
early stages and tends to be a constant in later stages, while the variation of FDR keeps monotonously
decreasing. Under the assumptions made in this paper, the supposition that the FDR value of a system is a
certain value is not suitable in all stages of the failure occurrence process.

INDEX TERMS Binominal distribution, failure detection rate, NHPP, statistical characteristics, testability
index.

I. INTRODUCTION
High equipment testability levels can shorten the mean time
to repair (MTTR) and give an immediate failure alarm, which
has effects onmaintenance actions, availability and safety [1].
The failure detection rate (FDR) is one of the fundamental
testability indexes. It measures the ability to detect failures
occurring in the system by prescriptive test means. FDR
acts as the constraint and measurement of the testability
level at two phases, including design for testability (DFT)
and testability demonstration. At the design stage, FDR acts
as a constraint of the product testability level. As a con-
tract requirement, the product purchaser usually proposes the
design value of FDR. At the demonstration stage, FDR is

used as a measure to validate the product testability level.
At this stage, the purchaser decides whether to accept the
product by using statistical sampling methods. In order to
validate the value of FDR, existing test theory considers that
the FDR real value of a group of test subjects is a certain
value. Therefore, quality inspection theory is used to validate
the value FDR [2].

According to quality inspection theory, random sampling
is the single source of statistical errors. Statistical errors can
be divided into two sides, which are defined as the user’s risk
and manufacturer’s risk. If the FDR test method based on
the quality inspection theory is effective, it must accord with
the assumption that the real value of FDR is a certain value.
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Zhang et al. [3] proposed that the FDR has time-varying
characteristics but they did not carry out further research.
Based on the failure occurrence model under renewal theory,
Zhao et al. [4] analysed the FDR expectation at different
times. However, perfect repair assumptions are not suitable
for most practical equipment and systems. Other failure-
repair actions have received little attention with respect to the
statistical characteristics of FDR and the influential factors.
Accordingly, research on the characteristics of FDR is crucial,
being the test theory basis of FDR demonstration. This paper
mainly focuses on the statistical characteristics of FDR and
aims to determine the validity of the assumptions we have
made.

According to the definition of FDR, the value of FDR is
affected by the failure occurrence process and each detection
result [5]. Supposing that each failure detection result follows
a binominal distribution, the FDR value can be defined as
a probability value. Considering lifetime failure detection
results, the FDR value is mainly influenced by the failure
occurrence process. According to the repair policy when a
failure occurs, systems can be categorized as non-repairable
systems and repairable systems [6]. The renewal process can
be used to model the failure occurrence process of non-
repairable systems under the assumption of perfect repair.
In reality, most systems, ranging from military equipment to
civil products, are repairable [7]. Repairable systems can be
restored to operating condition after repair actions such as
adjustment, restoration, or lubrication etc.

Despite other differences between failures, the failure time
interval is usually a common characteristics used to depict
failure occurrence laws. Each failure time interval is a ran-
dom time, which can be modelled by a probability density
function (PDF). Existing FDR test theory normally assumed
a constant failure rate, which means each failure time interval
is identical and distributed [2]. However, some researchers
questioned the assumptions of essentially unlimited life and
a constant failure rate for electronics. From maintenance the-
ory, different kinds of maintenance actions would change the
PDF of failure time interval. The branching Poisson process
(BPP), the superposed renewal process (SRP) and the non-
homogeneous Poisson process (NHPP) are widely used to
depict failure time intervals for non-renewal systems [8], [9].
In particular, the NHPP is able to describe the failure-repair
process under minimal repairs. The minimal repair action
means that the system is restored to the functioning state
but is only as good as other equipment equal to its age at
failure [10].

The statistical point process based NHPP is widely used
in the field of reliability evaluation, maintenance cycle opti-
mization and sample generation for virtual testability etc.
Reliability engineering focuses on the reliability analyses and
modelling of reparable systems [11]. Cui et al. [12] presented
an analysis model for assessing the operational reliability
of airborne equipment based on NHPP. Reference [13] pro-
posed an optimum ramp accelerated life test (ALT) of m
identical repairable systems using the non-homogeneous

power law process (PLP) under a failure truncated
case.

In the field of preventive maintenance, the main goal
focuses on designing reasonable maintenance intervals or
inspection times. Therefore, the analysis of failure data is an
important facet in the development of maintenance strategy
for equipment. Cheng et al. supposed that transporter failure
numbers obey NHPP and computed the equal and unequal
maintenance interval [14]. Aiming at finding the optimal
inspection interval of the k-out-of-n load-sharing system,
Taghipour et al. developed amodel to find the optimal inspec-
tion times based on the NHPP model, which minimizes the
total expected cost incurred over the system life cycle [15].

In a physical test of testability demonstration, the failure
sample size is solved by a hypothesis test. The widely used
test sample plan determination methods include single sam-
ple plan, multi sample plan and SPRT(Sequential Probability
Ratio Test) [2]. During the virtual testability demonstration
test, Zhang etc. proposed a failure sample generation method
of repairable systems under assumptions of minimal repair
and considered two maintenance policies, scheduled repair
and corrective maintenance [3], [5].

Obtaining the failure data, estimating the parameters of
NHPP is paramount. Reference [16] compared the parameter
and non-parameter estimation methods to establish the model
of the failure intensity function by using the bootstrap sam-
pling method. A Bayesian statistical approach is presented to
yield posterior distributions of the parameters of the Power
Law and the Log-Linear intensity functions, which are used
to model the trend in the data observed [17], [18]. An over-
whelming majority of publications on the NHPP considers
just two monotonic forms of the NHPP’s rate of occurrence
of failures (ROCOF) [19]. Other aspects of the power-law
NHPP and extensions of the model have been studied. These
include the well-known failure intensity function ‘‘bathtub’’
curve, which is not easily depicted by a mathematical model.
Reference [20] used the superposed PLP (S-PLP) and super-
posed log-linear process (LLP) to model earlier failures and
deterioration failures. Considering that the system design or
the operation environment experiences major changes, a sin-
gle model is not appropriate to describe the failure behaviour
of the entire timeline. A piecewise NHPP model is proposed
for repairable systems with multiple stages [21].

FDR is an important parameter to scale the equipment
testability level. Whether the FDR value of a system meets
the constant assumption needs further investigation. As a
statistical and time-varying parameter, its statistical charac-
teristics are the main points of this paper. This paper proceeds
as follows. Section II analyzes FDR test theory based on
quality inspection and describes the statistical model of FDR.
Under the minimal repair assumption, Section III models
the failure occurrence process using the NHPP, and three
basic kinds of ROCOF functions are analysed. A simulation
flow is illustrated to calculate the statistical characteristics
of FDR in Section IV. As two key stochastic characteris-
tics, the FDR expectation and variance are validated using
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FIGURE 1. Failure occurrence and detection model.

a simulation example in Section V. Conclusions are given
in Section VI.

II. PROBLEM DESCRIPTION
A. STATISTICAL MODEL OF FDR
In general, each failure detection process can be divided into
two steps. First, a failure means that a system changes its
state from operable to a failed state. This process is called the
failure occurrence process. When the system changes its state
from failed to operable, this process is called a repair action.
Assuming that the maintenance time is negligible, each fail-
ure occurrence can be modeled by a statistical process. Sec-
ond, the failure detection method detects the failure. When
an exited failure is correctly detected, the test state is one;
when the test fails, the test state is zero. The state transferring
probability model can be defined as a 0-1 distribution.

Each failure detection process is an automatic indication
of an existing failure. FDR is defined as a rate whereby the
number of successfully detected failures is divided by the
total number of failures during the specified time interval,
which can be defined as [3], [22]

qFDR = ND/N = (N − NF )/N (1)

where ND denotes the number of successfully detected fail-
ures, NF denotes the number of failed detections, and N
denotes the number of total failures. Normally, ND

≤ N and
qFDR ∈ [0, 1].
According to quality inspection theory, the detection

results of the total occurred failures compose a sample pop-
ulation, which has size N . Restricted by time and money
expenses, random sampling theory is widely used in the
quality inspection process. Random sampling theory con-
firms that samples from the whole population can be used
to estimate the statistical characteristics of the population.
Randomly select n samples to estimate the value of FDR,
which can be mathematically modeled by

P{X = d} =
Cn−d
N−NDC

d
ND

Cn
N

(2)

where the random variable X denotes the number of failed
detections in the n samples, and d denotes the number of
detected failures in the samples.

Equation (2) indicates that q̂FDR follows a Hypergeomet-
ric distribution. Actually, it may be difficult to obtain the
whole population of occurred and detected failures as the
time releases. Normally, researchers suppose that the number
of total occurred failures and the selected sample size n
have the relation n/N < 0.1. Under this assumption, the
Hypergeometric distribution can be approximately calculated
as a binominal distribution, i.e., q̂FDR follows the distribution
B(n, q) and (2) can be calculated as{

P{X = d} = Cd
n (1− q)

n−dqd

q̂FDR = d/n
(3)

where P{X = d} denotes the event that random variable X is
smaller or equal to the number d , and the random variable X
denotes the successfully detected failures in the set of n
samples.

According to (2) and (3), let an event {X ≤ c}, denote the
failed detection number c in n samples. Let P{X ≤ c} denote
the probability of event {X ≤ c}

P{X ≤ c} =
c∑

d=0

Cd
n (1− q)

n−dqd (4)

The probability value P{X ≤ c} is also defined as the
receiving probability. When the failure sample size n and
the failed detection number c is determined, the probability
P{X ≤ c} relates to q, and the equation can be written as

L(q) = P{X ≤ c} =
c∑

d=0

P(r) (5)

Under the determined test sample (n, c), L(q) is a function
relating to the parameter q, and L(q) is often defined as the
operating characteristic curve (OC curve).

Single sample plan calculation based on hypothesis test
theory is widely used under double sided risk [3], [23]. The
user’s risk and manufacturer’s risk can be mathematically
modeled by {

1− L(q0) ≤ α
L(q1) ≤ β

(6)

where α and β denote the limited user’s risk and manufac-
turer’s risk respectively. q0 is the allowable minimum value
of FDR and q1 is the manufacturer’s design value and it must
satisfy q0 < q1.
Considering that the failure occurrence is a statistical point

process, let N (t) denote the number of total occurred failures
and ND(t) denote the total number of correctly detected fail-
ures in the time interval (0, t). As the failure occurrence can
be modeled according to its definition, FDR is time varying.
Here we use the notation qFDR(t) to represent the failure
detection rate at time t . Following its definition, qFDR(t) can
be calculated as follows,

qFDR(t) =
ND(t)
N (t)

(7)
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FIGURE 2. Time varying characteristic of FDR.

Generally, the relationship of N (t) and ND(t) must satisfy
N (t) ≥ ND(t).

From the definition of (7), qFDR(t) always lies in the
interval [0, 1]. As random variables N (t) and ND(t) are time
varying, qFDR(t) can be called a statistical process. Consid-
ering n components, let qiFDR(t) denote the FDR value of the
ith component at time t . Here, the term ‘same component’
denotes that the failure causes, such as design, hardware,
software, installation, location, maintenance or operations
people (and conditions), are the same or similar [24]. Under
these design and operation conditions, each qiFDR(t) can be
assumed independent and identically distributed. As shown
in Fig. 2, the dotted lines qiFDR(t)|i = 1, 2, · · · , n are the sam-
ples of qFDR(t), which fluctuate between 0 and 1. The heavy
line is the expectation E[qFDR(t)] of the samples qiFDR(t)|i =
1, 2, · · · , n. From the view point of statistics, we must pay
a great deal of attention to the statistical characteristics of
qFDR(t), such as expectation E[qFDR(t)]. Therefore, the trend
and the statistical characteristics of qFDR(t) are the key points
in the following section.

We assume a system with M subsystems whose failure
occurrence processes remain independent. Let qSFDR denote
the FDR value of the system. Let qiFDR denote the FDR value
of the ith subsystem. According to (1), the value qSFDR can be
modeled by

qSFDR =
M∑
i=1

N i
D(t)

M∑
i=1

N i(t)

(8)

where N i
D(t) denotes the number of detected failures of ith

subsystem in the time interval (0, t] and N i(t) denotes the
total occurred failure in the time interval (0, t].
According to the binominal distribution, the expected num-

ber of detected failures of ith subsystem can be calculated as
E[N i

D(t)] = qiFDR ·N
i(t). Approximately, the value qSFDR can

be calculated as

qSFDR ≈
M∑
i=1

qiFDR • N
i(t)

M∑
i=1

N i(t)

=
1

M∑
i=1

N i(t)

M∑
i=1

qiFDR • N
i(t) (9)

From (9), it clearly illustrated the truth that the FDR value
qSFDR would be affected by the failure occurrence processes

FIGURE 3. Counting process of failure occurrence

of the M subsystems. In other words, although all the FDR
values qiFDR (i = 1, 2, · · · , k) remain constant, the system
FDR value qSFDR would not be confirmed as satisfying the
assumption that qSFDR is a constant.
In the following sections, a failure occurrence model based

on NHPP is used to depict subsystem failures. We also work
on the supposition that the subsystem FDR values are con-
stant and can be modeled by the binomial distribution.

III. FAILURE OCCURRENCE MODEL BASED ON NHPP
As previously described, the failure occurrence process is
not only affected by its reliability level and maintenance
activities. Especially for repairable weapons and equipment,
they will take a long time to work and experience many
repair actions. During the whole life cycle, their failure occur-
rence situations should consider the effects of maintenance
effects. In this section, we consider the minimal maintenance
policy and mathematically model the failure occurrence
process [25].

For a repairable system, let {N (t); t ≥ 0} denote the
number of failures that occurred during time interval [0, t],
which can be simplified as N (t). This is a counting process,
which has the following properties:

(1) The value of {N (t); t ≥ 0} is an integer and increases
monotonically as illustrated in Fig.3.

(2) {N (t); t ≥ 0} has independent increments;
(3) There are no failures to begin with t = 0, i.e. N (0) = 0;
(4) The probability that more than one failure will occur

during (t, t + 1t) is o(1t), and mathematically modeled as
P{[N (t+1t)−N (t)] ≥ 2} = o(1t), where o(1t) is negligible
when the time increment 1t is small;

(5) The probability that a failure will occur during
(t, t + 1t) is λ(t)1t + o(1t), which can be modeled by
P{[N (t +1t)− N (t)] = 1} = λ(t)1t + o(1t);
Determined by these five conditions, this stochastic point

process {N (t); t ≥ 0} can be defined as an NHPP with
the failure intensity function λ(t). If λ(t) is a constant,
{N (t); t ≥ 0} is a homogeneous Poisson process (HPP).
Therefore, the HPP is a special case of NHPP. The failure
intensity function λ(t) is also defined by the rates of occur-
rence of failures (ROCOF) and can be modeled as the time
derivative of the number of failures in the assigned time
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interval:

λ(t)= lim
1t→0

E[N (t+1t)−N (t)]
1t

=
d
dt
E[N (t, t+1t)] (10)

where E[N (t)] = E[N (0, t)] refers to the expectation of
the occurred failure number in (0, t). Naturally, an estimator
of λ(t) can be modeled by

λ̂(t) =
N [t +1t, t]

1t
(11)

Equally, let 3(t) = E{N (0, t]} denote the expectation of a
failure number in (0, t] and it can be defined as the cumulative
intensity function. Therefore, the expected number of failures
3(t, 0) = 3(t) in the interval (t1, t2) is given by

3(t) = E [N (t)] =
∫ t2

t1
λ (u) du (12)

Normally, 3(t) is referred to the MCF (Mean Cumulative
Function).

A sample path of the counting process of failure occurrence
is shown in Fig.3. Suppose that a repairable system is put
into operation at time t = 0. The failure occurrence times
are (t1, t2, t3, · · · ). Ignoring the repair time, i.e., the system
is repaired and put into operation immediately after a failure.
Let ti denote the occurring time of the ith failure. The interval
1ti = ti− ti−1(i = 1, 2, · · · ) denotes the time interval length
between the (i−1)th failure and ith failure. In addition, t0 = 0.
We use the term interarrival time to depict the time interval
between two successive failures.

The probability P{[N (1t + t)− N (t)] = n} that n failures
occurred in the [t, t +1t] is modeled as

P{[N (t +1t)− N (t)] = n}

=
[3(t +1t)−3(t)]n

n!
e−[3(t+1t)−3(t)]

n
(13)

where the probability P{[N (t + 1t) − N (t)] = n} not only
relates to counting start time t but also is affected by the time
interval1t . The interarrival times between failures are neither
independent nor identically distributed.

From (13), an NHPP is able to model a time dependent
intensity function. The importance of the NHPP resides in
the fact that it does not require the condition of stationary
increments. Thus, there is the possibility that events may be
more likely to occur during specific time intervals. The NHPP
has the memory property. Then, it is an adequate tool to study
events where there may be time action [26]. In general, the
MCF 3(t) changes over time.

A. BASIC FORMS OF ROCOF OF NHPP
Under the failure occurrence hypothesis of an NHPP model,
time intervals between successive failures are neither inde-
pendent nor identically distributed, which makes this model
the most important and widely used in the modeling of
repairable systems data. Actually, whenever a trend is found
to be present in time between failure data, a non-stationary
model such as the NHPP is mandatory, where the ROCOF
form is the core of an NHPP.

1) POWER LAW PROCESS (PLP)
The power law non-homogeneous Poisson process
(PL-NHPP) model is usually called a Weibull process. The
failure intensity function of PL-NHPP is modeled by

λ(t) = αβtβ−1 t ≥ 0 (14)

where α is the scale parameter and β is the shape parameter,
and α, β > 0. The PL-NHPP intensity function has different
shapes depending on the range of β. One of the reasons for
the popularity of the PL-NHPP stems from the fact that the
form of λ(t) is flexible. More precisely, the PLP setup can
accommodate both increasing β > 1 and decreasing β < 1
intensities. Moreover, in the special case that β = 1, the
failure intensity function λ(t) is constant and the PL-NHPP
becomes an Homogeneous Poisson Process.

2) LOG-LINEAR PROCESS (LLP)
The log-linear model is often used to depict the failure
occurrence process of electronic systems [5]. The log-linear
intensity function is defined as

λ(t) = α exp (βt) t ≥ 0, α > 0 (15)

The parameter β in the log-linear model affects the number
of failures. If β > 0, a repairable system would be in a
deterioration state. The failure occurrence rate would be in
a decrease state when β < 0. When β = 0, the log-linear
model would be reduced to an HPP with the parameter α,
denoted by HPP(α).

3) SUPERPOSED PLP AND LLP
Although the PL-NHPP model and the log-linear model are
widely used to depict failure occurrence, they both have
a strong drawback that only the NHPP can model mono-
tonic (increasing/decreasing) failure intensity functions.
To describe the bathtub ROCOF curve, Pulcini proposed the
superposed power law process, which can be modeled as [27]

λ(t) =
b1
a1

(
t
a1

)b1−1
+
b2
a2

(
t
a2

)b2−1
t ≥ 0

a1, b1, a2, b2 > 0 (16)

where the parameters a1, b1, a2, b2 meet (b1 − 1)
(b2 − 1) < 0, the superposed PLP is suitable to describe
the bathtub ROCOF curve.

The superposed PLP further enlarges the application range
of the NHPP model. However, it would lead mutation at time
t = 0. Therefore, [20] proposed the superposed LLP, and its
failure intensity function can be described as

λ(t) = α1e−β1t + α2eβ2t t ≥ 0

α1, β1, α2, β2 > 0 (17)

The superposed LLP can also be used to model the bathtub
curve and avoids the mutation at time t = 0.
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IV. SIMULATION CALCULATION OF FDR STATISTICAL
CHARACTERISTICS
This section aims at simulating the failure occurrence and
detection process based on the Monte Carlo method. The
Monte Carlo simulation method is a computerized technique
that provides an approximate solution for a wide variety of
problems [28]. The core of the Monte Carlo method is the
process of generating random numbers.

The simulation of a failure occurrence model based on
NHPP mainly focuses on simulating the failure time interval
between two failures [29]. The NHPP failure occurrence
series can be simulated as follows:

(1) Statistical sequence {ui, i = 1, 2, · · · , n} numbers
are independent and identically distributed (i.i.d.), which
follow a uniform distribution ui ∼ U (0, 1). Suppose that
{ηi, i = 1, 2, · · · , n} is independent and identically exponen-
tially distributed, which can be calculated by

ηi = − ln ui (18)

(2) Let yj denote the sum of {η1, η2, · · · , ηn}

yj =
n∑
i=1

ηi, j = 1, 2, · · · , n (19)

The joint PDF of random variables y1, y2, · · · , yn is

f (y1, y2, · · · , yn) = e−xn , 0 < x1 < x2 < · · · < xn (20)

The statistical sequence {yj, j = 1, 2, · · · , n} is the reach-
ing time of an HPP(1).

(3) Suppose

τj = 3
−1(yj), j = 1, 2, · · · , n (21)

where 3−1(·) denotes the inverse function of MCF, which is
defined in (12).

The time series τ1, · · · , τn is a sample of NHPP with MCF
3(t) [30]. For ∀n ≥ 1, the joint PDF of τ1, · · · , τn is

f (x1, x2, · · · , xn)

=


n
5
i=1
λ(xi) exp[−3(xn)], 0 < x1 < x2 < · · · < xn

0, other
(22)

Each failure detection result b can be simulated by the
binominal distribution b ∼ B(1, q), where q is defined as the
FDR prevalue of a subsystem. The simulating result ofB(1, q)
would be b = 1 with probability q and b = 0 with probability
1 − q, where b = 1 represents the successful detection and
b = 0 denotes failed detection.

In general terms, the simulation calculation procedure of
FDR statistical characteristics is depicted as follows:
Step 1: Determine the statistical time TF , which deter-

mined the last failure occurrence time. Initialize the simu-
lation times ST , the number of subsystems M and the FDR
prevalue qk of the kth subsystem.
Step 2: Initialize the simulation indices i, j, and k , where i

represents the ith simulation, j represents the jth failure, and
k denotes the subsystem label number .

Step 3:Determine the MCF3k (t) and its parameters of the
kth subsystem.
Step 4: Calculate the inverse function 3−1k (t) of 3k (t).
Step 5: Generate a random number uj = U (0, 1), which

obeys a uniform distribution, and calculate ηj = − ln uj.

Step 6: Calculate the sum yj =
j∑

m=1
ηm.

Step 7: Calculate the failure time τi = 3−1(yi).
Step 8: Generate a random number bj ∼ B(1, q), which

represents the detection result of a current simulative failure.
Step 9: Judge whether the current failure time meets

τj ≥ TF . If it satisfies the condition τj ≥ TF , we obtain a
complete sample of the failure occurrence process up to time
TF . If not, repeat steps 5 to 8.
Step 10: In the time interval [0,TF ], at different time tn,

calculate the total number of occurred failures N i
k (tn) and the

number of successfully detected failures N i
k,D(tn). Calculat-

ing the qik,FDR(tn) = N i
k,D(tn)/N

i
k (tn) and we can obtain an

FDR curve in the interval [0,TF ].
Step 11: Repeat the simulation flow ST times and obtain

ST FDR sample curves of the kth subsystem.
Step 12: Simulate other subsystems’ failure occurrence

and detection processes. The FDR samples of whole sys-

tem can be calculated as qiFDR =
k∑

m=1
N i
k,D (tn)/

k∑
m=1

N i
k (tn),

where
k∑

m=1
N i
k,D (tn) and

k∑
m=1

N i
k (tn) denote the number of

detected failures and the total occurrences of failures in the
system.

At different time tn ∈ [0,TF ], calculate the expectation and
variance of the ST FDR sample curves using (23).

E[qFDR(tn)]=
1
ST

ST∑
i=1

qiFDR(tn)

V [qFDR(tn)]=

[
1

ST − 1

ST∑
i=1

{
[qiFDR(tn)−E[qFDR(tn)]]

}2] 1
2

(23)

The simulation flowchart of FDR statistical characteristics
is illustrated in Fig. 4.

V. SIMULATION CASE
Verifying the theory and simulation method proposed in this
paper, a level flight indicator is applied as a study case that
is used to simulate failure detection process and calculate
the values of E[qFDR(t)] and V [qFDR(t)]. The level flight
indicator is an LRU (Line Replaced Unit) product that is
composed of four SRUs (Shop Replaceable Units), including
a static converter, gyroscope and upending mechanism and
synchronizer. The structure of the level flight indicator is
shown in Fig. 8.

Reference [23] collected failure occurrence time
data to model the failure intensity functions of static
converter (SRU1) and the righting mechanism (SRU2). Using
the maximum likelihood estimation (MLE) method, the
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FIGURE 4. Simulation flowchart of FDR statistical characteristics

upending mechanism is modeled by a PLP model; its failure
intensity function is

λ (t) = 0.002t0.11 (24)

FIGURE 5. Structure of the level flight indicator

FIGURE 6. Expectation numbers of occurred and detected failures
of SRU2.

Similarly, the failure intensity function of the static con-
verter is modeled by LLP, which is denoted as

λ (t) = 0.001exp(0.0008t) (25)

The inverse functions of MCF of these two SRUs are as
follows:

3−1SRU1(τ ) = 555.556× τ 0.9009

3−1SRU2(τ ) = 1250× ln(1+ 0.7273× τ ) (26)

where 3−1SRU1(τ ) denotes the inverse function of MCF of
SRU1 and 3−1SRU1(τ ) denotes the inverse function of MCF of
SRU2.

Set the simulation time ST = 1000 and the maximum
failure time TF = 12000(hour). Set the prevalues of FDR
of SRU1 and SRU2 0.95 and 0.5 respectively.

Fig. 6 illustrates the simulation results of the expected
numbers of occurred and detected failures of SRU2. It can
be clearly found that the two curves keep the same shape.
At different times, the number of detected failures is half of
the total number occurred failures, which accords with the
FDR prevalue setting of SRU2.

To check the simulation precision in the number of
occurred failures, we compare the simulative expectation
number of occurred failures to the MCF 3SRU2(t) of
SRU2. The absolute error is calculated as shown in Fig. 7.
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FIGURE 7. Absolute error expectation number of occurred failures

FIGURE 8. FDR Expectation curves of two SRUs.

It illustrates that the absolute error is very small and the
simulation procedure is reliable.

The FDR expectation curves of two SRUs are illustrated in
Fig. 8. The two curves have the same characteristics, which
tends to be constants. In early stages, the E[qFDR(t)] fluctu-
ates slightly, which is attributed to the small number of failure
occurrences; in later stages, the FDR expectation curves tend
to be the FDR prevalues of the two SRUs. According to the
simulation results, the FDR expectation values of the two
SRUs accord with the constant supposition.

As mentioned above, considering the FDR value variation
process of LRU, we suppose that the failure occurrence and
detection process of SRU1 and SRU2 remain independent.
Therefore, the number of occurred failures and detected fail-
ures of LRU is the sum of two SRUs. Fig. 9 illustrates
the FDR expectation variation process of the LRU and two
SRUs. Comparing the variation process of SRUs to LRU, the
variation of the FDR expectation of LRU can be divided into
two intervals. Obviously, the FDR expectation of LRU has
a decreasing tendency before 8000 hours. The FDR expec-
tation value of LRU decreases by about 0.3, which is much
larger than the simulation error described in Fig. 8. After
8000 hours, the FDR expectation curve becomes gradually
close to SRU2.

FIGURE 9. FDR expectation of two SRUs and LRU.

FIGURE 10. FDR variance of two SRUs and LRU

Fig. 10 illustrates the curves of the two SRUs and LRU. The
variation characteristics of the FDR variance continuously
tends toward zero at later stages.

VI. CONCLUSIONS
This paper focuses on the statistical characteristics of FDR,
which is one of the most widely used testability indexes. The
work of this paper can be concluded as follows.

(1) This paper discussed existing test plan design theory
based on the random sampling technology and hypothesis test
theory.

(2) Under the minimal maintenance assumption, we con-
struct the failure occurrence process of the subsystems based
on NHPP theory. The supposition that the FDR values remain
constant ismade in this paper and the failure detection process
is modeled by the binominal distribution.

(3) Under the assumptions that the FDR values of all sub-
systems are constant and failure occurrence processes follows
the NHPP model, we study the expectation and variance
of qFDR(t) of the system constructed by several independent
subsystems. From the simulation result, the expectation value
of qFDR(t) does not always follow the constant assumption.
As the number of occurred failures increases, the variance
value of qFDR(t) continuously decreases and tends to be zero.
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(4)When the failures occurrence processes obey the NHPP
model, the failure detection samples collected at different
times have diverse population characteristics and the existed
test theory based on the hypothesis test theory is not be
suitable to evaluate or validate the FDR value. Moreover,
using the quality inspectionmethod to evaluate the FDR value
of a system, the validation step of the rates of occurrence of
failures should be carried on at first.
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