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ABSTRACT Collective behavior in human society is attracting a lot of attention, particularly as the result
of novel emergent phenomena associated with online social media and networks. In effect, although crowd
wisdom and herding behavior have been well studied in social science, the rapid development of Internet
computing and e-commerce brings further needs of in-depth comprehension of their consequences and
impact from a technological perspective. Based on social learning, an analytical knowledge originated in
social science, we re-examine the well-known phenomenon of information cascade, whereby rational agents
can ignore personal knowledge to follow a predominant social behavior triggered by earlier decisions made
by peers. Moreover, we look into the cascade behavior from a communication theoretic perspective, inter-
preting social learning as a distributed data processing scheme. This perspective enables the development of
a novel framework, which allows a characterization of the conditions that trigger information cascades and
trace their impact on the accuracy of the collective inference. Finally, potential applications and examples
of information cascade have been presented under various cyber technological scenarios, illustrating the
prolific interplay between communication technology and computational social science.

INDEX TERMS Data fusion, distributed signal processing, sensor networks, social networks, collective
behaviour, social learning, information cascades.

I. INTRODUCTION
The surprising outcomes of recent political polls, such as the
Brexit referendum and the latest US presidential election,
is revealing the limitation of our current understanding of
social behaviour in a highly-interconnected world. It has been
claimed that, similar to the way in which evolution takes
place among living species, human society evolves in time
from simple to more complex forms of organization and
behavior [1]. One of the distinctive and more challenging
characteristics of complex systems, which has been widely
acknowledged in social scenarios, is that the aggregation of
the activities of simple components or agents can generate
complex and unpredictable outcomes [2]–[4]. Therefore, just
as thermodynamics and statistical mechanics went beyond
classical mechanics in order to provide an adequate frame-
work for the description of gasses and liquids, a new theory
might be necessary in order to enable a deeper understanding
of important phenomena that characterizemodern society [1].

New information dynamics are defying our traditional
tools of analysis, which were forged in times when the world
was simpler and easier to predict [5], [6]. In the early days

of Internet, the promises of abundance of information and
the anti-authoritarian structure were thought to be seeds that
would bring great benefits to society [7]. However, it has
been shown that the heterogeneity and absence of recognized
information sources can generate doubts about causation,
which in turn can stimulate speculations and misinforma-
tion [8]. Moreover, the excess of available information and
the limited processing capabilities of individuals trigger con-
firmation biases, which stimulate the exclusive use of infor-
mation sources that support one’s existing beliefs or points
of view [9]. Furthermore, online recommendation algorithms
constantly and invisibly filter user’s queries, presenting con-
tents that might better satisfy the user’s profile and prefer-
ences. All these elements are creating so-called digital echo
chambers, where disjoint groups of society are progressively
reinforced in their beliefs—whatever they might be [10]. The
digital misinformation that these mechanisms are generating
is so severe that theWorld Economic Forum (WEF) listed this
as one of the main threats to our modern society [11].

In order to address these issues, one big challenge is to
clarify the effects and consequences of the large amount
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of information that is constantly generated and exchange
between individuals in a digital society [12]. As a matter of
fact, the massive deployment and use of Internet mobile ter-
minals and devices is enablingmassive information networks,
making the global mobile data traffic of 2015 to grow more
than 74% reaching 3.7 exabytes per month, being driven by
2.7 billion connected devices [13]. Moreover, social habits
are evolving concurrently with the pervasive use of Internet,
making social networks an essential tool for social interac-
tion and information exchange [14]–[16]. For example, most
people nowadays use the Internet to check other people’s
recommendations prior to making decisions for traveling,
buying a product or choosing a restaurant. In these cases,
subsequent decisions are influence by earlier agents, which
allows possible misinformation and cascades across the net-
work. Such complex interactions may defy intuition and are
difficult to predict, and therefore an in-depth understanding
of the inner mechanisms is very much desirable.

In particular, one crucial technological goal is to under-
stand the way in which decision making is affected by the
mechanisms of large distributed data processing [17]. In addi-
tion to social science and Internet computing, this knowledge
is further crucial to system automation and cyber-physical
systems, machine learning and artificial intelligence [18].
It is noted that most engineering approaches focuses on a
combination of distributed information gathering and cen-
tralized computing. However, large-scale deployment of
intelligent systems/agents allows distributed processing by
agents who sequentially collect and exchange data and
perform local inferences, which allows the attainment of
more graceful scaling properties with respect to the network
size [19]–[21].

Decision making based on distributedly sensed informa-
tion was intensively studied during the 1980s and early
1990s in the context of distributed radar systems, where the
goal was to design schemes that detect events as accurately
as possible considering various communication restrictions
(c.f. [22]–[24] and references therein). Unfortunately, it has
been shown that the design of optimal schemes for infor-
mation transfer and distributed processing for the general
case is NP-hard [25]. In fact, although in many cases these
schemes can be described as a set of thresholds against which
likelihood functions must be compared, the determination
of the optimal thresholds is in general an intractable prob-
lem [22]. For example, it has been shown that using equal
thresholds can be suboptimal even for the simple case of a
network of identically distributed sensors arranged in a star
topology [26], being only asymptotically optimal for large
networks [22], [27]. Moreover, symmetric strategies are not
useful for more complex network topologies (e.g. [28], [29]),
and hence heuristic methods for finding the thresholds are
necessary. Renewed interest on this problem took place after
the emergence of wireless sensor networks, by considering
the effect of noise, outage events and the impact of energy
and bandwidth constraints (c.f. [30], [31] and references
therein). Other aspects have also been analysed, including

robust distributed estimation [32], [33], multi-objective
optimization [34], distributed parameter optimization, track-
ing andmany others [35]–[37]. However, most of these works
focus on networks of star topology and are based on very
distinctive roles for regular nodes and fusion centers, which
makes them not well-suited for large-scale distributed net-
works with ad hoc topologies.

In parallel, remarkable efforts have been made in
economics and social science to analyze sequential informa-
tion processing and learning on social networks (an exten-
sive literature review about social learning is provided in
Section III). In these models, agents make decisions com-
bining private knowledge with social information that they
gather from looking at theirs peers’ actions. Interestingly, it
has been shown that the aggregation of rational decisions can
generate irrational global behaviour, degrading the ‘‘wisdom
of the crowds’’ into mere herd behaviour. This phenomenon,
called information cascades, arises when the social informa-
tion overloads agents, forcing them to ignore their private
knowledge and to adopt the predominant social behaviour
(an introduction and literature review on information cas-
cades is provided in Section II). It is believed that informa-
tion cascades play crucial roles in the formation of political
opinions, the adoption or rejection of new technology and
many other important social phenomena [38]. There have
existed further interest in understanding the role of informa-
tion cascades in the context of e-commerce and the digital
society [39]. For example, information cascades can have
tremendous consequences in online stores where customers
can review the opinion of previous customers before deciding
to buy a product, or in the emergence of viral media contents
based on sequential actions of like or dislike [40]. Therefore,
developing further in-depth analytical understanding on the
mechanisms that trigger information cascades and their effect
on social learning emerges as a fundamental issue in modern
human society.

The main motivation behind this article is to explore social
learning as a distributed signal processing method, building
a bridge between the research done separately by economists
and sociologist, and electrical engineers and computer scien-
tists. We intend to provide a quantitative framework to anal-
yse the impact of information cascades over the performance
of social learning, while the current literature primarily pays
attention to the conditions that guarantee the achievement of
a perfect inference asymptotically (i.e. the inference error
rate goes to zero). Furthermore, following an engineering
perspective, social learning can be quite useful as a distributed
data processing scheme for a range of applications if the error
rate does not goes to zero but can be bounded below some
critical value. Therefore, we develop novel upper bounds for
the asymptotic inference performance, which can be used as
a design guide for applying social learning in engineering
applications. Moreover, these bounds provide fundamental
insights that delineate the way in which information cascades
influences the asymptotic error rate of social learning. Finally,
our framework also provides analytical formulas for the exact
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performance of each agent, allowing an efficient exploration
of the error rates in non-asymptotic regimes.

The rest of this article is structured as follows.
Sections II and III present an introduction to information
cascades and social learning, presenting the fundamental
ideas and discussing some of the relevant literature. After
this, Section IV presents our novel perspective of social
learning as a data aggregation scheme. Our main results
about the characterization of information cascades, related
to this novel perspective, are presented in Section V, and
are then illustrated for the case of social networks driven by
binary signals in Section VI. Section VII uses the results of
Section V to derive novel bounds for the achievable perfor-
mance of social learning, providing a deeper understanding
of the impact of information cascades over collective signal
processing. These results are then illustrated by numerical
evaluations in Section VIII. Sections IX and X discuss several
important applications that information cascades have in
prominent cyber technological scenarios, including cyber
physical security and machine learning. Finally, Section XI
summarizes our main conclusions.

II. AN INTRODUCTION TO INFORMATION CASCADES
This section present a general introduction to information
cascades, reviewing the state of the art and providing the
necessary background for the unfamiliar reader. In the sequel,
first Section II-A discusses some fundamental aspects and
provide historical remarks. Then, Section II-B presents some
social implications, and provides a preliminary definition of
what an information cascade is (which is latter revisited in
Section V-A). Finally, statistical approaches to study infor-
mation cascades are discussed in Section II-C.

A. FUNDAMENTALS OF GROUP DECISIONS
AND SOCIAL INFLUENCE
Intuitively, the decision made by a group of agents can be
muchmore accurate than the onemade by an isolated individ-
ual. This phenomenon, known as wisdom of the crowds, has
been acknowledged and experimentally verified in diverse
contexts by researchers of economics, psychology and soci-
ology [41]–[43]. The origin of this idea is commonly traced
back to a work written in 1907 by Sir Francis Galton, who
was cousin of Charles Darwin [44]. By examining the results
of a ‘‘guess the weight of the ox’’ competition in a country
fair, Galton noted that the median of all the estimations was
particularly accurate, being closer to the real value than the
guesses made by experts. This is somewhat related to the law
of large numbers, where the process of averaging can keep
the consistent part of a signal while reducing non-coherent
noisy elements. It has to be noted that the trust on the accuracy
of aggregated opinions is not a mere theoretical tool, being
deeply rooted into the popular mind and influencing stock
markets, political elections, and quiz shows [45].

Interestingly, it is also commonly acknowledged that in
real life the wisdom of the crowd is far from infallible.
In effect, it has been noted that the effectiveness of this

phenomenon requires two main principles: decentralization
(allowing diversity of opinion and independence of noise
and errors) and aggregation [46]. The failure of any of these
principles can severely degrade the accuracy of the wisdom
of the crowds.

Already renowned philosophers, like Soren Kierkegaard
and Friedrich Nietzsche, noted that aggregated behaviour can
degrade into mere herd dynamics, where people follow the
prominent social behaviour without judging it with critical
thinking [47]. More recently, a number of studies have shown
how social influence can affect individual decisions, compro-
mising the results of estimation tasks, price determination and
even music preferences [43], [48]–[50]. Social interaction
undermines the independency of individual opinions, as indi-
viduals are usually aware of each other’s decisions and this
might induce them to review their own estimates [51]. After
being aware of peer’s choices, agents might want to modify
their opinions due to peer pressure towards conformity or a
suspect that others might have better information [52], [53].
As a simple example, many people like buying popular
products and think that, if many people liked it, it cannot
be bad. In particular, [50] analyses the behaviour of agents
contrasting the results when they are aware or not of other’s
decisions. The corresponding experimental evidence shows
that the knowledge of other’s decisions effectively reduces the
diversity of opinions, which in turns degrades the effective-
ness of the wisdom of crowds. In this way, one can see how
the aggregation of rational decisions can generate irrational
global behaviour.

B. PRELIMINARY DEFINITION AND
SOCIAL IMPLICATIONS
Social agents usually are faced with the dilemma of how to
act when the information gathered from their social network
contradict their private conclusion. An information cascade
takes place when an agent actually chooses to ignore pri-
vate information in order to follow the predominant social
behaviour or preference, in despite of possible contradictions
with his/her personal information [38]. The term ‘‘cascade’’
comes from the fact that once one agent has cascaded, this
increases the social pressure for future agents to take a similar
decision. Therefore, these events can easily spread over large
portions of a social network.

Information cascades have been proposed as an expla-
nation of how the ‘‘wisdom of the crowds’’ can transform
into herd behaviour [54]. Moreover, it has been suggested
that information cascades play crucial roles in many politic,
economic and social phenomena [38]. For example, some
companies provide early sales or early tests opportunities to
trigger cascades of purchasing decisions [55], [56]. In mar-
kets with a monopolistic seller and buyers that are aware of
each other’s purchases, it has been shown that the monopolist
has incentives to alter the good’s prices in order to induce
herding [57]. With respect to the extremely slow adoption
of a clearly more convenient hybrid seed corn during the
Great Depression, researchers suggest that is was due to the
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higher trust that farmers had for their neighbours over the
information provided by the corresponding salesman [58].
Also, the dangers of information cascades over political pref-
erences has been acknowledged by countries such as Israel
and France, who have made laws to prohibit polling during
the days or weeks before elections in order to avoid a cascad-
ing influence over the citizens [59].

A renewed interest about information cascades have
emerged recently with respect to the social dynamics that take
place inmassive e-commerce and e-marketing platforms [39].
The steering or manipulation of information cascades phe-
nomena could have a big impact over these systems, which
raises concerns about their safety and resilience from mali-
cious attacks or dishonest users. Developing a clear under-
standing of the triggering conditions and range of the effects
of information cascades is therefore of fundamental impor-
tance, as this can enable the design of secure and trustable
platforms that are crucial for a prosperous digital society.

C. STATISTICAL APPROACHES
The mechanisms behind the wisdom of the crowds and infor-
mation cascades are of statistical nature, and hence they
are not restricted to social or psychological phenomena.
According to this rationale, statistical Social Learning may
supply a theoretical tool to develop a deep understanding of
information cascades. While Social Learning is discussed in
Section III, other methodologies are introduced in the sequel.

1) INFORMATION DIFFUSION
Empirical studies of the structural characteristics of infor-
mation cascades can be done by analysing user-generated
contents collected from records of online social networks. For
analysing this data, some approaches (e.g. Social Learning,
c.f. Section III) adopt a microscopic viewpoint where cas-
cades are considered to be the consequence of the decision
patters of specific users. In contrast, a large volume of litera-
ture in computer science avoids these complexities by adopt-
ing a macroscopic perspective, where cascading contents
are analysed as a case of information diffusion over a net-
work. In particular, most of the works focus on studying the
behavior of statistical properties such as cascade length, tree
size and link distribution [60]–[66]. Moreover, this approach
enables the use of techniques from algebraic graph theory to
characterize the diffusion process, including spectral analysis
of the Laplacian or network adjacency matrices [67].

2) DYNAMICAL SYSTEMS ANALYSIS
An alternative framework to study information cascades have
been presented in [68], which is based on a novel connection
found between sequential decision processes and dynamical
systems. In this work the authors consider a group of agents
that have to sequentially make a binary decision. The decision
of the n-th agent, Xn, is generated by considering the informa-
tion carried by a private signal Sn and the previous decisions
X1, . . . ,Xn−1. Moreover, in order to consider irrational and
stochastic aspects of human decisions, it is assumed that

FIGURE 1. Evolution of sequential decision making viewed as a
dynamical system. Studying the evolution of Rn, as defined in (1), stable
and unstable points can be defined, which correspond to the limiting
values of this time series [68].

Xn is stochastically generated following a Bernoulli ran-
dom variable with parameter pn = un(Rn, Sn), where un(·, ·)
is an utility function and Rn is the output of a pre-decision
filter given by

Rn =
1

n− 1

n−1∑
j=1

Sn,j(Xj) (1)

where Sn,j is a collection of stochastic functions that map
{0, 1} to R. The pre-decision filter model is motivated by
the tendency of people to have selective attention and hence
project high-dimensional signals into low-dimensional repre-
sentations. Hence, Rn represents a lossy compressed version
of the decisions of previous agents.

Interestingly, it has been shown that the evolution of the
time series Rn can be traced down using tools from dynamical
system theory. A very intuitive understanding of the evolu-
tion of this system can attained by considering the plot of
a specific utility function, over which the evolution of Rn
corresponds to a standard dynamical system. Following this
rationale, stable and unstable points in the evolution can be
defined, which correspond to the values towards which Rn
converges almost surely (see Figure 1).

This simple model allows to develop a clear intuition
over the aggregated effect of the social information over the
evolution of pn. In effect, the graphical perspective provided
by the dynamical system representation enables an insight
on how, depending on the structure of the variables Sn,j,
some situations are more likely to make Rn+1 to be larger
than Rn, or vice-versa. The decomposition of the space of
possible values of Rn based on attractors, attractive regions
and unstable points allows a whole new approach to the study
of information cascades, whose exploration has just started.

3) EMPIRICAL APPROACHES
Since the idea of information cascades was published in the
economics literature [54], [69], a number of empirical studies
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of information cascades have been carried out. For exam-
ple, [70]–[72] design experiments to investigate the infor-
mation cascades phenomenon in sequential decision making
by human test subjects. In [70], test subjects were ask to
make predictions about the predominant colour of a collection
of balls inside an urn, after looking to a randomly chosen
one. Following the prediction provided by the information
cascade theory, if some few initial decisions coincide, then the
subsequent decisions tend to follow the established pattern
ignoring the result of the actual withdraw.

A simple operational model for information cascades was
presented in [73], being based exclusively on variables that
can be observed from real data. The model was tested on data
related to the adoption of electronic commerce technologies,
showing that information cascades play a major role in such
processes.

The report presented in [74] studies the effect of informa-
tion cascades in data related to how people choose which
movie to see in the theater. The results suggest that the cas-
cading behaviour influence the box-office revenue and profits
characteristics, which are governed by Levy distributions
with infinite mean and infinite variance. This, in turn, might
actually explain the inherent difficulty of making accurate
predictions in those scenarios.

A recent research trend is to use both social learning mod-
eling and data analytics [75], [76] from online platforms [77],
[78]. Some topics considered by this literature include com-
plex user behavior analysis and prediction [65], [66], [79],
and control [80] or steering [39], [81], [82] of complex social
system phenomena. The interested reader can find a detailed
analysis of [39] in Section X-A.

III. HOW STATISTICAL LEARNING TAKES PLACE
IN SOCIAL NETWORKS
This section provide a general introduction to social learning.
The pioneer works of Bayesian social learning are discussed
in Section III-A, and then Section III-B reviews the con-
tributions of more recent works. Aspects of Non-bayesian
social learning are then discussed in Section III-C, and finally
Section III-D present some open question.

A. EARLY EFFORTS
Social learning was initially investigated by [54], [69], [83],
and [84] by analyzing sequential decision-making processes
in social networks. In these systems each agent has to make
one decision following a pre-defined fixed ordering. The
decision of the agent that decides in the n-th place of the
sequence, denoted as Xn ∈ Xn, is based on two sources
of information (see Figure 2). In one hand, agents possess
personal knowledge about the corresponding subject, which
is represented by the random variable Sn ∈ Sn that is only
available to the corresponding agent. These private signals
can be discrete or continuous depending on the cardinality
of the signal space Sn. Also, these signals are correlated
with a variable that represents the ‘‘state of the world’’,
denoted asW , which is unknown to the agents. Secondly, the

FIGURE 2. The Sequential Social Learning Model. The variables Sn
represent personal evidence, while the arrows between various
decisions Xj illustrate how decisions influence each other in
the social system.

n-th agent is aware of the decisions made by all the previous
agents, denoted as Xn−1

= (X1, . . . ,Xn−1). This allows each
agent to learn from the examples of previous agents in order
to improve their decision accuracy.

An interesting question is how the agents combine these
two heterogeneous sources of information in order to opti-
mize their decisions. A crucial assumption adopted in these
works is that the agents act based on perfect rationality
making Bayesian decisions, which maximize the average
value of a cost function that quantifies their personal benefit.
This cost function is traditionally assumed to be affected by
the agent’s own decision Xn and the state of the world as
encoded by W . An interesting result is that social learning
allows individuals with uninformative private signals to har-
vest information from other’s private signals by copying their
decisions. Therefore, even if Sn is not very informative, the
n-th agent can still gain indirect access to the information
conveyed in S1, . . . , Sn by considering Xn−1, which repre-
sent a lossy compressed version of the other agents’ private
signals. This is an embodiment of the wisdom of the crowds
(c.f. Section II-A), as the evidence provided by early agents’
decisions can be successfully aggregated for guaranteeing a
surprisingly improved accuracy for the decisionmade by later
agents. This phenomenon is particularly remarkable for the
case of binary decisions (i.e.Xn ∈ {0, 1}) and complex private
signals, as from a distributed sensing perspective this can be
seen as a distributed data fusion scheme that requires small
amounts of information exchange.

However, these efforts suggest further room to enhance
social learning, as under certain conditions the aggregation
of rational decisions can generate irrational global behaviour
and information cascades (c.f. Section II-B). In effect, infor-
mation cascades arises in social learning when the social
information becomes so persuasive that all subsequent agents
ignore their personal knowledge and adopt an homogeneous
behaviour, and henceXm = Xnc for allm > nc. This is usually
an undesired phenomenon that stops the inclusion of new
evidence in the inference process, as further agents discard
their own private information to blindly follow the prevailing
behavior.

In summary, the initial research succeeded in showing that
information cascades effectively can take place within social
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systems, but could not provide a general understanding of
their nature and generating causes.

B. EFFECT OF COST FUNCTIONS AND
NETWORK TOPOLOGY
Motivated by these initial findings, researchers aimed to
deepen the understanding of the mechanisms of social learn-
ing by extending the original models by considering more
general cost metrics, assuming that the cost functions and
priors possessed by different agents could disagree [85]–[88].
Their results show that the cost function plays a crucial role in
generating homogeneous asymptotic decisions, or in allow-
ing heterogeneous behaviours to coexist. The work reported
in [87] shows that diversity in the agent’s preferences can
undermine the trust that agents give to each other, decreasing
the interest in conformity and allowing different behaviours
to coexist asymptotically. In fact, [86] presents some exam-
ples where the trust is undermined to such an extent that the
past history does not provides valuable information to future
agents, and hence they have to rely exclusively on their own
private signals.

In addition, [86] proved that the asymptotic accuracy of
social learning is not perfect if the information conveyed by
the private signals is bounded. Concretely, let us consider
binary decisions (i.e. Xn ∈ {0, 1}) and a binary state of the
world variable W . Then, under very general conditions, it
can be shown that the maximization of the utility function
is equivalent to making Xn as much similar as W as possi-
ble given the available information (c.f. the corresponding
discussion in Section IV-C). Perfect asymptotic accuracy is
hence equivalent to guarantee that

lim
n→∞

P {Xn 6= W } = 0. (2)

Now, for each possible private signal realization Sn = s ∈
Sn one can compute the likelihood ratio of s taking place
under the event {W = 1} versus {W = 0} (for a precise
definition of the private signal likelihood see Section IV-A).
It is well-known that in general these likelihood ratio values
are sufficient statistics for estimating W based on Sn [89],
and hence due to the above discussion they contain all the
information relevant for generating Xn. Following this, [86]
proved that (2) is not satisfied if the likelihood ratio values
of the private signals are bounded above and bellow by given
constants. Note that one of the consequences of this result is
that social learning cannot attain perfect asymptotic accuracy
when the private signals are drawn from finiten spaces.

Further important insights about social learning were
achieved by studying the effects of the social network topol-
ogy on the aggregated behaviour [39], [56], [90]–[92]. Hence,
although the original models of social learning assumed that
the n-th agent act based on the knowledge of all the previous
decisions Xn−1, these works consider a more general case
where agents only have access to a limited subset of the
previous decisions. The neighbourhood of the n-th agent is
normally defined as the set of agents which are connected

to him/her by the social network, which are denoted as Bn.
Correspondingly, in these scenarios the decision Xn is made
considering the information of Sn and XBn , where the latter
represents the vector of decisions of the neighbours of the n-th
agent. Interestingly, the above works consider both determin-
istic and stochastic social network topologies, the later being
characterized by random neighbourhoods.

Acemoglu et al. [91] provide various conditions over the
network topology and private signal structure that guarantee
or forbid perfect asymptotic social leaning. Their results show
that asymptotic learning does not take place if there is a
group of agents that are ‘‘too influential’’, i.e. if there exist
a infinite number of individuals influenced exclusively by a
specific finite subset of agents. On the other hand, it is also
shown that perfect asymptotic learning takes place if there are
no too influential groups and the private signal likelihood is
unbounded.

As a partial converse result, a number of network topology
characteristics have been presented which, when combined
with bounded private signal likelihood, makes it impossible
to achieve perfect learning. This extends the result of [86] for
the more general case of a (possibly random) social network
topology. However, [91] also provides a fascinating example
of a network structure that allows perfect asymptotic learning
even in presence of bounded private signal likelihood. This
topology is characterized by two different kinds of agents:
innovators, which have few social connections and hence are
likely to follow the dictate of their own private signal, and
gatherers, whose highly connected network location allows
them to synthesize previous opinions. This inspiring hetero-
geneous network showed how an adequate topology can undo
the limitations of the private signal structure, allowing the
system to reach a perfect asymptotic inference.

C. NON-BAYESIAN SOCIAL LEARNING
All the works discussed so far are focused on Bayesian
learning, where agents choose the actions following perfect
rationality. However, important research efforts have been
made in parallel in non-bayesian social learning models,
where agents use simple rule-of-thumb methods to combine
their private information and the one that comes from the
social signals [93]–[97].

A vast part of the literature that studies non-bayesian social
leaning is inspired on a model presented in [93], where agents
combine the neighbours’ opinions additively. In particular,
this work considers a group of agents who need to make
estimates of the value of a parameter θ . The prior knowl-
edge of the n-th agent about the parameter is represented by
a probability distribution over the possible values, denoted
as fn(0). Hence, by considering non-negative constants qi,j
that represent the trust of agents on each other, the process
of exchanging opinions is modeled as

fn(t) =
N∑
j=1

qn,jfj(t − 1), (3)
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where t is an non-negative integer. This method of fusing
information is algebraically simpler than the one used by
Bayesian agents, allowing to perform detailed analyses based
on techniques based on Markov chain theory [98, Ch. 6].
In fact, the iterative process can be represented by

Ef (t) = QEf (t − 1) = QnEf (0) (4)

where Ef (t) = (f1(t), . . . , fn(t))t and Q is the matrix with
entries qn,j. Therefore, it is shown that the asymptotic value
limt→∞ Ef (t) is governed by the properties of Qn for large
values of n. Therefore, using standard tools like the Perron-
Frobenius Theorem [98], it is possible to predict when the
agents achieve asymptotic agreement. Interestingly, if con-
sensus is reached its value is an afine combination of the
original opinions.

In [95] and [97], it is shown that simple ad hoc updating
rules can still achieve asymptotic correct inference, even
when they are unaware of important aspects like the social
network topology or the signal structure of other agents. The
system model of [95] closely follows the model presented
in [93], although it explores the connection of Q with the
social network topology and other aspects. On the other
hand, [97] introduces a constant arrival of new information,
which allows the study novel phenomena like asymptotic
learning in finite networks. Both papers acknowledge that,
although somehow surprisingly simple rules can achieve
asymptotic learning, the simplicity of the rule might have a
strong negative effect on the learning rate and the correspond-
ing speed of convergence.cy

The effect of the network topology on the asymptotic per-
formance of non-bayesian social learning was studied in [96]
using a similar model than the one proposed in [93], but
introducing random matrices Q in order to represent stochas-
tic social networks. This work also considers heterogeneous
agents, some of them being stubborn and hence less likely
to modify their initial opinions. Their analysis shows that the
evolution of the social learning is connected to the matrix W̃ ,
which can be expressed as

W̃ = T + D. (5)

Above, the matrix T is governed by the probabilities of agent
interaction and hence is related to the social structure of
the group, while D represents the influence structure that
quantifies which agents are more or less willing to adapt
their decisions to follow their neighbours. Interestingly, it is
shown that under general conditions W̃ n converges to amatrix
with equal columns, and that the row vector determines the
value of the social consensus. Moreover, they provide bounds
of possible deviations from asymptotic learning that can be
produced by an excessive influence of some agents. One of
these bounds is based on the spectral gap of T , which is
a well-known measure of the social network connectivity
(related to the second largest eigenvalue of the matrix [67]).

There is an interesting ongoing debate about if Bayesian
or non-Bayesian frameworks are more suitable to describe

human endeavour. In a nutshell, although Bayesian models
are elegant and tractable, they assume that agents act always
rationally [99], and consequently make unrealistic assump-
tions about their knowledge of posterior probabilities that
are related to non-trivial aggregated social interactions [97].
However, Bayesian models provide an important benchmark,
not necessarily due to their accuracy but because their sim-
plicity allows to develop important insights about the nature
of the dynamics of aggregated decisions, providing impor-
tant reference points for discussing non-bayesian models as
well [92]. On the other hand, the use of ad hoc information
fusion methods in the non-bayesian social learning literature
makes it difficult to attain general results.

Although highly desirable, it is challenging to compare the
results from bayesian and non-bayesian social learning in a
meaningful and fair way. In fact, while agents in Bayesian
systems usually decide once and do not adapt their deci-
sion further, most of the non-bayesian learning literature
consider agents that update their decision regularly, being
closer to information diffusion processes (c.f. Section II-C1).
One way of filling this gap is by exploring single decision
non-bayesian social learning. This has been done in some
recent literature [68], [100], [101], which also addresses non-
asymptotic properties which were not well-explored before.
For example, [100] proposes a data fusion scheme which
combines Bayesian updating for processing private informa-
tion and an ad-hoc combination based on a Gibbs measure for
synthesising the social information. They show this scheme
achieves exponential convergence, and moreover quantify
the dependencies of the learning rate over different learning
rules and communication constraints using large deviation
theory. In [101] there is a comparison of the performance
that are attainable using different kind of data aggregation
rules, including additive averaging and majority rules. How-
ever, it is difficult to compare their performance results with
previous works as their model focus on a final decision
that uses as input all the partial decisions generated in the
learning process. The main aspects of [68] are discussed
in Section II-C2.

D. ASYMPTOTIC LEARNING AND
INFORMATION CASCADES
The existent literature suggests a direct connection between
imperfect asymptotic learning and information cascades.
Inmost sequential decision processes, the progressive amend-
ing of new evidence generates the eventual achievement of
perfect inference, at least asymptotically. This can be verified
in the case of classic hypothesis testing [102] and in various
distributed hypothesis testing schemes [36], where the con-
vergence to a perfect inference is attained exponentially fast.
However, one of the distinctive characteristics of social learn-
ing —acknowledged since the early efforts— is that under
some conditions perfect learning cannot be achieved and
the asymptotic performance is still sub-optimal. Moreover,
the literature argues that imperfect learning is a distinctive
effect of information cascades, which limit the amount of
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new evidence that is included in the learning process [103].
Therefore, depending on the network topology and private
signal structure there are two exclusive possibilities: either
the social learning achieves perfect asymptotic learning in
the absence of information cascades, or there are information
cascades that limit the learning process and hence prevent
perfect learning to be achieved. Following this idea, in com-
bination with the insights about the effect of the network
topology presented in [39] and [91] explores how selective
adaptation of incentives and the progressive rewiring of the
network connections can help to steer information cascades.
In despite of this preliminary effort, the literature presents
little fundamental understanding of the relationship between
information cascades and the achievable inference perfor-
mance that can be attained by social learning. A first attempt
to clarify this relationship is presented in Section VII.

IV. SOCIAL LEARNING AS A DATA
AGGREGATION SCHEME
This section presents our interpretation of social learning
as a case of distributed signal processing. For this, first
Section IV-A discusses the system model and basic assump-
tions and then Section IV-B focus in analyzing the decision
rule used by agents. Finally, Section IV-C develops a com-
munication theoretic interpretation of social learning, settling
the bases of the framework that is developed in the next
sections.

A. PRELIMINARIES AND BASIC ASSUMPTIONS
Let us consider a group of N agents that are sequentially
engaged in a binary decision-making process. Each agent
makes one decision, being it labeled according to the place
it takes within the decisions’ sequence. The decision of the
n-th agent, denoted as Xn ∈ {0, 1}, is based on two sources
of information (see Figure 3): a private signal Sn ∈ S that
corresponds to a discrete or continuous random variable that
represents personal information that the n-th agent possesses,
and social information given by the random variableGn ∈ Gn
that corresponds to information that the agent obtains from its
own social network.

All participating agents have the same observation capa-
bilities, and therefore the signals Sn are assumed to be iden-
tically distributed. Moreover, it is assumed that the signals
are affected by the environment, which is represented by the
random variable W . We focus in the case of W ∈ {0, 1}, as
this simplifies the details of our presentation. For tractability
reasons we follow the existent literature in assuming that the
signals Sn are conditionally independent given W , following
probability measures denoted by µw when conditioned on
the event {W = w}. It is assumed that both µ0 and µ1
are absolutely continuous with respect to each other [104],
which means that no particular signal completely determines
the state of the world. As a consequence of this assumption,
the log-likelihood ratio of these two distributions is well-
defined and given by the logarithm of the corresponding

FIGURE 3. A social learning problem, where an agent need to make a
decision (Xn) based on personal information coming from a private
signal (Sn) and social information (GN ) coming from a social network.

Radon-Nikodym derivative 3S (s) = log dµ1
dµ0

(s).∗ It is also

assumed that µ0 6= µ1, so that 3S (s) is not trivially equal to
zero.

The available social information, Gn, represents what the
n-th agent can observe in the social network about the deci-
sions made by other agents, which are denoted as Xn−1

=

(X1, . . . ,Xn−1). In effect, it is assumed that in general those
decisions might not be directly observable by the agent, as
they are measured through a social network that can impose
observational restrictions. In general Gn can be a random
variable, vector, matrix or other mathematical object. Useful
examples are when Gn corresponds to:
– The k previous decisions: Gn = (Xn−k+1, . . . ,Xn−1).
– The average value of the all the previous decisions:
Gn =

∑n−1
k=1 Xk/(n− 1).

– The decisions of agents connected by an Erdos-Renyi
network with parameter q ∈ [0, 1], i.e. Gn ∈

{0, 1, e}n−1, where

Zk =

{
Xk with probability q,
e with probaility 1− q.

(6)

Our approach is not to assume any concrete functional form
for Gn, but to develop a general framework with which the
consequences of various properties of Gn can be explored.
As a minimal requirement, we askGn to satisfy the following
basic properties:

∗When Sn takes a finite number of values then dµ1
dµ0

(s) = P{Sn=s|W=1}
P{Sn=s|W=0} ,

while if Sn is a continuous random variable with conditional p.d.f. p(Sn|w)
then dµ1

dµ0
(s) = p(s|w=1)

p(s|w=0) .
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(i) Causality: it is assumed that Gn is conditionally inde-
pendent givenW of Sm for all m ≥ n.

(ii) Uniform social uncertainty: the uncertainty present in
the social media is independent of W . Therefore, Gn
and W are conditionally independent given Xn−1.

A strategy is a rule for generating a decision Xn based
on Sn = s and Gn = gn, i.e. a collection of deterministic
or random functions πn such that Xn = πn(Sn,Gn) for
n ∈ {1, . . . ,N }.

B. DECISION RULE
We consider rational agents that follow a Bayesian strat-
egy to minimize the average cost given by Ūn{πn} =
E {u(πn(Sn,Gn),W )}, where E {·} is the expected value oper-
ator and u(x,w) is a cost function that can be engineered to
match the relevance of the decision Xn = x when W = w.
For example, if u(w, x) = 1 − δw,x with δw,x the Kronecker
delta, then Ūn{π} = P {W 6= π} is the error rate of π as a
predictor ofW . Also, if u(w, x) = |w− x|2 then the Ūn is the
mean square error.

To find a functional description of Bayesian strategies, let
us first consider the average cost of deciding Xn = x given
Sn = s and Gn = gn, which can be expressed as

Un(x|s, gn) = E{un(x,W )|Sn = s,Gn = gn}

=

∑
w∈{0,1}

u(x,w)P
{
W = w|Sn = sn,Gn = gn

}
.

Hence, the corresponding Bayesian strategy is given by
πb
n (s, gn) = argminx∈XUn(x|s, gn). Note that the average cost

after adopting the policy πn can then be written as

Ūn{πn} = E
{
E
{
Un(πn(s, g)|s, g)|Sn = s,Gn = gn

}}
,

clarifying that Ūn{πb
n } ≤ Ūn{πn} for any other strategy πn.

The Bayesian strategy for the case of binary decisions can
be determined by comparing Un(0|s, gn−1) and Un(1|s, gn−1),
which are the relative costs associated with Xn = 0 and
Xn = 1, respectively. This leads to an equivalent condition
given by [89]:

P {W = 1|Sn,Gn}
P {W = 0|Sn,Gn}

Xn=0
≶

Xn=1

u(0, 0)− u(0, 1)
u(1, 1)− u(1, 0)

. (7)

Moreover, due to the causality property of Gn
(c.f. Section IV-A), Sn and Gn are conditionally indepen-
dent given W = w. Therefore, using the Bayes rule on
P {W = 1|Sn,Gn} and P {W = 0|Sn,Gn}, a direct calculation
shows that (7) can be re-written as

3S (Sn)+3Gn (Gn)
Xn=0
≶

Xn=1
ν + η, (8)

where ν = log [u(0,0)−u(0,1)]
[u(1,1)−u(1,0)] , η = log P{W=0}

P{W=1} and3Gn (Gn) is

the log-likelyhood ratio ofGn. This condition supplies a sim-
ple data fusion rule for combining the information provided
by Sn and Gn.

TABLE 1. Table of correspondances.

FIGURE 4. Diagram that shows how social learning can interpreted as a
case of distributed signal processing. The depicted decoder implements
the rule given by (9), which combines the information provided by the
private signal of the n-th agent (Sn) and the evidence that comes form
the social network (Gn). The latter can be considered as additional
side-information that helps to increase the accuracy of the inference.

C. COMMUNICATION THEORETIC INTERPRETATION
Without loss of generality, for non-constant cost functions
and adequate decision’s labeling one can make the event
{Xn = W } less costly that {Xn 6= W }, or equivalently
u(1, 1) ≤ u(1, 0) and u(0, 0) ≤ u(0, 1). Therefore, the
Bayesian strategy is to choose Xn as similar toW as possible,
according to the available state of knowledge provided by Sn
and Gn. Hence, decisions Xn can be considered to be noisy
estimations ofW in a communication theoretic signal space.
To formalize the above intuition, one can represent the

decision process of each agent as data transmission over a
noisy channel (for a summary of correspondences please refer
to Table 1). As a matter of fact, our scenario is equivalent
to a single data source W that is measured over multiple
noisy channels, generating the signals Sk for k = 1, . . . , n
that are processed in order to generate Xn (c.f. Figure 4).
The decoder of the n-th node, hence, receives as input the
signal Sn and uses Gn as side information for optimizing the
decoding process. The social information Gn corresponds to
a lossy compression of the information provided by the sig-
nals S1, . . . , Sn−1 that is expressed in the vector of previous
decisions Xn−1, representing a bandwidth constrain for the
communication between the agents.

To further explore this perspective, let us re-formulate (8)
as

3S (Sn)
Xn=0
≶

Xn=1
τn(Gn), (9)
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where τn(Gn) = ν + η − 3Gn (Gn) is the decision thresh-
old. Therefore, the agent’s decoder can be modeled as two
independent signal processing modules that feed a decision
module (see Figure 4). The first signal processing module
receives as input the signal Sn —which can be a number,
vector, matrix or any othermathematical object— and outputs
3S (Sn), which is a real number that serves as sufficient statis-
tic for the decision process. In this sense, this signal process-
ing module plays a similar role to the one of matched filtering
in a digital communication system [105]. The second signal
processing module takes as input Gn and outputs τn(Gn),
which corresponds to side information that is processed in
order to optimize the decision threshold.

Finally, a decision module classifies the decision signal
3S (Sn) based on a Vonoroi tessellation, which divides R in
two semi-open intervals given by

K0
n = (−∞, τn(Gn)), K1

n = [τn(Gn),∞). (10)

Therefore, the output of the decision module is provided by

πnb (Sn,X
n−1) =

{
1 if 3S (Sn) ∈ K1

n,
0 if 3S (Sn) ∈ K0

n.
(11)

Note that the decision module is equivalent to the last
stage of a demodulator module in digital communication
receivers [105], with the particular feature that the tessellation
is determined by the side information provided by 3Gn (Gn).
This feature and subsequent consequences are analyzed in the
next sections.

V. CASCADING BEHAVIOR
This section presents our main contribution in the analysis
of information cascades. For this purpose, first Section V-A
presents a novel statistical definition of information cas-
cades that distinguishes between local and global cascades,
being valid for Bayesian and non-Bayesian social learning.
Then, Section V-B characterizes the conditions that trigger
local information cascades. Global information cascades are
then analyzed for the case of perfect social information in
Section V-D. The results are extended for non-idea social
information in Section V-C. Finally, Section V-E presents a
communication-theoretic interpretation of the main results of
previous sections.

In the following, Xn = πn(Sn,Gn) corresponds to Bayesian
strategies unless otherwise stated. Also, Pw {X |Y } =

P {X |Y ,W = w} is used as a short-hand notation.

A. DEFINITIONS
Following [54], we understand as information cascade the
phenomenon where the behaviour of a small part of the social
network can trigger a herd behaviour, forcing agents to ignore
their personal knowledge and act according to the social
pressure. In general the decision Xn = πn(Sn,Gn) depends
directly on Sn and Gn; however, a local cascade takes place
when the interdependency between Xn and Sn is broken due
to a dominant influence of Gn. This intuition is formalized in
the next definition.

Definition 1: The social information gn ∈ Gn pushes the n-
th agent into a local information cascade if Xn = πn(Sn, gn)
is statistically independent of Sn.
Note that, for the particular case of Bayesian strategies then

πbn : S × Gn → {0, 1} is a deterministic function, and hence
the above definition states that gn causes a local cascade if
and only if π (s, gn) is constant for all s ∈ S. Therefore, the
above definition generalises the one provided in [39], being
also valid for non-Bayesian strategies.

As a next step, global information cascades are defined.
Intuitively, after a particular agent experiences Gn = gn then
a global cascade takes place if all subsequent agents also fall
in local information cascades almost surely.
Definition 2: A social network experiences a global infor-

mation cascade if there exist a gn ∈ Gn such that the variables
Sk and Xk are statistically independent for all k ≥ n when
conditioned to the event {Gn = gn}.
An interesting question is when a local information cas-

cade triggers a global one. The following sub-sections explore
this issue for the case of Bayesian statistics.

B. DECISION STATISTICS AND LOCAL
INFORMATION CASCADES
As a next step, we aim to analyse the behavior of local infor-
mation cascades as specified byDefinition 1. For studying the
statistics of Xn when rational agents use Bayesian statistics,
first note that all3S (Sn) are identically distributed. Therefore,
for a given Gn = gn and W = w, Xn is Bernoulli distributed
with parameter given by

Pw{Xn = 0 |Gn = gn}

=

∫
S
Pw
{
Xn = 0|Gn = gn, Sn = s

}
dµw(s)

=

∫
S
1
{
πb
n (s, gn) = 0

}
dµw(s)

= Pw
{
3S (Sn) < τn(gn)

}
= F3w

(
τn(gn)

)
,

where F3w (·) is the c.d.f. of the variable 3S (Sn) conditioned
to W = w, whose properties are discussed in Appendix A.
Note that the first equality is a consequence of the conditional
independency between Sn and Gn given W = w, the second
is due to (11) and the third to (9). The above results allows to
prove an useful lemma.
Lemma 1: Xn− τn−Gn form a Markov Chain (i.e. τn(Gn)

is a sufficient statistic for generating Xn).
Proof: From (12) one can see that Pw {Xn|τn,Gn} do not

depend on Gn, and therefore the conditional independency of
Xn and Gn given τn is clear.

Let us introduce the notation Us = ess sups∈S 3S (Sn = s)
and Ls = ess infs∈S 3S (Sn = s) for the essential supermum
and infimum of 3S (Sn).† If any of these quantities diverge,
then there exist signals that provide overwhelming evidence

†The essential supremum is the smallest upper bound that holds almost
surely, being the natural measure-theoretic extension of the supremum [106].
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in favour of one of the hypothesis. If both are finite, the agents
are said to have bounded beliefs. Using these definitions, we
proceed to characterize local information cascades.
Proposition 1: The social information gn ∈ Gn triggers a

local information cascade if and only if τn(gn) /∈ [Ls,Us].
Proof: From (12) it can be seen that if τn < Ls

then is F30 (τn) = F31 (τn) = 0, while if τn > Us then
F30 (τn) = F31 (τn) = 1. Therefore, if τn(gn) /∈ [Ls,Us] then it
determines Xn almost surely, making Xn and Sn independent.
On the other hand, if Ls < τn(gn) < Us then (12) and

the definition of Us and Ls allows to conclude that 0 <

Pw
{
Xn = 0|Xn−1} < 1 for any w ∈ {0, 1}. This implies that

the sets S0(τ ) = {s ∈ S|3S (s) < τ } and S1(τ ) = S − S0

have positive probability under bothµ0 andµ1, which in turn
implies the existence of interdependency between Xn and Sn
in this case.

In this way, we found a simple characterization of the
conditions that trigger local information cascades. Intuitively,
Proposition 1 states that if the social information provides
more evidence than any possible signal, then a local cascade
is triggered almost surely. Some consequences of this result
are explored in the next section.

C. GLOBAL CASCADES UNDER PERFECT
SOCIAL INFORMATION
In this section we explore the conditions that trigger global
information cascades (c.f. Definition 2 given in Section V-A
in the special case where Gn = Xn−1, i.e. when each agent
has perfect access to all the previous decisions. As a first
observation, note that a direct calculation shows that

τn+1(Xn)− τn(Xn−1) = 3Xn−1(Xn−1)−3Xn (Xn)

= −3Xn|Xn−1 (Xn|Xn−1), (12)

where the conditional log-likelihood is given by

3Xn|Xn−1 (Xn|Xn−1) = log
P1
{
Xn|Xn−1}

P0
{
Xn|Xn−1} .

This shows that τn+1 decreases if Xn provides additional
evidence about W = 1 over W = 0 with respect to the
previous decisions, and increased if the opposite happens.
A direct calculation using (12) shows that

3Xn|Xn−1 (xn|xn−1) = λ(xn, τn
(
xn−1)

)
, (13)

where the function λ(·, ·) is defined as

λ(x, τ ) = x log
F31 (τ )

F30 (τ )
+ (1− x) log

1− F31 (τ )

1− F30 (τ )
. (14)

This shows that τn(Xn−1) is a sufficient statistic of Xn−1 for
predicting τn+1− τn. Finally, using these results one can find
that

τn(Xn−1) = η + ν −
n−1∑
k=1

λ
(
Xk , τk (Xk−1)

)
(15)

for n ≥ 2, while for n = 1 then τ1 = ν + η.

From (15) it is tempting to interpret τn as a random walk
over the decision space(for an introduction about Random
walks, see [107]). Although this is true for some particular
cases, this does not hold always as the steps τn+1 − τn =
−3Xn|Xn−1 are in general not identically distributed. How-

ever, although the process of decisions X1,X2, . . . in general
have quite complex non-Markovian statistics, the process
τ1, τ2, . . . posses some useful properties that are explored in
the next Lemma.
Proposition 2: The process τ1, τ2, . . . is Markovian and

Super- or sub- Martingale for W = 0 and W = 1,
respectively.

Proof: See Appendix B.
The main result of this sub-section is to state that the

process τn get trapped in some specific areas of R, and
that these events correspond to global information cascades.
Theorem 1 states that as soon as τn goes beyond [Ls,Us] then
it gets stucked, this condition being necessary and sufficient
for an information cascade to be triggered. As that region
of the decision signal space characterizes local information
cascades (c.f. Proposition 1), is clear that this implies that in
this scenario every local information cascade triggers a global
one.
Theorem 1: Let us assume that the private signals pro-

vide bounded beliefs, i.e. both Us and Ls are finite
(c.f. Section V-B). Then, for a given xn−1 ∈ {0, 1}n−1, the
three following conditions are equivalent:
(i) Xn−1

= xn−1 triggers a local information cascade in
agent n.

(ii) 3Xn|Xn−1(Xn|xn−1) = 0 almost surely.
(iii) Xn−1

= xn−1 causes a global information cascade.
Proof: See Appendix B.

Basically, the above theorem states that if the private sig-
nals have bounded beliefs then each local information cas-
cade triggers a global one. Therefore, the simple graphical
characterization provided by Proposition 1 for local cascades
can be used to analyse global cascades as well (c.f. the
analysis provided in Section V-E).

D. GLOBAL CASCADES UNDER NON-IDEAL
SOCIAL INFORMATION
This section extends the results for global information cas-
cades obtained in the previous section to more general sce-
narios. For this, let us first define the distortion coefficients
given by

αn(gn|x
n−1) = P

{
Gn = gn|X

n−1
= xn−1

}
. (16)

Note that αn(gn|x
n−1) corresponds to the likelihood for the n-

th agent to experience Gn = gn when the previous decisions
are Xn−1

= xn−1. In the following, we use the notation
τ fulln (Xn−1) = η + ν − 3Xn−1(Xn−1) to refer to the decision
threshold of the case of perfect social information, studied
in Section IV, distinguishing it with respect to the actual
decision threshold τn(Gn) related to a state of limited knowl-
edge as introduced in Section IV-C. We also introduce the
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following further property, which is crucial for the rest of the
section.
Definition 3: The social information Gn is said to has

consistent distortion if, for all gn ∈ Gn, one of the following
possibilities hold: either all the decision vectors xn−1 ∈
{0, 1}n−1 such that αn(gn|x

n−1) > 0 satisfy τ
full
n (xn) /∈

[Ls,Us], or all decision vectors such that αn(g|xn−1) > 0
satisfy τ fulln (xn) ∈ [Ls,Us].
Before presenting the main results of the section, we need

to state the following useful lemma.
Lemma 2: If a1, . . . , an and b1, . . . , bn are collections of

non-negative numbers, then

min
{
a1
b1
, . . . ,

an
bn

}
≤

∑n
j=1 aj∑n
j=1 bj

≤ max
{
a1
b1
, . . . ,

an
bn

}
.

Proof: See appendix B.
The following Theorem extends Theorem 1 for the case

of non-ideal social information, providing a sufficient condi-
tion under which local information cascades always trigger
a global one. In summary, this proves that in these scenarios
the decision threshold τn evolves until the first time it reaches
outside of the interval [Ls,Us]. If τn /∈ [Ls,Us] then τm =
τn for all m > n, this being an unequivocal signal of the
beginning of an global information cascade.
Theorem 2: If Gn possess global consistent distortion,

then any local information cascades trigger a global infor-
mation cascade.

Proof: See appendix B.
For providing further intuition and further leverage our

results fromSectionV-C, we explore the relationship between
the condition that trigger global information cascades under
perfect social information and the ones that trigger cascades
in the non-ideal case.
Proposition 3: If the process Gn has consistent distortion,

then each g ∈ Gn for which exists at least one xn ∈ {0, 1}n−1
with αn(g|xn−1) > 0 and τ fulln (xn−1) /∈ [Ls,Us] triggers an
global information cascade.

Proof: Let us focus in the case that τ fulln (xn) > Us, as
the proof for the case τ fulln (xn) < Ls is analogous. Thanks
to Lemma 2 and Theorem 2, it is sufficient to prove that
the above condition guarantees that τn(Gn) > Us. A direct
computation shows that

3Gn (g) = log
P1 {Gn = g}
P0 {Gn = g}

= log

∑
xn∈{0,1}n αn(g|x

n−1)P1
{
Xn
= xn

}∑
xn∈{0,1}n αn(g|xn−1)P0

{
Xn
= xn

} (17)

Then, by applying the previous lemma to the argument of the
logarithm, one can show that

min
xn∈An

{
3Xn (x

n)
}
≤ 3Gn (g) ≤ max

xn∈An

{
3Xn (x

n)
}
,

where An =
{
xn ∈ {0, 1}n

∣∣α(g|xn) > 0
}
. This condition is

equivalent to

min
xn∈An

{
τ fulln (xn)

}
≤ τn(Gn) ≤ max

xn∈An

{
τ fulln (xn)

}
. (18)

FIGURE 5. The decision module compares the decision signal 3S (Sn)
against a threshold τn(Gn), which evolves with the social information.

From this last condition, combined with the global consis-
tency, guarantees that if one xn is such that αn(gn|xn−1) > 0
and τ fulln (xn−1) > Us, then τn(Gn) > Us as well.

E. INFORMATION CASCADES FROM A
COMMUNICATION-THEORETIC
PERSPECTIVE
While previous sections study the conditions that trigger
local and global information cascades, here we aim to
relate the achieved results with the discussion presented in
Section IV-C. In this way, by following a communication-
theoretic perspective, it is possible to see the evolution of
τn as a refinement in the process of signal decoding and a
information cascade as a halt on this refinement. In effect,
the social information makes τn to grow progressively, which
corresponds to a stronger side information that favours one
of the two hypothesis (see Figure 5). Correspondingly, an
information cascade is equivalent to side information that is
so persuasive that completely determines the output of the
decoder, disregarding the actual private signal realization.

It is important to notice that when τn stops evolving due
to an information cascade, then the subsequent realizations
of private signals or social information do not influence the
decision process of future agents any longer, implying that the
learning process has actually stopped. The error rates of all
subsequent agents after an information cascade is triggered
are the same, as their decoding conditions are equivalent. This
explains why information cascades prevent the achievement
of a perfect inference even for asymptotically large networks.

It is interesting to note that the asymptotic performance
of social learning is directly related to the size of [Ls,Us].
To illustrate this fact, let us first note that a value of
P
{
W = 1|Sn,Xn−1} close to 0 or 1 of represent a high

certainty about the ‘‘state of the world’’. A direct calculation
using Bayes rule shows that

P {W = 1|Sn,Gn} = φ(3Gn (Gn)− η +3S (Sn))

= φ(−τn + ν +3S (Sn)), (19)

where φ(x) = 1/(1 + e−x) is the well-known sigmoid func-
tion, and the second equality comes from the fact that ν−τn =
η − 3Gn (Gn). Therefore, it is clear that a large value of |τn|
corresponds to a state of high certainty about W . Moreover,
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according to Theorem 2 and Proposition 1, asymptotically
all values of τn are either larger than Us or smaller than Ls.
Therefore, if those values are large then this guarantees a
smal asymptotic error rate. This intuition is further explored
in Section VII.

VI. SOCIAL LEARNING WITH BINARY PRIVATE SIGNALS
For illustrating the results of the previous section, we present
an application of our framework to study social systems
where the private signals are binary. Please note that that such
binary systems are popular in the literature, being extensively
discussed, e.g. [38], and experimentally validated [70]. Fur-
ther applications to systems with other private signal distri-
butions can be found in Appendix C.

In the following, first Section VI-A presents results valid
for the general binary case, and then Section VI-B focuses in
the case of private signals with structure similar to a binary
symmetric channel.

A. GENERAL RESULTS
Let us consider focus our analysis on the general case of
social systems where the agents have access to binary signals,
i.e. S = {0, 1}. Let us denote the false alarm and miss-
detection rates by εw = Pw {Sn = 1− w} for w ∈ {0, 1}, and
assume without loss of generality that max{ε0, ε1} ≤ 1/2.

A direct computation of 3S gives that

3S (Sn) = Sn log
1− ε1
ε0
+ (1− Sn) log

ε1

1− ε0
. (20)

Note that Us = 3S (1) > 0 > 3S (0) = Ls, which is
consequence of the fact that 1 − ε1 ≥ ε0. Correspondingly,
the c.d.f. of 3S (Sn) for givenW = w is a step function given
by

F3w (τ ) =


0 if τ < Ls,
Pw {Sn = 0} if Ls ≤ τ < Us,
1 if Us ≤ τ .

(21)

As an inmediate observation, Proposition 1 guarantees that
if τ1 = η + ν < Ls, then Xn = 1 for all n, triggering a trivial
global information cascade. Equivalently, if τ1 > Us then
Xn = 0 for all n. Therefore, for avoiding trivial scenarios it is
always assumed that τ1 ∈ [Ls,Us].
Let us compute the log-likelihoods of the social decisions.

A simple application of (11) and the fact that Ls ≤ τ1 ≤ Us,
it can be concluded that X1 = S1 almost surely. Therefore, by
comparing (13) and (20), one obtains that

3X1 (X1) = 3S (S1), (22)

where the equality holds almost surely. An analogous analysis
reveals that

3Xn|Xn−1(Xn|Xn−1) =

{
3S (Sn) if τn(xn−1) ∈ [Ls,Us],
0 in other case.

Therefore, using (13) and (15) is clear that

τn(Xn−1) = ν + η −
nc−1∑
k=1

3S (Sk ) (23)

for all n ≥ nc, where nc is the first agent who experiences
a local information cascade. Therefore, the evolution of τn
can be described as follows: it starts at ν + η and evolves
taking upward steps of size−Ls or downward steps of sizeUs,
stoping as soon as it reaches beyond [Ls,Us].
The above derivation illustrates the result stated by

Theorem 1, showing how τn stops evolving after reaching
beyond the range of values of the private evidence. Moreover,
it also shows how the global information cascade corresponds
to the fact that the social network stops processing new data
after the first agent suffers a local information cascade.

B. BINARY SYMMETRIC CHANNEL
Let us now specify our analisys by considering a case where
the false alarm rate is equal to the miss-detection rates, which
correspond to a binary symmetric channel with cross-over
probability ε0 = ε1 := ε. The symmetry of this sce-
nario allows to relate the evolution of the decision threshold
with a random walk and find close-form expressions for the
cascading probabilities.

As a first step, by realizing that in this case 3S (1) =
−3(0) = log 1−ε

ε
, it is clear that (23) can be re-written as

τn = ν + η − k03(0)− k13(1)

= ν + η + (k0 − k1) log
1− ε
ε

,

where k0 and k1 are the number of decisions equal to 0 or 1
made by the agents before nc. Therefore, (24) shows that in
this scenario τn evolves following a random walk over the
set {ν + η + k log 1−ε

ε
; k ∈ Z}, which gets trapped as soon

as |τn| > log 1−ε
ε

(c.f. Figure 6). A direct inspection shows
that k might only take four possible values: −1, 0, 1 and 2 if
ν + η < 0 or −2,−1, 0 and 1 if ν + η > 0. An example
of a realization of one decision sequence is illustrated in
Figure 7, where one can observe an information cascade
being triggered as soon as the decision threshold leaves the
area demarcated by red lines.

With this characterization, the probability of information
cascade of 1’s or 0’s, denoted as P {C1} and P {C0}, can be
found using the theory of Random Walks and Ruin Prob-
lems [107]. For this, let us consider a Random Walk over
the numbers 0, 1, 2 and 3, which starts either at 1 or 2 and
stops when it first hits 0 or 3. Without loss of generality
(due to the symmetry of the scenario), we assume that each
upward step occurs with probability ε while each downward
step take place with probability 1 − ε. Let us denote by qz
the probability of hitting 0 before 3, and pz the probability of
hitting the 3 before the 0, both when the random walk starts
from position z. Then, a classic result of random walk theory
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FIGURE 6. The evolution of the decision threhold for fully connected
social networks with binary private signals can be characterized as a
random walk in the decision signal space. Every decision Xn = 1 or Xn = 0
causes steps to the left or right, respectively. When random walk moves
away of the interval defined by the private believes of each agent, then
the random walk stops and an information cascade is triggered.

FIGURE 7. Up- Sequence of decisions in a social system with binary
symmetric signals, cross-over probability α = 0.35 and ν + η = 0.1. Down-
Evolution of the decision threshold τn for the same system. As Theorem 2
predicted, a global information cascade is triggered after the decision
threshold reach beyond the limits imposed by the bounded private
beliefs (marked by the red lines), which takes place after the
decision of the sixth agent.

(c.f. [107, p. 345]) states that qz = 1− pz and

qz =
1−

(
ε

1−ε

)3−z
1−

(
ε

1−ε

)3 , (24)

where λε = (1 − ε)/ε. Therefore, q1 can be understood as
the probability of having a correct cascade (e.g. a cascade of
1’s when W = 1) when ν + η ∈ [− log 1−ε

ε
, 0], i.e. when

having favorable priors (c.f. Figure 6). On the other hand,
q2 corresponds to the case where ν + η ∈ [0, log 1−ε

ε
],

i.e. to the rate of correct cascades when the priors are not
favorable. The accuracy of these expressions for predicting
the cascade rates have been verified by numerical simulations
(see Figure 8).

The characterization of the threshold’s evolution in terms
of a random walk introduces clear insights about the social
learning process. For example, the above results show how
two agreed consecutive decisions are sufficient to trigger
a global information cascade (c.f. Figure 6). In contrast,

FIGURE 8. Rate of the correct cascade (e.g. P
{
C1

}
if W = 1) for different

priors, as described in Section VI-B. Results confirm that the evolution of
social learning for binary signals can be accurately described by a random
walk model, and that (24) effectively predict the corresponding cascading
rates.

Appendix C shows how more complex private signals can
make it more difficult to trigger global cascades.

VII. ANALYSIS OF THE AVERAGE COST
In this section we study the evolution of the agent’s cost,
which is a natural metric to evaluate the performance of social
learning. First, Section VII-A provide general close-form
formulas that enable efficient numerical evaluations. Then,
Section VII-B use these results to provide upper bounds to
the asymptotic cost, which clarify the impact of information
cascades over the learning process.

A. COMPUTING THE AVERAGE PAYOFF
A direct calculation shows that the average payoff of the n-th
agent under a Bayesian strategy, as defined in Section IV-B,
can be expressed as

Ūn(πb) =
∑

w∈{0,1}
g∈Gn

Pw
{
Gn = gn

}
P {W = w}

×

∫
S
un(w, πb{s, τn(gn)})dµw(s) (25)

=

∑
w∈{0,1}
g∈Gn

Pw
{
Gn = gn

}
P {W = w}

×

(
uw,0F3w (τn(gn))+ uw,1

[
1− F3w (τn(gn))

] )
,

(26)

where the first equality is consequence of the conditionally
independency of Sn and Gn given W = w, and the second
equality of (12) and the fact that πb is a binary variable. Note
that a direct evaluation of (26) is possible using the algorithm
to compute Pw {Gn = g} given by Appendix E.
With the above results it is possible to perform numerical

evaluations of the exact performance of social learning in
diverse scenarios. This is illustrated in Section VIII for the
case of different private signal statistics.
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B. ASYMPTOTIC PERFORMANCE ANALYSIS
In this section we derive lower bounds for the asymptotic
payoff limn→∞ Ūn(πb) := Ū∞(πb). This quantity is a key
performance metric for large social networks. Although the
exact value can be estimated by numerical evaluations using
the formulas presented in Section VII-A, in most cases the
complexity of the computations that are required to reach the
point of convergence. Therefore, the simple upper bounds
presented in this Section provide valuable insights of this
important metric.

For this, let us first present Proposition 4, which considers
the statistics of τn. Note that, because τn is a deterministic
function of Gn, is possible to express its statistics as

Pw {τn = t} =
∑
g∈Gn
τn(g)=t

Pw {Gn = g} . (27)

Proposition 4: For arbitrary social systems with partial
social information, it holds that

Ū∞(πb) = lim
n→∞

E {8(τn)} , (28)

where 8(·) is defined as

8(t) =
(
u0,0F30 (t)+ u0,1

[
1− F30 (t)

] )
φ(t − ν)

+

(
u1,0F31 (t)+ u1,1

[
1− F31 (t)

] )
φ(ν − t).

Proof: See Appendix D.
Note that 8(·) measures the contribution of each t ∈ Tn

to the average costs. In particular, following the results of
Sections IV, let us consider a possible cascade of 0’s gen-
erated by t0 ≥ Us. Note that, under that condition, then
F30 (t0) = F31 (t0) = 1. Then, using the previous proposition,
the contribution of this potential cascade to the asymptotic
average cost can be found to be 8(t0) = u1,0 − (u1,0 −
u0,0)φ(t0 − ν). Interestingly, when t0 − ν ≈ 0 then 8(t0) ≈
(u1,0+u0,0)/2, which is the payoff of a random guess. On the
other hand, due to u0,0 ≤ u1,0 (c.f. Section IV-C), when t0→
∞ then 8(t0) decreases monotonically towards a limit given
by8(t0)→ u0,0, being this the payoff of a perfect prediction.
An equivalent analysis can be done for the case of cascades
of 1’s where t ≤ Ls, showing that for that case 8(t) =
u0,1+ (u1,1− u0,1)φ(ν− t) and hence where a more negative
value of t reduces the impact of cascades. These insights
motivate us in calling the quantity |t − ν| the ‘‘accuracy’’
or predictive power of a cascade. Then, the brief analysis
provides the following important insight: cascades with a
higher accuracy have a smaller impact over the asymptotic
cost.

As a next step, we use these insights to develop an upper
bound to the average cost. The main idea is that Us and
Ls impose natural restrictions over the threshold values of
information cascades, and hence can be used to consider the
performance of a worst-case-scenario.
Theorem 3: Let us consider a social network with consis-

tent distortion and bounded beliefs. Moreover, assume that
the network end up in a information cascade almost surely.

Then, the following lower bound holds:

Ū∞(πb) ≤ h0(Us − ν)P {C0} + h1(ν − Ls)P {C1} . (29)

where hw(x) := u1−w,w − (u1−w,w − uw,w)φ(x), and C0 and
C1 denote the events of cascades of 0’s or 1’s, respectively.

Proof: See Appendix D.
Although we provide closed-form expressions for P {C1}

and P {C0} for some special cases (c.f. Section VI-B), in gen-
eral these terms are difficult to compute. Nevertheless, they
can be calculated by Monte Carlo simulations. Furthermore,
one can use the following simpler bounds, whose proofs are
direct and left to the interested reader.
Corollary 1: For a social network that satisfies the condi-

tions of Theorem 3, the following upper bound holds:

Ū∞(πb) ≤ max
{
h0(Us − ν), h1(ν − Ls)

}
. (30)

Finally, let us study the case of u0,0 = u1,1 = 0 and
u0,1 = u1,0 = 1, for which

Ūn(πb) = P {Xn 6= W } (31)

=

∑
w∈{0,1}

Pw {Xn = 1− w}P {W = w} . (32)

Let us introduce the shorthand notation P∞(FA) =

limn→∞ P0 {Xn = 1} and P∞(MD) = limn→∞ P1 {W = 0}
for the asymptotic false alarms and miss-detection rates,
respectively. The next corollary provides useful expressions
for those quantities.
Corollary 2: For a social network that satisfies the condi-

tions of Theorem 3, then the following formulae hold:

P∞(FA) ≤ φ(−Us)P0 {C0} + φ(Ls)P0 {C1} ,

P∞(MD) ≤ φ(−Us)P1 {C0} + φ(Ls)P1 {C1} .

Proof: From (32) is clear that

Ū∞(πb) = P∞(FA)P {W = 0} + P∞(MD)P {W = 1} . (33)

Now let us consider the case of u0,0 = u1,1 = 0 and u0,1 =
u1,0 = 1, for which ν = 0 and h0(x) = h1(x) = φ(−x).
Hence, the bound provided in (29) can be re-written as

Ū∞(πb) ≤
∑

w∈{0,1}

[
φ(−Us)Pw {C0} + φ(Ls)Pw {C1}

]
×P {W = w} . (34)

The corollary is proven by comparing (33) and (34)
and realizing that they both hold for any choice of
priors P {W = w}.

One of the main consequences of these results is the
fact that —as long as the system has consistent distortion—
one can provide a bound of the asymptotic error rate based
exclusively in the extreme values of the signal log-likelihood.
For illustrating this point, let us consider a system where
Ls = −Us. Then, as a consequence of Corollary 2, one can
directly guarantee that the false alarms and error rates are
smaller than φ(−Us) = 1/(1 + eUs ). Reciprocally, one can
guarantee that the asymptotic error rate is less than p0 if both
Us and −Ls are both larger than log{p−10 − 1}.
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Algorithm 1 Simulation of Social Decisions
1: function Decision_Vector(N , η, ν,w)
2: τ1 = ν + η.
3: P0 {X1 = 0} = F30 (τ1).
4: P1 {X1 = 0} = F31 (τ1).
5: Generate x1 ∼ Bernoulli(Pw {X1 = 0}).
6: for n = 2, . . . ,N do
7: for ∀g ∈ Gn do
8: P0 {Gn = g} = αn(g|x1)P0

{
Xn−1

= xn−1
}
.

9: P1 {Gn = g} = αn(g|x1)P1
{
Xn−1

= xn−1
}
.

10: 3Gn (g) = log P1{Gn=g}
P0{Gn=g} .

11: τn(g) = ν + η −3Gn (g).
12: P0

{
Xn = 0|Xn−1

= xn−1
}
=
∑

g∈Gn α(gn|x
n−1)F30 (τn(gn))

13: P1
{
Xn = 0|Xn−1

= xn−1
}
=
∑

g∈Gn α(gn|x
n−1)F31 (τn(gn))

14: Generate xn ∼ Bernoulli(Pw
{
Xn = 0|Xn−1

= xn−1
}
).

15: P0
{
Xn
= xn

}
= P0

{
Xn = xn|Xn−1

= xn−1
}
· P0

{
Xn−1

= xn−1
}
.

16: P1
{
Xn
= xn

}
= P1

{
Xn = xn|Xn−1

= xn−1
}
· P1

{
Xn−1

= xn−1
}
.

17: return xN

VIII. NUMERICAL RESULTS
This section present numerical results that illustrate the find-
ings presented in Sections V and Section VII. Our aim is
to show how our approach allows to find quantitative con-
clusions about the achievable performance of social learn-
ing, providing an engineering perspective that complements
the more qualitative results that exist in the social science
literature.

In the sequel, we use our results to show to aspects of social
learning. First, Section VIII-A presents an Algorithm based
on the results of Section V to simulate decision sequences,
and also illustrate how the decision threshold evolves in
accordance to the learning process. Then, Section VIII-B
uses the results of Section VII in order to to compare the
achievable quality of the inference developed by social learn-
ing in scenarios with different private signals statistics. For
simplicity, through this section we focus in the case of flat
priors (i.e. η = 0) and u1,1 = u0,0 = 0 and u1,0 = u0,1 = 1
—and hence ν = 0.

A. SIMULATIONS OF DECISION SEQUENCES
The results presented in Section V-B allow us to develop an
efficient algorithm to simulate decision sequences following
diverse signal statistics. Algorithm 1 implements this, using
as inputs η, ν, the state of the world w, the network size N ,
the distortion coefficients and the signal statistics in the form
of the c.d.f. of the signal log-likelihood F30 (·) and F31 (·).

We used Algorithm 1 to generate decision sequences under
diverse private signal statistics. Please note that if the private
signals follow aNatural Exponential family distribution‡ then
the corresponding signal log-likelihood is simply a linear

‡Many well-known distributions belong to the Natural Exponential Fam-
ily, including Bernoulli, Binomial, Poisson, Negative Binomial, Gaussian
with known variance and Exponential distributions among others.

function. In fact, a Natural Exponential Family distribution
p.d.f. can be expressed as

Pw {Sn = s} = exp{s · θ (w)+ h(s)− b(w)}, (35)

where θ (w) is the natural parameter, h(·) is the carrier measure
and b(·) is the log-normalizer, and therefore the correspond-
ing log-likelihood can be written as

3Sn (Sn) = Sn[θ (1)− θ (0)]− [b(1)− b(0)]. (36)

Because of this reason, Gaussian signals have unbounded
private beliefs, as in this case Sn ∈ (−∞,∞). On the
contrary, as exponential distributions Sn ∈ [0,∞) then the
corresponding beliefs are bounded in one side and unbounded
in the other, allowing only cascades of 1’s if θ (1) − θ (0)
is positive and only cascades of 0’s if it is negative. On the
other hand, any discrete distribution with finite support has
bounded beliefs, as the private signal log-likelihood can take
only a finite number of different values.

Our simulations reflect these results, and illustrate the
insights discussed with respect to Proposition 1 and
Theorem 2. For signals with bounded beliefs a global infor-
mation cascade is triggered as soon as the evolution of the
decision threshold τn drives it away from [Ls,Us]. This is
illustrated by Figure 9, where it can be seen that after τn goes
beyond the red lines which are further away from zero (which
correspond to the extreme values of 3S (SN )) a sequence
of homogeneous decisions is triggered. On the other hand,
our simulations show that under Gaussian signals even very
long sequences of equal decisions can be suddenly reversed
when a signal with high enough log-likelihood is founded.
As an example of this, Figure 9 shows how in a system with
Gaussian private signals a sequence of 1’s take place after a
sequence of almost 500 consecutive 1’s.

Interestingly, our simulations also show that decisions that
confirm a trend have a diminishing impact (smaller step size)
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FIGURE 9. Above- Sequence of decisions in a social system generated using Algorithm 1, assuming perfect social information and diverse signals
statistics. Bellow- Evolution of the corresponding decision threshold τn. Confirming Proposition 1 and Theorem 2, as soon as the decision threshold
—Tau, Y-axis— reaches beyond the the possible values of the private signals (marked by red lines), the decision threshold stops evolving and the
network falls into a global information cascade. (a) Binomial. (b) Poisson. (c) Gaussian. (d) Cauchy.

over the evolution of the decision threshold. For example,
the plots that correspond to Binomials and Exponentials
in Figure 9 show that the subsequent step-sizes decrease
when the value of τn moves away from zero. On the con-
trary, the same figures show how decisions that go against
the majority of previous choices induce important jumps,
which corresponds to a high amount of new information that
is included in the inference process. Correspondingly, the
fact that τn is constant after a global information cascade
is trigger corresponds to the fact that no new information
is being processed by the social learning —and hence the
accuracy of future agents does not increase further but stays
constant.

For completeness, simulations over signals with Cauchy
distributions with fixed scale and variable location coeffi-
cients were included in order to illustrate that these results
also hold under continuous signal with bounded private
beliefs. The interested reader can find an analysis of Cauchy
signals in Appendix C.

B. EVALUATION OF PAYOFFS
Numerical evaluations confirmed the accuracy of the exact
expressions and bounds derived in Section IV for the error
rates. Figure 10 compares the performance attained by social
networkswith perfect social informationwhen they are driven
by various signal statistics. In accordance to the results pre-
sented in Section III, the error rates converge to a value
larger than zero when the signals have bounded beliefs and
hence global information cascades take place, while they
converge to zero in other case (e.g. Gaussian signals in
Figure 10). Interestingly, results suggest that the error rates
do not converge to zero when the signals are bounded in one
side —and hence only allow cascades of either 0’s or 1’s,
which in Figure 10 corresponds to the Poisson distribution.
It is also interesting how Cauchy distributions achieve a very

FIGURE 10. Evolution of the error rate for various signal statistics, as
given by (26), and the upper bound presented in (30). The parameters of
the different distributions were chosen in order to provide a error rate
of 10−2 for the first agent, while the binomial distribution has a support
of n = 6.

poor performance, although being a continuous distribution
(c.f. Appendix C).

Our results also confirmed the intuition that the asymp-
totic error rate depends mainly on the extreme values of
the signal likelihood (c.f. the corresponding discussion in
Section IV). In effect, if the signal parameters are chosen in
a way that they possess the same values of Us and Ls, then
the asymptotic value is generally close to the value predicted
by Theorem 3 (see Figure 11). It is to be noted that, if
Poisson distributions are chosen in such a way that it’s single
extreme value of the signal log-likelihood coincide with one
of the values of the other signals, it’s asymptotic error rate
is approximately half than the other; this corresponds with
the fact that only half of the information cascades happen
(c.f. the corresponding discussion about Poisson distributions
in Section VIII-A).
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FIGURE 11. Evolution of the error rate for various signal statistics, as
given by (26), and the upper bound presented in (30). The parameters of
the different distributions were chosen in order to provide a error rate
of 10−2 for the first agent, while the binomial distribution has a support
of n = 6.

Finally, although different signal statistics with similar
extreme values converge to the same value, Figure 11 shows
different convergence speeds. It is reasonably to postulate
that the convergence speed is related to the Total Varia-
tion distance of the corresponding probability density func-
tions [104], but the proof of this conjecture remains open.

C. DISCUSSION
An important insight that springs out of our analysis is that
information cascades are not intrinsically prejudicial for the
performance, as their impact is conditioned over their accu-
racy. In effect, in a case where cascades would be always
correct then the asymptotic performance would be perfect in
despite of the cascading behaviour. Therefore, the asymptotic
performance of social learning is not limited by the cas-
cading itself, but by the corresponding ‘‘cascade accuracy’’
(c.f. Section VII-B). In the case of Bayesian strategies, our
framework shows that the cascade accuracy is directly related
with the extreme values of the private signal log-likelihood.
Interestingly, this allows to conclude that social learning can
provide error rates as small as desired if the system designer
can engineer the private signal statistics appropriately. There-
fore, this data aggregation method does not impose, by itself,
any lower bounds on the achievable performance.

The proposed framework is based on two important sim-
plifying assumptions: the conditional independency of the
private signals and the assumption of perfect rationality of the
agents. Please note how these assumptions allow a detailed
analytic approach, which allows to generate a first under-
standing on such a challenging topic.

IX. APPLICATION TO CYBER-PHYSICAL
SYSTEM SECURITY
This section reviews an application of information cascades
in the field of cyber-physical security, following the work
reported in [108]. This application is novel in taking advan-
tage of some of characteristics of information cascades that

are traditionally regarded as undesired. In the following,
first Section IX-A provides the necessary context and dis-
cusses the application. Then, Section IX-B presents the sys-
tem model and fundamental assumptions. The leveraging
of information cascades in this scenario is discussed in
Section IX-C, and finally some numerical results are pre-
sented in Section IX-D.

A. CPS SECURITY AS A DILEMMA IN SENSOR
NETWORKS DESIGN
Security plays a critical role in cyber-physical sys-
tems (CPSs), particularly for those involved in public utilities
whose safety is critical [21]. In effect, recent attacks to public
CPSs that created significant damages have been widely
reported. There exist many technological challenges for the
security in nowadays’s cyber-physical systems. Moreover, as
more cyber-control automation is progressively entering our
daily life, guaranteeingCPS securitywill become even amore
challenging subject. As the level of security is determined by
the weakest element of the entire system, one major dilemma
lies in the information fusion that takes place on the sensor
networks that supply vital information to control and manage
the CPS. The main weakness of these sensor networks are
described in the sequel.
• In such networks the number of sensors is significantly
large, and hence sensors are usually deployed randomly
(i.e. the location of each sensor might be unknown to
the system controller). A precise management of them is
therefore challenging or even unfeasible. Furthermore,
a good portion of the sensors might be deployed in
geographical regions where it is not possible to warrant
physical or cyber security (e.g. war zones or regions
controlled by an adversary party).

• Typical low-end (i.e. low-cost) sensors are only able
to perform low-complexity computing and networking.
Therefore, it is nearly impossible to implement reliable
security functions and protocols of high complexity.

• Sensor data from these low-complexity sensors may be
unreliable due to malfunctions in terms of measurement,
computing, or battery. Data can also be corrupted or
delayed because of link outages or packet errors resulted
from noise and interference in wireless communications,
or also due to spectrum-sharing or energy-harvesting
opportunities.

The vulnerability of these systems makes it reasonable to
expect that they might be victims of cyber/physical attacks
by intelligent adversaries. This is particularly critical to low-
end sensor networks that are usually at the edge of large and
complex CPS.

Due to above reasons, although the technical challenges
of the design of secure wireless sensor networks have been
widely studied [109], there remain open problems of both
theoretical and engineering nature [110]. Attacks to wire-
less sensor networks are commonly categorized into out-
side attacks and insider attacks. Outside attacks include
(distributed) denial of services (DoS) attacks facilitated by

22622 VOLUME 5, 2017



F. Rosas et al.: Technological Perspective on Information Cascades via Social Learning

cyber- or physical-means, which are facilitated by the broad-
casting nature for wireless communications [109]. Insider
attacks can create potentially more severe harm to CPS,
where the adversary can recruitİ low-complexity sensors
by malware through cyber/wireless means, or by physical
substitution of targeted sensor nodes. These compromisedİ
sensor nodes can report false data in order to create harmful
results and malfunctions, which is related to the well-known
Byzantine Generals problem [111]. Low-complexity sensors
at the edge of CPS are natural targets of such insider attacks.

A traditional sensor network consists of a fusion center
and regular sensors nodes. Most of the literature assume
that the fusion center is capable of executing secure cod-
ing and protocols. It is to be noted that in large CPS, the
sensors at the edge of the network may require another
kind of mediator devices known as data aggregators (DAs),
which have the capability to access the cloud through high-
bandwidth communication [112]. DAs are surely attractive to
insider attacks. Differing from almost all existing research,
this project assumes that DAs and fusion centers are possible
to be recruited and compromised.

In response to the technology challenges related to the
development of resilient low-end sensor networks that are
capable of facing an intelligent adversary, the desirable
sensor fusion mechanism shall be robust and adaptive to
the existence of compromised sensor nodes and false data.
In this way, the adapted operation can be subsequently recon-
stituted [113] if there exists a reliable and secure manage-
ment. This is similar to the concept of cyber resilience, which
was officially proposed in 2012 World Economy Forum.
Therefore, the goal of the proposed methodology is
(1) to establish a resilient operation with the presence of an

unknown number of compromised sensors, and
(2) to enable a resilient sensor fusion even in the presence

of false data from compromised sensors.

B. SCENARIO DESCRIPTION AND MAIN ASSUMPTIONS
Consider a sensor network composed of N sensor nodes,
which are deployed over an area for the purpose of mon-
itoring or surveillance. Based on the sensor’s signals, the
network shall infer the value of the binary random variable
W , with events {W = 1} and {W = 0} corresponding
to the presence or absence of an intrusion, respectively. No
knowledge about of the prior distribution of W is assumed,
as intrusions are rare and have unknown/unpredictable
patterns.

Battery limitations impose severe restrictions on the com-
munication between sensors, and hence each node is assumed
to forwards data to others by broadcasting only a binary vari-
able. Under amedium access control mechanism, andwithout
loss of generality, sensor nodes are assumed to transmit their
signals sequentially according to their indices. Due to the
nature of wireless broadcasting, nearby transmissions can be
overheard. Therefore, it is assumed that the n-th node can
generate its decision based on its own sensor output and the
signal exchanged by other sensors.

A data aggregator or fusion center collects the transmit-
ted data and is recognized as a specific node denoted as
nFC ∈ {1, . . . ,N }. The performance of the entire sensor
network is quantified by the corresponding miss-detection
and false alarm rates in the fusion center, given by PMD =

P
{
XnFC = 0|W = 1

}
and PFA = P

{
XnFC = 1|W = 0

}
respectively.

1) POWERFUL INSIDER ATTACK
During the attack, it is assumed that there are N ∗ Byzan-
tine nodes controlled by an adversary, while the network
management does not know this situation. It is important to
notice that these Byzantine nodes may include DAs or FCs.
The adversary can therefore freely define the values of the
binary signals transmitted by Byzantine nodes in order to
degrade the sensor network performance, which might be
viewed as a man-in-the-middle attack or false data inject
attack. It is further assumed that the adversary is topology-
aware, knowing the sensor sequence and the strategy in use.
In other words, this is a very powerful attack from inside of
the sensor network.

2) DEFENSE WITHOUT KNOWLEDGE OF ATTACK
In most (surveillance) sensor networks, miss-detections are
more important than false alarms. Furthermore, it is difficult
to estimate the cost structure under the worst-case scenario.
Therefore, the Neyman-Pearson criteria shall be selected by
setting an allowable false alarm rate and focusing on the
achievable miss-detection rate. Most signal processing tech-
niques for distributed detection rely on a FC(s) that gather
data and generate estimators [114]. In order to guarantee
diversity, traditional distributed detection schemes choose to
ignore previously broadcasted signals. However, as regular
sensors do not perform any data aggregation, each of the
overheard signals cannot serve as a good estimator of the
target variable. When there exist Byzantine nodes in sensor
network, various techniques have been proposed, such as
identification and removal of Byzantine sensors, cryptog-
raphy, secure protocols [115], but none of them consider
potential Byzantine DAs or FCs. Consequently, it is very
desirable for sensor network management to find an appro-
priate network-resilient strategy to mitigate the effect from
this powerful topology-aware adversary, especially when the
network manager (i.e. defender) has no knowledge of the
number of Byzantine nodes or other statistics of the attack.

Inspired by collective behavior and social learning, a
totally different philosophy is undertaken to face this prob-
lem. Each sensor node can be considered to be a rational
agent that decides sequentially about the presence of attacks,
based on a Bayesian data fusion of their measurements and
overheard signals from other nodes. Of course, the Byzantine
sensors do not follow this strategy as their goal is to bring
down the sensor fusion performance. Let B denote the set
of indices of Byzantine nodes in the sensor network, where
N ∗ = |B|. In the example of intrusion detection, as events
{W = 0} are much more frequent than {W = 1}, any

VOLUME 5, 2017 22623



F. Rosas et al.: Technological Perspective on Information Cascades via Social Learning

abnormal increase of the false alarm rate would be quickly
noted by the operator, which is undesirable to the adversary.
Consequently, the adversary strategy is to increase the miss-
detection rate as much as possible, which is achieved by
forcing null signals for all n ∈ B.

C. LEVERAGING INFORMATION CASCADE
Intuitively, the accuracy of the n-th sensor grows with n,
and hence nFC is usually chosen as one of the last nodes in
the decision sequence. However, as the number of shared
signals grow, the increasing social beliefİ can make the
nodes to ignore their individual measurements and fall into
and information cascade. Interestingly, one unique aspect
of this approach is to identify a positive effect of informa-
tion cascades, which has been overlooked before. In effect,
information cascades make a large number of nodes to hold
equally qualified estimators, generating a large number of
locations in the network where the network operator can
collect aggregated data. This property avoids single points
of failure, providing robustness against topology-aware false
data injection attacks.

On the other hand, an attacker can also leverage the infor-
mation cascade phenomenon. In fact, a rational attacking
strategy is to tamper the first N ∗ nodes of the decision
sequence, setting their signals in order to push the networked
decisions towards a misleading cascade or a misleading pub-
lic belief. If N ∗ is large enough, an information cascade can
be triggered almost surely, making the learning process to
fail. However, ifN ∗ is not large enough then the network may
undo the initial pool of wrong opinions and end up triggering
a correct cascade anyway. Therefore, to achieve resilient
sensor fusion against false data attacks, the trustworthy sensor
networking shall be conducted in clusters for any large sensor
network. Luckily, since sensors are usually equipped with
very short-range radios and sequentiallymultiple access, such
a clustering strategy is consistent with engineering reality.

More precisely, the proposed sensor fusion does not solely
rely on the security mechanisms to against the attacks, but
take advantage of public beliefİ to enhance its capability
against attacks. As DA or FC usually serves as the last node to
transmit the measurement (i.e. announce the decision), both
measurement and public belief are simultaneously disclosed
to report fusion result for CPS operation and implicit security
status for the trust management in the CPS. Please note that
a social learning data fusion mechanism is generally compat-
ible to any cryptograph and secure networking protocol.

D. NUMERICAL RESULTS
To illustrate the application of social learning against
topology-aware data falsification attacks, a network of ran-
domly distributed sensors over a sensitive area following a
Poisson Point process (PPP) was considered. The ratio of
the total area that falls under the range of each sensor is
denoted by r . It is assumed that intrusions can occur uni-
formly over the surveilled area, and hence the probability
of an intrusion taking place under the coverage area of a

FIGURE 12. The top figure presents the performance (i.e. miss-detection
rate for fusion) of a surveillance sensor network of 200 nodes, while the
lower figure shows the same quantity when only the 10% less favorable
cases are considered. Different curves correspond to different number of
compromised sensors. When considering total miss-detection rate, up to
60 compromised sensors —that is 30% of sensor nodes— the fusion still
functions well. The performance floor for 100 compromised sensors
implies exceeding the bound of the Byzantine Generals Problem.

particular sensor is equal to r . It is further assumed that each
node is equipped with a binary sensor (i.e. Sn ∈ {0, 1})
that might generate wrong measurements due to electronic
and other imperfections. Figure 12 shows the social learning
based fusion successfully against Byzantine data attacks.

X. FURTHER APPLICATIONS
This section presents a brief exploration to other applications
of information cascades and social learning. In the following,
Section X-A explains how the steering of information cas-
cades can be supervised and controlled, and discusses promis-
ing applications to e-marketing and e-commerce. Then,
Section X-B introduces the potential applications of infor-
mation cascades to consensus building problems. Finally,
Section X-C gives a vision on the way of connecting social
learning and machine learning applications.

A. STEERING INFORMATION CASCADES
This subsection presents a discussion about design consid-
erations for steering information cascades in a social system
where agents perform Bayesian social learning, following the
work reported in [39].

1) DESIGN OF SOCIAL SYSTEMS
Information cascades play a sensible role in e-commerce and
e-marketing [39]. In effect, it is intuitive that customers might
tend to choose a given product when they find many positive
comments about it online. Conversely, customers might be
prone not to choose the product when facing a significant
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number of negative reviews. Therefore, for marketing pur-
poses, an information cascade of positive reviews is highly
desirable as it can increase sales volume. It is clear that
information cascades can usually be steered by manipulating
social information, e.g. by creating biased reviews or intro-
ducing fake statistics. Therefore, if people have the ability to
selfishly manipulate information cascades, then the integrity
and trust of the e-commerce system will be compromised.
Therefore, the design of tools for preventing fake information
cascades is a fundamental challenge for the well-being of a
digital society [5].

To approach this issue, a first step is to analize (8) using a
new perspective, from which 3Sn is interpreted as personal
evidence, 3Gn as the social observation, ηn as the bias and
νn as the incentive structure of the n-th agent. In most sce-
narios it is not possible to control the personal evidence and
bias, which can only be estimated experimentally. However,
in many cases the scope of the social observation and the
incentive structure are susceptible to be engineered, as the
system manager usually can modify the portion of the social
network that is available to the inspection of other agents
(e.g. determining a group of desirable reviews that shall be
shown to new customers). Similarly, the incentive structure
can also be engineered, say, by acknowledging good reviews
with special bonus, coupon, or discounts.

Following this rationale, selective rewiring is proposed as
a method to control or steer information cascades when the
social observations can be controlled by the system admin-
istrator. On the other hand, incentive seeding is served for
scenarios where the incentive structure can be engineered.

2) SELECTIVE REWIRING
Let us denote by Hk -cascade as a cascade where Xm = k for
all m ≥ nc, and by Bn the set of neighbours of the n-th agent.
The intuition behind the proposed selective rewiring approach
is that, in order to steer aHk -cascade, one can restructure the
observation neighbourhood of the n-th agent Bn to connect it
with previous decisions such that Xj = k , or to disconnect it
previous decisions where Xj 6= k , where 1 ≤ j < n. The
number of connections to be added or deleted, denoted as
Nz and Nw respectively, are parameters to be defined by the
system controller. A pseudo code for implementing this idea
is presented in Algorithm 2.

Algorithm 2 Selective Rewiring
1: Input: Nz,Nw,Hk
2: for n = 1, . . . ,N do
3: Find Zn = {z|Xz 6= Hk}, Zn ⊂ Bn, |Zn| = Nz
4: FindWn = {w|Xw = Hk},Wn∩Bn = ∅, |Wn| = Nw
5: Bn← (Bn\Zn) ∪Wn

3) INCENTIVE SEEDING
In the case when the incentive structure can be engineered,
the proposed approach is to first identify the most influential

agents within the system, and set their incentive structure
to the value ν∗ in order to make their decisions consistent
with the desired cascade. Although there exist multiple ways
of defining ‘‘social influence’’, in this approach individuals
were selected according to their out-degree number, denoted
as doutn , which correspond to agents whose decisions is seen
by the larger number of other agents [67]. The pseudo-code
of the proposed algorithm is presented in algorithm 3.

Algorithm 3 Incentive Seeding
1: Input: doutmin, ν

∗,Hk
2: for n = 1, . . . ,N do
3: if doutn ≥ d

out
min then

4: νn← ν∗

4) NUMERICAL RESULTS
The algorithms were tested over various networks of different
topologies, including fully-connected networks, Erdös-Renyi
random networks, small-world networks, and scale-free net-
works [38], [67], [116]. The private signals were assumed
to follow a Binary Symmetric channel with respect to the
state of the world variable, similar to the case analyzed in
Section VI-B. The parameter of the Binary Symmetric chan-
nel, denoted here as p, corresponds to the agent’s private sig-
nal quality. Numerical simulations were perform to compare
how agents can form information cascades under various set-
ting, and to investigate the ways to steer cascades efficiently.

Figures 13 and 14 demonstrate the ratio of H1-cascades
that can be steered by a system controller when the true state
of the world is W = 0, and see the relation to the signal
quality. Interestingly, results show that the social network
topology significantly affect the steering capability, which
suggests some practical system design considerations with
respect to particular types of network topology:
• For Erdös-Renyi networks, adding more links progres-
sively is an effective way of steering cascades.

• For small-world and scale-free networks, it is better to
combine the use of adding more new links and deleting
bad links.

• Small-world networks have small diameters, which
helps to resist control.

• Scale-free networks are similar to full observation
networks.

Moreover, following these results, practical advices for deal-
ing with a network of an unknown type can be formulated:
• Deleting links is less effective than adding links.
• Merely connecting correct decisions do not perform
well.

• It is better to start by discarding some wrong decisions,
and then to continue connecting correct decisions.

5) DISCUSSION
The proposed methods can serve as a simple guideline to the
design of social systems based on manageable online digital
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FIGURE 13. Ratio of H1-cascades that can be steered by selective rewiring when W = 0 under various network topologies. Intuitively, when the
private signal is very good then all cascades follow the state of the world, hence reducing the possibilities of steering other cascades. (a) Full
observation network. (b) ER network. (c) Small-world network. (d) Scale-free network.

FIGURE 14. Ratio of H1-cascades that can be steered using incentive seeding under different social network topologies. The value of dout
min determines

the minimal outdegree needed to be considered a influential agent whose incentives should be modified. Selecting an appropriate dout
min has a

important impact over the algorithm performance [39]. (a) Full observation network. (b) ER network. (c) Small-world network. (d) Scale-free network.

platforms. Moreover, it was demonstrated that it feasible for
a system designer to identify control variables of a complex
social system and use them to devise effective unsophisticated
algorithms for steering user behavior.

The presented numerical simulations illustrate the idiosyn-
crasies of different network topologies. These results leads to
the question of how to design efficient algorithms for steering
information cascades under more general constraints in the
network topology. Finally, another important issue is how the
incentive can be embedded in the network structure, which
points out interesting further research developments.

B. CONSENSUS BUILDING IN MULTI-AGENT SYSTEM
Multi-agent systems abound in our modern world,
including groups of mobile robots and unmanned aerial
vehicles (UAVs), aircraft and satellites, and many more [19].
In these systems agents need to make autonomous decisions,
but at the same time the controller need to ensure that the
group as a whole can achieve some desired goal. A primary
challenge in the design multi-agent systems is the optimiza-
tion of control and computing aspects considering trade-offs
between performance, delay and communication costs or
constraints [117].

Consensus building plays a crucial role in most of multi-
agent system protocols, being the subject of many works in
the control engineering literature. In particular, the flocking
problem [118] considers a set of autonomous agents that can
observe their neighbors dynamics (position, velocity, etc.)

in a 3-dimensional space, and use this data to adjusts their
movements accordingly to flock together with other agents.
In general the connectivity of a network of flocking agents
depends on the geometry of the space. The simplest connec-
tivity model may be the one where two agents i, j are said to
be connected if their distance is smaller than a radius r , that
is,

‖Eqi − Eqj‖ < r,

where Eqi and Eqj are vectors that denote the position of the
agents in space. The design of an efficient flocking protocol
is full of challenges; we conjecture that information cascades
and social learning could be applied to the analysis and
design of flocking protocol, which is an open problem to be
investigated.

Another interesting scenario, more related to complex
social systems modeling [80], is the one provided by the
Hegselmann-Krause opinion dynamics model [119], [120].
As in the DeGroot model [93], the Hegselmann-Krause opin-
ion dynamics model assumes that the opinion of the i-th agent
can be described as the weighted average of other agents’
opinions, i.e.

xi(t + 1) = ai1x1(t)+ ai2x2(t)+ . . .+ ainxn(t),

which can also be written in matrix form as x(t + 1) =
Ax(t). It is noted that, in either the flocking problem or
the Hegselmann-Krause opinion dynamics model, agents are
assumed to be able to observe their neighbor’s character-
istics. Hence, agents’ actions are based on these informed
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observations from their counterparts, and therefore informa-
tion cascades are likely to play an important role on their
dynamics.

We emphasize that consensus problems belong to the
regime of social learning problems. Definitely, consensus
protocols in multi-agents systems are a special type of
non-Bayesian social learning strategy. How to utilize the
characteristics of information cascades to the study of flock-
ing and consensus problem in multi-agent system is of
paramount interest for a wide range of applications related
to large-scale CPS.

C. SOCIAL LEARNING FOR MACHINE INTELLIGENCE
Our interpretation of social learning as a data aggregation
scheme can be applied to machine learning [121], [122].
In effect, by considering a scenario where there are a
number of interconnected learning machines, we can view
each machine as a social agent and the whole system
as a social network, where the neighbourhoods are deter-
mined by the degree of interaction between different
machines.

The primary objective of learning machines is to learn
from the patterns in their observations about the environment,
and hence minimize their prediction error with respect to a
given loss function. When the observation includes both the
data generated from the state of the world and the prediction
made by other learning machines, this scenario fit in the
social learning framework presented in this work. With the
detailed analysis of the average cost function in Section VII,
inspired by the work of [123] and [124], it is noted that
one can characterize the interdependency among the loss
functions of learning machines. Therefore, the problem is
how to design a mechanisms for a networked machine learn-
ing system, which can be very relevant for problems of
Ensemble Learning. Analytic techniques of social learning
can be applied to study the complex feedback that exists
between each learning machine and the whole networked
system. Do groups of learning machines generate informa-
tion cascades? Is the knowledge about information cascades
suitable to be used for improving the achievable perfor-
mance of systems of networked learning machines? These
issues constitute a promising application of our proposed
framework.

XI. CONCLUDING REMARKS
Although this paper presents a systematic analytical method-
ology and an extensive literature survey with illustrating
examples, many aspects of collective behavior in human
society and online platforms remain open to human knowl-
edge. Moreover, the impact they have on the technological
development and our human society urge for further
explorations. Many possibilities to assist future techno-
logical systems design are still on the horizon, and rely
on the readers of IEEE Access to make them come
true.

APPENDIX A
PROPERTIES OF F 3

w
In general F3w (x) can be directly computed from the statistics
of the signal distribution. For simplicity let us consider the
case of real-value signals, i.e. Sn ∈ R. In this case, the c.d.f.
of the signal likelihood is given by

F3w (y) =
∫
Sy

dµw (37)

where Sy = {x ∈ R|3s(x) ≤ y}. If 3s is an increasing
function, then Sy = {x ∈ R|x ≤ 3−1s (y)} = (−∞,3−1s (y)]
and hence

F3w (y) =
∫ 3−1s (y)

−∞

dµw = Hw(3−1s (y)), (38)

where Hw(s) is the cumulative density function (c.d.f.) of Sn
for W = w. For the general case where 3s is an arbitrary
(piece-wise continuous) function, then Sy can be expressed
as the union of intervals. Then ∪∞j=1[aj(y), bj(y)] = Sy (note
that 3s(aj(y)) = 3s(bk (y)) = y) and hence from (37) is clear
that

F3w (y) =
∞∑
j=1

∫ bj(y)

aj(y)
dµw =

∞∑
j=1

[
Hw(bj(y))− Hw(aj(y))

]
.

APPENDIX B
PROOFS OF SECTION V
Proof of Proposition 2: To prove the Markovianity, let us
first note that (12) implicitly show that Xn is conditionally
independent of Xn−1 given τn (in this case Gn = Xn−1).
Therefore, (12) shows that τn+1 = τn − λ(Xn, τn), and
therefore if τn is given then τn+1 depend only on Xn and
hence is conditionally independent on Xn as well. Finally, the
Markovianity is proven by realizing that τk is a deterministic
function of Xn, and hence also conditionally independent of
τn+1 given τn.
To prove that {τn}∞n=1 is still a sub- or super- martingale

with respect to Xn, depending on the realization of W = w.
In fact, it is direct to see that

E
{
τn|W = w,Xn−1

}
= τn−1 − DXj|xj−1 (39)

where DXj|xj−1 is the conditional mean value of
3Xj|X j−1(Xj|xj−1), which can be computed as

DXj|xj−1 = E

{
log

P1
{
Xj|xj−1

}
P0
{
Xj|X j−1} ∣∣∣W = w,

}

=

{
D(p1|1,xj−1 ||p1|0,xj−1) if w = 1, and
−D(p1|0,xj−1 ||p1|1,xj−1 ) if w = 0,

where pxj|w,xj−1 = Pw
{
Xj = xj|X j−1

= xj−1
}
and D(p||q) =

p log p
q + (1 − p) log 1−p

1−q is the Kullback-Leiver divergence
between two Bernoulli distributions with parameters p and q,
respectively. The Lemma is finally proven by the well-known
non-negativity of the Kullback-Leiver divergence [102]. �
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Proof of Theorem 1: To start, let us note that for any x ∈ R
the function3S (s) introduces a partition over the signal space
S = S0(x) ∪ S1(x), where s ∈ S0(x) if 3S (s) < x and
s ∈ S1(x) if3S (s) ≥ x. By comparing this with (10), one can
see that S j(τn) are the signals that cause 3S (Sn) ∈ Kj

n, and
therefore is clear that

P
{
Sn ∈ S j(τn)

}
= P {Xn = j|τn} . (40)

Let us prove first that (i)⇔ (ii). If τn > Us then S1(τn) =
∅ and therefore Xn = 0 for all possible signals Sn. Similarly,
if τn < Ls then Xn = 1 for all possible signals. On the other
hand, if taun ∈ [Ls,Us] then is direct to see that there exist
signals such that Xn = 0 or Xn = 1, and hence Xn and Sn are
not independent. Therefore, the condition τn ∈ (−∞,Ls] ∪
[Us,∞) holds if and only if Xn and Sn are conditionally
independent given τn.
Moreover, from the discussion in Section V-A is clear that

in a Bayesian setup Xn = 8(Sn,Xn−1) is a deterministic
function of the private signal and the previous decisions.
Hence, the conditional independency of Xn and Sn given τn—
which is a function ofXn−1—is equivalent toXn to be a deter-
ministic function of Xn−1. This is equivalent for Xn andW to
be conditionally independent given Xn−1, which in turns is
equivalent to P

{
Xn|W = 1,Xn−1}

= P
{
Xn|W = 0,Xn−1},

which guarantees (ii).
Let us show that (i) ⇒ (iii). The previous discussion

showed that (i) implies that Xn and Sn to be conditionally
independent given Xn−1. Moreover, the fact that (i) implies
(ii) and τn+1 = τn −3Xn|Xn−1(Xn|Xn−1) shows that τm = τn
for allm > n. This, in turn, implies that (i) holds for allm > n.
Therefore, it can be seen that Xm is a deterministic function
of Xn−1, and hence Xm and Sm are conditionally independent
on Xn−1 for all m > n, proving (iii).
To prove (iii) ⇒ (i), let us assume that (i) does not hold

and show this implies that (iii) also doesn’t. If τn ∈ (L,U )
implies that both S0(τn) and S1(τn) are both not empty, and
hence min{P {Xn = 1|τn} ,P {Xn = 0|τn} > 0. The fact that
both probabilies are positive implies that there are signals
s ∈ S that make Xn = 1 and others that make Xn = 0, and
hence Xn and Sn are not conditionally independent given τn,
or equivalently Xn−1. Therefore the system is not in a
cascade. �
Proof of Lemma 2: The proof can be done directly using an

induction over n, and is left to the interested reader. �
Proof of Theorem 2: Let us assume that Gn has consistent

distortion and consider g ∈ Gn is such that τn(g) > Us. Then,
considering the fact that

3Gn (g) = log
P1 {Gn = g}
P0 {Gn = g}

= log

∑
xn−1∈An

αn(g|xn−1)P1
{
Xn−1

= xn−1
}∑

xn−1∈An
αn(g|xn−1)P0

{
Xn−1

= xn−1
} ,

it can be shown using Lemma 0 that there exist at least one
xn−1 such that αn(g|xn−1) > 0 and τ fulln (xn−1) > Us. Above,
An = {xn−1 ∈ {0, 1}n−1|α(g|xn−1) > 0}. Then, due to the

consistent distortion, all x ∈ {0, 1}n−1 ∈ An also satisfy
τ fulln (xn−1) > Us.
A similar derivation shows that, for any xn−1 ∈ An, all

g′ ∈ Gn such that αn(g′|xn−1) > 0 also satisfy τn(g′) > Us.
Therefore, is clear that

Pw{Xn = 0|Xn−1
= xn−1}

=

∑
g′∈Gn

αn(g′|xn−1)Pw
{
Xn = 0|Gn = g′

}
=

∑
g′∈Gn

αn(g′|xn−1)F3w (τn(g′))

= 1, (41)

where the last equality is due to the fact that if τn > Us
then F3w (τn) = 1 and also that for a fixed xn−1 the terms
αn(g′|xn−1) form a p.d.f. With this result, it can be shown that

3Xn (Xn) = log
P1
{
Xn|Xn−1}

P0
{
Xn|Xn−1} +3Xn−1(Xn−1)

= 3Xn−1(Xn−1) (42)

almost surely, which in turns shows that τ fulln+1(X
n) > Us

almost surely as well. Finally, the fact that all decision vectors
xn that have positive probability guarantee τn > Us, com-
bined with the consistent distortion condition and Lemma 2
guarantee that τn(Gn+1) > Us almost surely. This, combined
with Proposition 1, proves the desired result.

The proof for the the case τn(g) < Ls is analogous and is
not included. �

APPENDIX C
ANALYSIS OF SYSTEMS WITH VARIOUS
PRIVATE SIGNAL STRUCTURE
A. Binomial DISTRIBUTION
Let us consider the case where the signals follow a Binomial
distribution with parameters qw and n, i.e.

pw(s) =
(
n
s

)
qsw(1− qw)

(n−s). (43)

By assuming without lack of generality that q1 > q0, then the
signal log-likelihood is a linear function given by

3S (s) = s log
q1
q0
+ (n− s) log

1− q1
1− q0

. (44)

Note that 3S (s) is bounded with Ls = 3S (0) = n log 1−q1
1−q0

and Us = n log q1
q0
. Moreover, using XX and XX and XX one

can find that

Pw
{
Xn = 0|Xn−1

}
=


0 if τn < LS ,∑k∗(τn)

k=0 pw(k) if τn ∈ [LS ,US ],
1 if τn > US .

where k∗(τn) is the largest integer k such that 3S (k) ≤ τn.
By defining k∗ = −1 when τn < Ls and taking the conven-
tion

∑
−1
k=0 f (k) = 0, then

3Xn|Xn−1 (Xn|Xn−1) = X1 log

∑n
j=k∗+1 p1(j)∑n
j=k∗+1 p0(j)

(45)
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+ (1− Xn) log

∑k∗
j=1 p1(j)∑k∗
j=1 p0(j)

(46)

:= f (X1, k∗). (47)

Therefore, a partition of n + 1 regions is introduced in the
decision signal space by the signal log-likelihood function,
each of which indexed by a k∗. Therefore, the step sizes can
be of n + 1 different sizes, according to which region the τn
belongs to.

B. Poisson SIGNALS
Let us now consider a system where agents receive discrete
but infinite signals s ∈ {0, 1, . . . } that follow a Poisson
distribution with parameter Lw, i.e.

Pw {Sn = s} =
(Lw)s

n!
e−Lw (48)

Let us assume without lack of generality that L1 > L0. Then,
the signal log-likelihood is given by

3S (s) = s log
L1
L0
+ L0 − L1, (49)

where bsc is the greatest integer that is smaller that s. Inter-
estingly, as s ≥ 0 then the private beliefs are bounded from
bellow by Ls = L0 − L1 but not from above.

Therefore, one can find that

3−1S (l) =

⌈
l + L1 − L0

log L1
L0

⌉
(50)

Then, using XX and XX and XX one can find that

P
{
Xn = 0|W = w,Xn−1

}
=

0 if τ socialn < LS ,
0 (k∗,L1)

(k∗)!
otherwise,

where 0(x,L) =
∫ x
0 u

L−1e−udu is the incomplete Gamma
function and

k∗(τn) =

⌈
(τn + L1 − L0)

(
log

L1
L0

)−1⌉
(51)

Finally, then log-likelihood can be expressed as

3Xn|Xn−1 (Xn|Xn−1) = X1 log
k∗ − 0(k∗,L1)
k∗ − 0(k∗,L0)

+ (1− Xn) log
0(k∗,L1)
0(k∗,L0)

.

As in the case of Binomial distributions, we see that the
step sizes are determined according to k∗ which introduces a
numerable partition in the semiplane given by [L0 − L1,∞).

C. Guassian SIGNALS
Let us assume that, for given W = w, Sn are continuous real
variables which are absolutely continuous with respect to the
Lebesgue measure, i.e. their statistics can be described using

a p.d.f. hw(s). Then, the log-likelihood ratio can be expressed
as

3S (s) = log
h1(s)
h0(s)

. (52)

As a particular case, we will study Gaussian channels
where, for givenW = w, Sn distributes as a Gaussian random
variable with mean value mw and variance σ that does not
dependent on W = w. Without loose of generality, let us
assume that m1 = −m0 := m. Then, a direct computation
shows that for this case the log-likelihood is linear, as shown
by a direct computation:

3S (s) =
1

2σ 2

[
(s+ m)2 − (s− m)2

]
(53)

=
2m
σ 2 s. (54)

This shows that Gaussian signals provide non-bounded
beliefs, as a large signal can provided a arbitrarly strong
evidence in favor of any of the two states of the world. Note
that this also shows that the log-likelihood is an increasing
function, and its inverse can be expressed as

3−1S (x) =
σ 2

2m
x. (55)

Moreover, it is useful to recall that the c.d.f. of Gaussian
variables can be written in terms of the Q-function asHw(s) =
1−Q( s−mw

σ
), whereQ(s) = 1/(2π)

∫
∞

s e−u
2/2du. Hence, one

can find that

Hw(3
−1
S (x)) = Hw

(
σ 2

2m
x
)
= 1− Q

( σ
2m

x + (−1)w
m
σ

)
.

Using this and (23), one can find that

P
{
Xn = 1|W = w,Xn−1

}
= Q

( σ
2m
τ socialn + (−1)w

m
σ

)
.

Finally, noting that 1 − Q(x) = Q(−x), the conditional log-
likelihood functions can be written as

3X1 (X1) = X1 log
Q
(
σ (ν+η)
2m −

m
σ

)
Q
(
σ (ν+η)
2m +

m
σ

) (56)

+ (1− X1) log
Q
(
−
σ (ν+η)
2m +

m
σ

)
Q
(
−
σ (ν+η)
2m −

m
σ

) (57)

and

3Xn+1|Xn (Xn+1|Xn) = Xn+1 log
Q
(
στ socialn+1
2m −

m
σ

)
Q
(
στ socialn+1
2m +

m
σ

)

+ (1− Xn+1) log
Q
(
−
στ socialn+1
2m +

m
σ

)
Q
(
−
στ socialn+1
2m −

m
σ

) .
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D. Cauchy SIGNALS
Let us consider now the case in which agents have access to
Cauchy signals, whose p.d.f. is given by

hw(s) =
1

πγ

[
1+

(
s−mw
γ

)2] (58)

where mw and γ are the location and shape parameters.
As in the case of Gaussian signals, we will assume that m1 =

−m0 := m while γ do not depend on W . With this, a direct
calculation gives that

3S (s) = log
γ 2
+ (s+ m)2

γ 2 + (s− m)2
. (59)

By inverting the equation 3S (s) = l, one finds the following
second order polinomial

s2 + 2
1+ el

1− el
ms+ γ 2

+ m2
= 0, (60)

whose solution is given by

s±(l) = −m
1+ el

1− el
±

√
4m2el

(1− el)2
− γ 2. (61)

Therefore, for each l ∈ R − {0} there exists two signals
such that 3s(s±) = l, which are the ones given in (61) (see
Figure 15). With this and (62), one can find that

F3w (l) =

{
Hw(s+(l))− Hw(s−(l)) if l ≤ 0
Hw(s−(l))+ 1− Hw(s+(l)) if l > 0,

(62)

where Hw(s) = 1
π
arctan

(
s+(−1)wm

γ

)
+

1
2 is the c.d.f. of a

Cauchy distribution. Using this and (23), one finds that

Pw{Xn+1 = 1|Xn
}

=

{
1− Hw(s+(Xn))+ Hw(s−(Xn)) if τn(Xn) ≤ 0
Hw(s+(Xn))− Hw(s−(Xn)) if τn(Xn) > 0,

=


1−

1
π

[
arctan

(
c+
γ

)
− arctan

(
c−
γ

)]
if τn(Xn)≤0

1
π

[
arctan

(
c+
γ

)
− arctan

(
c−
γ

)]
if τn(Xn)>0.

Above, the last equality introduces the shorthand notation
c+ = s+(Xn)+ (−1)wm and c− = s−(Xn)+ (−1)wm.

APPENDIX D
PROOFS OF SECTION VII
Proof of Proposition 4: Let us first notice that a direct calcu-
lation using Bayes rule shows that

P {W = 1|Gn = g} =
1

1+ P0{Gn=g}P{W=0}
P1{Gn=g}P{W=1}

(63)

= φ(ν − τn(g)), (64)

where the last equality uses the definition of the logistic
function and the fact that η −3Gn = ν − τn. Therefore, one
can show that

P {W = w,Gn = g} = φ([2w− 1][ν − τn])P {Gn = g}

FIGURE 15. In contranst to the Gaussian case, Cauchy signals provide
bounded beliefs. This implies that a very high signal in the Gaussian case
is a clear indicator that w = 1, while in the Cauchy case such a high signal
is not really informative. Moreover, the inverse is no 1-1 but 1-2. Red
asterisks show s+ and s− as given in (61) for l = 1/2.

With this, one can re-write the average utility in a slightly
different decomposition:

Ūn(πb) =
∑

w∈{0,1}
g∈Gn

φ([2w− 1][ν − τn(g)])P {Gn = g}

×

(
uw,0F3w (τn(gn))+ uw,1

[
1− F3w (τn(gn))

] )
.

Let us denote as Tn = {t ∈ R|exists g ∈ Gn such that
τn(g) = t} the set of all values that τn can adopt. Then, one
can re-write the above expression as

Ūn(πb) =
∑

w∈{0,1}
t∈Tn

φ([2w− 1][ν − t])

 ∑
g∈Gn
τn(g)=t

P {Gn = g}


×

(
uw,0F3w (t)+ uw,1

[
1− F3w (t)

] )
.

Finally, the Proposition is proven by expanding the sum
overW and using (27). �
Proof of Theorem 3:Due to the theorem’s assumptions and

Theorem 2, one can find that, for large values of n, Tn ends up
being composed by numbers that are either larger than Us or
smaller than Ls. Now, by recalling that if t > Us thenF3w (t) =
1 while if t < Ls then F3w (t) = 0, then is clear that (28) can
be re-written as

Ū∞(πb)
= lim

n→∞

∑
t∈Tn
t>Us

[
u1,0 − (u1,0 − u0,0)φ(t − ν)

]
P {τn = t}

+ lim
n→∞

∑
t∈Tn
t<Ls

[
u0,1 − (u0,1 − u1,1)φ(ν − t)

]
P {τn = t} .

If t ≥ Us then due to u1,0 ≥ u0,0 (c.f. Section IV-C) and the
monotonicity of φ(·) is clear that

(u1,0 − u0,0)φ(t − ν) ≥ (u1,0 − u0,0)φ(Us − ν). (65)
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Equivalently, for the case of t ≤ Ls one finds that (u0,1 −
u1,1)φ(ν − t) ≥ u0,1φ(Ls) + u1,1φ(ν − Ls). Using these
inequalities the theorem can be proven, taking into account
that

P {C0} = lim
n→∞

∑
t∈Tn
t>Us

P {τn = t} = lim
n→∞

P {τn ≥ Us} , (66)

P {C1} = lim
n→∞

∑
t∈Tn
t<Ls

P {τn = t} = lim
n→∞

P {τn ≤ Ls} . (67)

�

APPENDIX E
COMPUTING Pw

{
Gn = gn

}
For finding an expression for Pw

{
Gn = gn

}
, first note that

one can use the distortion coefficients (c.f. Section V-D) to
obtain

Pw
{
Gn = gn

}
=

∑
xn−1

αn(gn|x
n−1)Pw

{
Xn−1

= xn−1
}
.

Then, for computing Pw
{
Xn−1

= xn−1
}
, note that first that

Xn = πb(Sn,Gn), and hence the fact that Sn and Xn−1 are
conditionally independent givenW = wmakes Xn−1

−Gn−
Xn a Markov chain for a given W = w. Therefore one can
show thatPw{Xn = 0|Gn = g,Xn−1

} = Pw {Xn = 0|Gn = g}
and therefore it can be found using (12) that

Pw
{
Xn = 0|Xn−1

= xn−1
}
=

∑
gn∈Gn

α(gn|x
n−1)F3w (τn(gn)).

Finally, using this result the distribution of a decision vector
can be found using the fact that

Pw
{
Xn
= xn

}
=

n∏
j=1

Pw
{
Xj = xj|X j−1

= xj−1
}
, (68)

with the convention that Pw
{
X1 = x1|X0}

= Pw {X1 = x1}.
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