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ABSTRACT Efficient disturbance detection is important for power system security and stability. In this
paper, a new detection method is proposed based on a time series analysis technique known as k-nearest
neighbor (kNN) analysis. Advantages of this method are that it can deal with the electrical measurements
with oscillatory trends and can be implemented in real time. The method consists of two stages, which are the
off-line modeling and the on-line detection. The off-line stage calculates a sequence of anomaly index values
using kNN on the historical ambient data and then determines the detection threshold. Afterward, the on-
line stage calculates the anomaly index value of presently measured data by readopting kNN and compares
it with the established threshold for detecting disturbances. To meet the real-time requirement, strategies
for recursively calculating the distance metrics of kNN and for rapidly picking out the kth smallest metric
are built. Case studies conducted on simulation data from the reduced equivalent model of the Great Britain
power system and measurements from an actual power system in Europe demonstrate the effectiveness of
the proposed method.

INDEX TERMS Disturbance detection, power system, security, stability, k-nearest neighbor (kNN),
anomaly index, real-time.

I. INTRODUCTION
In the past decade, detecting power system disturbances has
emerged as a new and promising research area, because effi-
cient disturbance detection plays a crucial role in understand-
ing the system behavior and improving the system operating
stability margin. According to [1], a power system distur-
bance has been described as ‘‘a sudden change or sequence
of changes in one or more of the power system parameters’’,
which may be large or small. Large disturbances can stress
the power system so severely that the stability is lost, while
small disturbances may gently push the power system into
another operating condition. Presently, disturbance detec-
tion and analysis are needed in Wide-Area Monitoring and
Control Systems (WAMCS) which collect data using phasor
measurement units (PMUs) from different locationswith time
synchronized through global positioning systems (GPS) [2].

Numerous advanced measurement instruments provide
abundant measurements for the development of data-driven

disturbance detection. Most of the reported data-driven
approaches assume that a disturbance is distinct from the
normal trend of measurements by its amplitude in the time
domain or by its scale in the time-frequency domain. For
instance, statistical analysis methods [3]–[6] make use of dif-
ferences in time-domain amplitude, while the wavelet trans-
form methods [7]–[9] usually exploit differences in scale to
detect disturbances which map to the wavelet coefficients of
high amplitude in the lower scales. However, such assumption
cannot be well met all the time, as indicated in [10] and
exemplified in [11], especially for the cases in power systems
where electrical measurements often exhibit oscillatory or
cyclical characteristics [12].

Recently, a univariate detection method based on a time
series analysis technique known as k-nearest neighbor (kNN)
analysis was presented in [10], framing disturbance detection
as an anomaly detection problem and solving it with kNN.
This method does not require the relative amplitude or the
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wavelet coefficients of disturbances to be markedly different
from the overall trend and thus is more generic. Soon after-
wards, it was further extended into a multivariate detection
method [11], since the identification of a disturbance can
be difficult in the measurements of an individual variable
with strong oscillatory trends and the presence of the same
disturbance in the measurements of different variables can
be jointly explored for an improved outcome. However, the
methods in [10, 11] were developed for off-line analysis and
cannot be effectively implemented in real time for an on-line
application.

Motivated by the above analysis, in this work, our main
contribution is to propose a detection method based on kNN,
which can be performed online to detect power system distur-
bances in real time. The real-time implementation is achieved
by constructing a recursive calculation strategy for the dis-
tance metrics of kNN and a fast selection strategy for the kth
smallest metric. Another advantage of the proposed method
is that it is capable of tackling the electrical measurements
with oscillatory trends. Case studies on simulation data from
the reduced equivalent model of Great Britain (GB) power
system and measurements from an actual power system in
Europe (called European power system here) are used to
demonstrate the effectiveness of the proposed method.

The paper is organized as follows. Section II gives a brief
description of the kNN method. Section III presents the
real-time detection method based on kNN. The application
results and analysis on the two case studies are provided in
Section IV, while our conclusions are drawn in Section V.

II. THE kNN BASICS
In this section, the basics of the kNNmethod are briefly intro-
duced to lay the foundation for the subsequent presentation of
the kNN-based real-time detection method.

The kNN method has been widely applied for anomalous
window detection [10], [11], [13]–[15]. It adopts a similarity
metric to measure the distance between each window in a
time series and the other windows. Windows with similar
sequences of samples are called near neighbors. Anomalous
windows are those distinct from the underlying trend of the
time series. The distance of a window to its kth nearest
neighbor, known as anomaly index, is the key of kNN to
detect anomaly.

Similarity metrics reported in the literature include the
Euclidean distance (ED) [10], [11], the cosine similar-
ity (CS) [16], and the dynamic time warp (DTW) [17].
Among them, the ED is more commonly used because of its
simplicity and good geometrical interpretation. It is defined
as the 2-norm of the displacement vector between two points
p and q in a L-dimensional space, which can be written as
follows:

d (p, q) ,
∥∥∥pT − qT∥∥∥

2
=

√∑L

j=1

(
pj − qj

)2 (1)

where pT = [p1p2 · · · pL], qT = [q1q2 · · · qL], ‘‘T’’ denotes
the transpose operator, ‖•‖2 denotes the 2-norm of a vector,

d (p, q) ≥ 0, and d (p, q) = 0 indicates the maximum
similarity occurring only when two windows are equal in
all L samples, i.e., p = q.
Using (1) as the foundation, for a window in a time series,

its anomaly index value can be calculated as the ED between
this window and its kth nearest neighbor. The anomaly index
value of an anomalous window will be significantly higher
than that of any normal window, which is the reason why
the kNN method can be used for anomaly detection in a time
series.

The above is the brief description of the kNN method.
Details about this technique can be further found in [10].

III. REAL-TIME DETECTION BASED ON kNN
If the measurements of an electrical variable are viewed as a
time series, the detection of power system disturbances can be
achieved by detecting anomalous windows in this time series.
Thus, a real-time detection method based on kNN, referred to
as RD-kNN, is proposed in this section. The RD-kNNmethod
mainly includes two parts: (1) the off-line modelling; (2) the
on-line detection. In the following, the RD-kNN method is
presented in detail.

A. OFF-LINE MODELLING
The off-line modelling step calculates a sequence of anomaly
index values by applying kNN on the measurements his-
torically recorded under the ambient condition with no dis-
turbance occurring. It then determines a detection threshold
for online monitoring whether a power system disturbance
affects an electrical variable or not.

More specifically, the symbol xi denotes the ith measured
electrical variable for monitoring (e.g., frequency, voltage,
current, or power) and xi,j denotes the jth measurement of
xi at the jth sampling time point. For the variable xi, the
following matrix can be built using the dataset

{
xi,j
}N
j=1 with

N measurements:

X i =


xTi,1
xTi,2
...

xTi,N−L+1



=


xi,1 xi,2 · · · xi,L
xi,2 xi,3 · · · xi,L+1
...

... · · ·
...

xi,N−L+1 xi,N−L+2 · · · xi,N

 (2)

where X i is called the embedding matrix of xi in kNN, and its
row xTi,r denotes the r th window of the recorded dataset, while
L denotes the number of measurements in each window.

Each row ofX i is then compared with the other rows, using
the square of the ED (SED) as follows:

d2i
(
xi,e, xi,r

)
,
∥∥∥xTi,e − xTi,r∥∥∥22

=

∑L

j=1

(
xi,e−j+L − xi,r−j+L

)2 (3)
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The reason of using the SED rather than directly using the
ED is for the convenience of the real-time on-line calcula-
tion, which can be obviously observed later in Section III-B.
Accordingly, an anomaly index value AI i,r for the r th row
xTi,r is determined as given in [10]. It is the kth smallest
SED between xTi,r and all other rows except the near-in-time
rows of xTi,r , where the near-in-time rows of xTi,r are those

having at least one sample in common with xTi,r , e.g., x
T
i,L

is the last near-in-time row of xTi,1. Here, the exclusion of
the SEDs between xTi,r and its near-in-time rows during the
determination of AI i,r is to avoid treating such near-in-time
rows as the near neighbors of xTi,r , as suggested in [11].

After each row of X i in (2) gains its corresponding
anomaly index value, it is necessary to determine a threshold
for anomaly detection based on the obtained sequence of
anomaly index values

{
AI i,r

}N−L+1
r=1 . As no prior knowledge

is available with regard to the distribution of
{
AI i,r

}N−L+1
r=1 ,

the detection threshold AIαi with the confidence level α
can be determined according to the strategy in [5], i.e.,
(1−α) (N − L + 1) is rounded towards the nearest integer δ
and the δth highest value of

{
AI i,r

}N−L+1
r=1 is taken as AIαi .

In addition to the calculation of the above anomaly index
values

{
AI i,r

}N−L+1
r=1 and the related detection threshold AIαi

for the individual electrical variable xi, inspired by [11],
the system-wide anomaly index values providing a global
characterization of the group of variables can be calculated
as:

AI r =
1
m

∑m

i=1

∣∣AI i,r ∣∣ , 1 <= r <= N − L + 1 (4)

where m denotes the total number of the measured electri-
cal variables, and the system-wide detection threshold AIα

can be determined as the δth highest value of the obtained
{AI r }

N−L+1
r=1 .

B. ON-LINE DETECTION
On completion of off-linemodelling, on-line detection should
be considered. Real-time calculation of the anomaly index
value is of prime importance for on-line detection. It requires
a strategy for recursively calculating the SED metric of kNN
and another strategy for fast selection of the kth smallest SED.
The specific details are as follows.

The symbol xTi,p =
[
xi,p−L+1 xi,p−L+2 · · · xi,p

]
denotes

the vector of the L continuous measurements newly collected
from the variable xi, where p represents the present sampling
time point. In order to determine whether xTi,p is anomalous or
not, the present anomaly index value AI i,p for xTi,p is defined
as the kth smallest SED between xTi,p and all rows ofX i in (2).
The reason for this definition is that all rows of X i are normal
windows with the ambient characteristic which can be used
as the foundation for evaluating whether or not the newly
obtained xTi,p deviates from normal. If xTi,p is anomalous, the

SEDs between it and the rows of X i will be large and the
corresponding anomaly index value AI i,p will also be large

and exceed the related detection threshold AIαi . For the r th
row xTi,r of X i, the SED between it and xTi,p can be expressed
as:

d2i
(
xi,p, xi,r

)
,
∥∥∥xTi,p − xTi,r∥∥∥22

=

∑L

j=1

(
xi,p−j+1 − xi,r−j+L

)2 (5)

From (5), it can be seen that the calculation of d2i
(
xi,p, xi,r

)
requires 2L − 1 additions and L multiplications. So, for r
from 1 to N − L + 1, the total number of additions is
(N − L + 1) (2L − 1) and the total number ofmultiplications
is (N − L + 1)L. Usually, this is not a problem since high
performance processors are widely used in modern moni-
toring systems. However, if the size N of the dataset and
the window length L are large, the on-line computation load
should be taken into consideration. To better meet the real-
time requirement, a recursive calculation strategy for the
SED metric which can significantly reduce the number of
operations needed in (5), called Strategy 0 here, is developed
by making use of previously-calculated results.

1) Strategy 0 for recursively calculating the SED metric
For the vector xTi,p−1 =

[
xi,p−L xi,p−L+1 · · · xi,p−1

]
that

is obtained a sampling time point earlier than the vector xTi,p,
the SED between it and the (r−1)th row xTi,r−1 of X i can be
written as follows:

d2i
(
xi,p−1, xi,r−1

)
,
∥∥∥xTi,p−1 − xTi,r−1∥∥∥22

=

∑L

j=1

(
xi,p−j − xi,r−j+L−1

)2 (6)

Combining (5) and (6), the following expression can be
obtained:

d2i
(
xi,p, xi,r

)
− d2i

(
xi,p−1, xi,r−1

)
=

∥∥∥xTi,p − xTi,r∥∥∥22 − ∥∥∥xTi,p−1 − xTi,r−1∥∥∥22
=
(
xi,p − xi,r−1+L

)2
−
(
xi,p−L − xi,r−1

)2 (7)

From (7), it can be seen that d2i
(
xi,p, xi,r

)
can be recur-

sively calculated from d2i
(
xi,p−1, xi,r−1

)
by using the term(

xi,p − xi,r−1+L
)2
−
(
xi,p−L − xi,r−1

)2. The recursive calcu-
lation of d2i

(
xi,p, xi,r

)
requires four addition and two mul-

tiplication operations. Since the window length L in (5) is
usually much larger than four, the on-line computational load
of (5) can be reduced significantly by this recursive calcu-
lation, which is beneficial to the real-time implementation
efficiency. Besides, it should be noted that (7) is subject to the
condition r>= 2. For the case r = 1, d2i

(
xi,p, xi,r

)
cannot

be recursively calculated and can only be calculated by (5).
Thus, the strategy for recursively calculating d2i

(
xi,p, xi,r

)
can be finally expressed as the following formula:

d2i
(
xi,p, xi,r

)
=


d2i
(
xi,p−1, xi,r−1

)
+
(
xi,p − xi,r−1+L

)2
−
(
xi,p−L − xi,r−1

)2
, r >= 2∑L

j=1
(
xi,p−j+1 − xi,r−j+L

)2
, r = 1

(8)
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From (8), the reason why SED rather than ED is used can
be easily understood, which ismainly due to the consideration
of the convenience of the on-line recursive calculation.

Using (8), the SED sequence
{
d2i
(
xi,p, xi,r

)}N−L+1
r=1 can

be obtained online with high efficiency. Then, the present
anomaly index value AI i,p for xTi,p can be determined as the
kth smallest element of this sequence. Because the selection
of the kth smallest SED also has an effect on the real-time
performance, a selection strategy, called Strategy 00 here, is
constructed for fast selecting the desired value.

2) Strategy 00 for fast selection of the kth smallest SED
An intuitive way of selecting the kth smallest element in a

sequence is to firstly sort this sequence into ascending order
and then select the kth element from the sorted sequence.
This can be easily and rapidly attained through the existing
software, such as the built-in function ‘sort’ in MATLAB
developed by the MathWorks company. However, since only
the kth smallest element of a sequence is required, it is not
necessary to sort the whole sequence. That is, if k elements
are obtained from a sequence which are smaller than the rest
of this sequence, only the order of these k elements needs to
be concerned about and themaximum one of these k elements
is exactly the kth smallest element of the entire sequence.
Strategy 00 is developed directly from the above consid-

eration. Specifically, an array which can hold k ordered ele-
ments is set up and the first k elements of the SED sequence
are put into this array after they are sorted in ascending
order. Then, the remaining N − L + 1 − k elements of the
SED sequence are fetched one by one and compared to the
elements of the ordered array. If the fetched element is larger
than the maximum element of the ordered array, the fetched
element is removed and the ordered array remains unchanged;
otherwise, the maximum element of the ordered array is
removed and the fetched element is inserted into the array
ensuring that all k elements in the updated array are still in
the ascending order. After each of the remaining elements of
the SED sequence is dealt with by this process, the maximum
element of the ultimately obtained array is exactly the kth
smallest SED. An illustrative description of Strategy 00 is
shown in Fig. 1, where the elements of the ordered array are
denoted by the symbols d2

(1)

i , d2
(2)

i , · · · , d2
(k)

i , and a fetched
element from the remaining N − L + 1 − k elements of the
SED sequence is denoted by the symbol d2

(∗)

i .
The comparison between a fetched element d2

(∗)

i and the
elements d2

(1)

i , d2
(2)

i , · · · , d2
(k)

i of the ordered array is called
a round of comparison here. Referring to Fig. 2, after a round
of comparison, one of the following three scenarios will
occur:
(1) d2

(∗)

i > d2
(k)

i : the ordered array remains unchanged and
d2

(∗)

i is removed.
(2) d2

(∗)

i < d2
(1)

i : d2
(∗)

i is put in front of d2
(1)

i and d2
(k)

i is
removed.

(3) d2
(j−2)

i <= d2
(∗)

i <= d2
(j−1)

i , where j denotes an integer
between 3 and k + 1: d2

(∗)

i is inserted between d2
(j−2)

i
and d2

(j−1)

i , and d2
(k)

i is removed.

FIGURE 1. Strategy 00 for fast selection of the kth smallest SED.

FIGURE 2. An illustration of three different scenarios after a round of the
comparison.

FIGURE 3. The flow chart of a round of comparison.

Whether a fetched element d2
(∗)

i is removed according to
the 1st scenario or is inserted in the array according to the
2nd or the 3rd scenario, the elements in the updated array
are still denoted as d2

(1)

i , d2
(2)

i , · · · , d2
(k)

i . The flow chart of a
round of comparison is shown in Fig. 3. It can be seen that, a
fetched element only needs to be compared with one element
of the ordered array in the 1st scenario or two elements of
the ordered array in the 2nd scenario. However, in the 3rd
scenario, a fetched element needs to be compared with all k
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elements of the ordered array for the worst case, e.g., the case
when d2

(k−1)

i <= d2
(∗)

i <= d2
(k)

i and d2
(2)

i , d2
(3)

i , · · · , d2
(k−1)

i
are compared with d2

(∗)

i in turn. So, a relatively small value of
the parameter k is beneficial to the real-time implementation.
To further reduce the number of comparisons for the 3rd

scenario, the idea of binary search [18] is introduced to
search the target position in the ordered array for d2

(∗)

i where
d2

(j−2)

i <= d2
(∗)

i <= d2
(j−1)

i can be met with j denoting
an integer between 3 and k + 1. The binary search begins
by comparing d2

(∗)

i to the middle element of the ordered
array. If d2

(∗)

i is smaller than or equal to the middle element,
then the search continues on the former half of the ordered
array; otherwise, the search continues on the latter half of the
ordered array. The search continues, eliminating half of the
elements, and comparing d2

(∗)

i to the middle element of the
remaining elements, until the target position in the array is
found. Here, the number of comparisons in the 3rd scenario
is log2 (k) at most, which is smaller than k . An illustrative
example of this binary search process is shown in Fig. 4 for
an intuitive observation, where the parameter k is equal to 5.

FIGURE 4. An illustrative example of the binary search in the 3rd scenario.

In addition to determining the target position in the ordered
array for a fetched element when the 3rd scenario occurs, the
above binary search process can also be used to help putting
the first k elements of the SED sequence into the ordered
array one by one in ascending order. The only difference is
that, when one of the first k elements of the SED sequence is
put into the target position in the ordered array, the maximum
element in the ordered array need not to be removed. The
number of comparisons is log2 (k!) at most.
Thus, Strategy 00 for rapid selection of the kth small-

est SED has been constructed. The total number of
comparisons for this strategy is log2 (k!) + log2 (k) ·
(N − L + 1− k) at most. After Strategy 00, the present
anomaly index value AI i,p for xTi,p can be determined as
this selected SED. Furthermore, the present system-wide
anomaly index value AIp globally characterizing the group

FIGURE 5. The procedure for the RD-kNN method.

of variables can be calculated as:

AIp =
1
m

∑m

i=1

∣∣AI i,p∣∣ (9)

For the on-line disturbance detection, AIp and AI1,p,
AI2,p, · · · ,AIm,p obtained can be compared with their corre-
sponding detection thresholds AIα and AIα1 ,AI

α
2 , · · · ,AI

α
m,

respectively.

C. PROCEDURE FOR THE RD-kNN METHOD
The RD-kNN method has been developed through off-line
modelling and on-line detection. The procedure for the
RD-kNN method is now summarized in Fig. 5, where the
historical measurements

{
xi,j
}N
j=1 recorded under the ambient

operation condition and the present measurement xi,p col-
lected online are all normalized with the mean and variance
of the ambient measurements

{
xi,j
}N
j=1.

D. PARAMETER SETTINGS FOR THE RD-kNN METHOD
The RD-kNNmethod involves the settings of the parameter k
and the window length L. Presently, there is no standard and
unified rule to optimally select the values for them. For the
parameter k , it is better to assign it a relatively small value
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from the perspective of the real-time requirement when on-
line detection is implemented, because the total number of
comparisons for selection of the kth SED in strategy 00
increases with k increasing. As recommended in [10], a typ-
ical value of k is 3, which is also used in this paper. The
reason why k is not set to be even smaller, e.g., k = 1, is
from the consideration of avoiding false alarms during the
normal operation condition. As for the window length L,
it usually relates to the sampling interval and the duration
of disturbances. According to [11], in order to be sufficient
for characterizing disturbances, the measurements should be
recorded with an appropriate sampling interval so that the
duration of disturbances could be described by at least 40
measurements whenever possible. This requires having an
idea of the duration of typical disturbances or anomalies in
advance which can be judged from past experience with the
system. For instance, if the experience of the site is that
frequently occurring disturbances usually have a typical dura-
tion of 1 s, then the sampling interval should not be larger than
0.025 s to guarantee at least 40measurements in disturbances.
Under this circumstance, L = 40 could be considered for use.

IV. CASE STUDIES
In this section, the RD-kNN method is evaluated in two case
studies, involving simulation data from the reduced equiva-
lent model of GB power system [19] developed by the Power
and Control Group at Imperial College London, and real
measurements from the European power system.

A. REDUCED EQUIVALENT MODEL OF GB POWER SYSTEM
The reduced equivalent model of GB power system is
developed using MATLAB/Simulink software and consists
of 37 synchronous generators (10-coal, 8-nuclear, 5-hydro,
and 14-combined cycle gas turbine), 11 wind generators,
48 generator buses, 33 load buses, and 151 transmission lines.
The synchronous machines are represented using a transient
model and recommended ranges of values for different gen-
erator parameters are obtained from [20]. The inertias for
gas turbine generators, steam turbine generators, and hydro
generators are selected between 4pu & 6pu, between 6pu &
10pu, and 3pu, respectively. The wind turbine generators are
represented using the generic Type-4 WTG model [21]. The
model has three main parts representing Scotland, England
andWales respectively. An inter-area mode with participation
from synchronous generators located in both Scotland and
England is present in the model. More details about this
model can be found in [19].

The frequencies of 37 synchronous generators are moni-
tored as the electrical variables to reflect the system condition
and denoted as x1, x2, · · · , x37. Usually, during ambient oper-
ation, the frequencies of synchronous generators fluctuate
around the steady-state value (50 Hz in the UK) and the
fluctuation trends are mainly due to random events such as
the normal variation of load demands. Besides, inter-area
oscillations may also be observed in the frequency mea-
surements of some generators when groups of synchronous

machines in one part of the system oscillate with respect to
groups in another part of the system.When loads significantly
deviate from operating points, a resulting power mismatch
is reflected in the frequencies of all synchronous generators.
This larger change in operating points or disturbance is com-
monly seen in actual power systems. Possible causes for this
type of disturbance are the intermittent operation of large load
equipment or the synchronized surges in electricity consump-
tion, known as TV pickup. However due to the fluctuating and
oscillatory characteristics of the frequencymeasurements, the
detection of such disturbance is a challenging task. Here,
the RD-kNN method is applied, with the aim of providing
increased situational awareness of the frequencies to power
system operators.

FIGURE 6. The step power change at the first load bus in the first case
study.

The total simulation time is 180 s and the sampling interval
is 0.1 s, generating 1800 frequency measurements. At the
800th sampling time point, a step power change occurs at
the first load bus and lasts for 15 sampling time points,
as shown in Fig. 6. As a result, a disturbance takes place
in the frequencies x1, x2, · · · , x37. The first 500 frequency
measurements with no disturbance are used as training data
for the off-line modelling of the RD-kNN method, while
the remaining 1300 frequency measurements containing the
described disturbance are used as testing data for investigat-
ing the detection performance of the RD-kNN method. All
the 1800 frequency measurements are normalized with the
means and the variances of the first 500 frequency measure-
ments. To provide a compact demonstration, the normalized
measurements of x1, x2, · · · , x5 are shown in Fig. 7, with the
disturbance highlighted in the rectangle.

Referring to Fig. 7, the number of measurements in distur-
bance event is more than 40. Thus, the 0.1 s sampling interval
meets the recommendation in [11] that the duration of distur-
bances be described by at least 40 measurements. Accord-
ingly, L = 40 is taken for use and the detection chart of
the system-wide anomaly index AI on the testing data of the
frequencies x1, x2, · · · , x37 is shown in Fig. 8. The detection
threshold is determined with the confidence level α = 99%.
Besides, to investigate the effect of different choices of L on
the detection performance, L = 41, 42, 43, 44 are also taken
for use, respectively. For each choice of L, the detection time
point of AI is 813. It suggests that the detection performance
of AI is not sensitive to variations in L around 40.
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FIGURE 7. The normalized measurements of x1, x2, · · · , x5 in the first
case study.

FIGURE 8. The detection chart of AI on the testing data of x1, x2, · · · , x37
for L = 40 in the first case study, showing the time-series values of AI
(solid line) and the detection threshold (dashed line).

FIGURE 9. The detection times of AI1, AI2, · · · ,AI37 for L = 40 in the first
case study.

After the disturbance effect on the frequencies x1, x2, · · · ,
x37 is globally characterized by AI , the disturbance effect on
each of x1, x2, · · · , x37 can be further checked by the anomaly
indices AI1,AI2, · · · ,AI37. Fig. 9 shows the detection times
of AI1,AI2, · · · ,AI37 for L = 40. Observing from Fig. 9,
the detection time points of AI1,AI2, · · · ,AI37 are different,
ranging from 800 to about 820. The reason for the difference
is that the frequencies x1, x2, · · · , x37 suffer from the distur-
bance effect with different degrees, as exemplified in Fig. 7.
To provide a compact demonstration, the detection charts of
AI1,AI2, · · · ,AI5 on the testing data of x1, x2, · · · , x5 for
L = 40 are shown in Fig. 10. As expected, AI1,AI2, · · · ,AI5
provide different indications of the disturbance, coinciding
with the observation from Fig. 7 that x1, x2, · · · , x5 are
affected differently by the disturbance. On the other hand,
all of AI1,AI2, · · · ,AI5 detect the disturbance after it occurs
because their time-series values obviously exceed the related
detection thresholds, illustrating their satisfactory detection
performance.

In order to evaluate the real-time efficiency of the
RD-kNN method when on-line detection is conducted on
the testing data of x1, x2, · · · , x37, the time of calculating AI

FIGURE 10. The detection charts of AI1, AI2, · · · , AI5 on the testing
data of x1, x2, · · · , x5 for L = 40 in the first case study, showing the
time-series values of AI1, AI2, · · · , AI5 (solid lines) and the
detection thresholds (dashed lines).

for each data point is stored. The computations are carried out
on an Intel(R) Core(TM) i7-4770 (3.40 GHz) with 16.0 GB
RAM, and withWindows 7 Enterprise andMATLAB version
R2014a. The maximum calculation time is in the order of
0.012 s and is much smaller than the 0.1 s sampling inter-
val, meaning that the RD-kNN method meets the real-time
requirement.

TABLE 1. The electrical variables for monitoring in the second case study.

B. EUROPEAN POWER SYSTEM
The RD-kNN method is next applied to the European power
system data. The electrical variables for monitoring are
described in Table I, and 3000 measurements are recorded
for each variable with a 0.1 s sampling interval. The first
1000 measurements are taken to form training dataset since
there is nothing abnormal in them to worry an operator in the
control room and they reflect the characteristic of ambient
operation, whereas the remaining 2000 measurements are
taken to form testing dataset since they contain a disturbance
caused by a switching operation, according to information
received from the supplier of the data. All the 3000 measure-
ments are normalized with the means and the variances of the
first 1000 measurements, and the normalized measurements
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FIGURE 11. The normalized measurements in the second case study.

FIGURE 12. The detection chart of AI on the testing data of
x1, x2, · · · , x10 for L = 40 in the second case study, showing the
time-series values of AI (solid line) and the detection threshold
(dashed line).

are shown in Fig. 11 with the disturbance highlighted in the
rectangle.

Referring to Fig. 11, the disturbance inside the rectangle
is characterized by a ramp lasting about 100 measurements.
Thus, the 0.1 s sampling interval used in this real power sys-
tem canmeet the recommendation in [11] that disturbances be
captured by at least 40measurements. Accordingly, L = 40 is
taken for use and the detection chart of AI on the testing data
of the variables x1, x2, · · · , x10 is shown in Fig. 12. Again,
the detection threshold is calculated with the confidence level
α = 99%. It can be seen that AI reacts sharply and stays
well above the corresponding detection threshold when the
disturbance occurs, providing a definite indication of the
disturbance. This shows the RD-kNN method has potential
for practical application, because AI is system-wide anomaly
index and the practical implementation of a detection method
in a control room usually takes the form as a traffic light with
green or red indicators for the overall state of the system.
As in the first case study, L = 41, 42, · · · , 44 are also
taken to investigate the effect of different choices of L on
the detection performance. The obtained detection results are
almost the same as that in Fig. 12, meaning that the detection
performance of AI is also not sensitive to variations in L
around 40.

FIGURE 13. The detection charts of AI1, AI2, · · · , AI10 on the testing data
of x1, x2, · · · , x10 for L = 40 in the second case study, showing the
time-series values of AI1, AI2, · · · , AI10 (solid lines) and detection
thresholds (dashed lines).

Furthermore, the detail about the reaction an individual
variable exhibits to the disturbance can be checked by each
of the anomaly indices AI1,AI2, · · · ,AI10. As shown in
Fig. 13, the disturbance is well detected in x2 ∼ x4, x7 ∼ x10
by AI2 ∼ AI4,AI7 ∼ AI10. These are the expected results,
since the effects of the disturbance on x2 ∼ x4, x7 ∼ x10 can
be seen in their measurements where a transient happens, as
shown in the rectangle of Fig. 11. In contrast, the disturbance
is not detected in x1, x6 by AI1,AI6, which is in line with
the visual inspection that both x1 and x6 are not affected by
the disturbance. It is also worth noting that the disturbance
has certain effect on x5 and this effect is not as obvious as
those on x2 ∼ x4, x7 ∼ x10. However, AI5 still detects the
disturbance in x5. It can be seen from the above results that
the RD-kNN method is capable of detecting the disturbance
effectively.

To assess the real-time performance of the RD-kNN
method, the time of calculating AI for each testing data point
is stored. The maximum calculation time is about 0.007 s,
far smaller than the 0.1 s sampling interval. This means
that the RD-kNN method is well qualified for the real-time
implementation.

V. CONCLUSION
Anewmethod called Real-timeDetection based on k-Nearest
Neighbor (RD-kNN) has been proposed to detect power
system disturbances in real time. The contribution lies in
the application extension of kNN from off-line detection to
on-line detection by developing Strategy 0 for recursively
calculating distancemetrics and Strategy00 for fast selection
of the kth smallest metric. The application results on simula-
tion data from the reduced equivalent model of GB power
system and real data from the European power system have
illustrated that the RD-kNN method can effectively detect
disturbances.

Our future work will investigate the real-time multivari-
ate detection of power system disturbances by integrating
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multivariate statistical analysis with the present work. Further
investigation on the real-time classification of power system
disturbances will also be conducted based on the present
work.

ACKNOWLEDGMENT
The authors would like to thank Dr. Mats Larsson
of ABB Corporate Research Center, Baden-Dättwil,
Switzerland for providing data to support this paper.

REFERENCES
[1] P. Anderson and K. Timko, ‘‘A probabilistic model of power system

disturbances,’’ IEEE Trans. Circuits Syst., vol. 29, no. 11, pp. 789–796,
Nov. 1982.

[2] J. Thambirajah, N. F. Thornhill, and B. C. Pal, ‘‘A multivariate approach
towards interarea oscillation damping estimation under ambient conditions
via independent component analysis and random decrement,’’ IEEE Trans.
Power Syst., vol. 26, no. 1, pp. 315–322, Feb. 2011.

[3] E. Barocio, B. C. Pal, D. Fabozzi, and N. F. Thornhill, ‘‘Detection and
visualization of power system disturbances using principal component
analysis,’’ in Proc. IREP Symp.-Bulk Power Syst. Dyn. Control-IX (IREP),
Rethymno, Greece, 2013, pp. 1–10.

[4] W. Zhu et al., ‘‘A novel KICA–PCA fault detection model for condi-
tion process of hydroelectric generating unit,’’ Measurement, vol. 58,
pp. 197–206, Dec. 2014.

[5] L. Cai, X. Tian, and S. Chen, ‘‘A process monitoring method based
on noisy independent component analysis,’’ Neurocomputing, vol. 127,
pp. 231–246, Mar. 2014.

[6] A. Ajami and M. Daneshvar, ‘‘Data driven approach for fault detection
and diagnosis of turbine in thermal power plant using independent com-
ponent analysis (ICA),’’ Int. J. Elect. Power Energy Syst., vol. 43, no. 1,
pp. 728–735, Dec. 2012.

[7] Z. Liu, Q. Hu, Y. Cui, and Q. Zhang, ‘‘A new detection approach of
transient disturbances combining wavelet packet and Tsallis entropy,’’
Neurocomputing, vol. 142, pp. 393–407, Oct. 2014.

[8] F. B. Costa, ‘‘Fault-induced transient detection based on real-time analysis
of the wavelet coefficient energy,’’ IEEE Trans. Power Del., vol. 29, no. 1,
pp. 140–153, Feb. 2014.

[9] S.-J. Huang, T.-M. Yang, and J.-T. Huang, ‘‘FPGA realization of wavelet
transform for detection of electric power system disturbances,’’ IEEE
Trans. Power Del., vol. 17, no. 2, pp. 388–394, Apr. 2002.

[10] I. M. Cecílio, J. R. Ottewill, J. Pretlove, and N. F. Thornhill, ‘‘Nearest
neighbors method for detecting transient disturbances in process and elec-
tromechanical systems,’’ J. Process Control, vol. 24, no. 9, pp. 1382–1393,
Sep. 2014.

[11] I. M. Cecílio, J. R. Ottewill, H. Fretheim, and N. F. Thornhill, ‘‘Mul-
tivariate detection of transient disturbances for uni- and multirate sys-
tems,’’ IEEE Trans. Control Syst. Technol., vol. 23, no. 4, pp. 1477–1493,
Jul. 2015.

[12] E. Barocio, B. C. Pal, N. F. Thornhill, and A. R. Messina, ‘‘A dynamic
mode decomposition framework for global power system oscillation
analysis,’’ IEEE Trans. Power Syst., vol. 30, no. 6, pp. 2902–2912,
Nov. 2015.

[13] E. Keogh, J. Lin, and A. Fu, ‘‘HOT SAX: Efficiently finding the most
unusual time series subsequence,’’ in Proc. 5th IEEE Int. Conf. Data
Mining, Houston, TX, USA, Nov. 2005, pp. 226–233.

[14] V. Chandola, A. Banerjee, and V. Kumar, ‘‘Anomaly detection: A survey,’’
ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, Jul. 2009.

[15] G. O. Campos et al., ‘‘On the evaluation of unsupervised outlier detection:
Measures, datasets, and an empirical study,’’ Data Mining Knowl. Discov-
ery, vol. 30, no. 4, pp. 891–927, Jul. 2016.

[16] N. F. Thornhill, H. Melbø, and J. Wiik, ‘‘Multidimensional visualization
and clustering of historical process data,’’ Ind. Eng. Chem. Res., vol. 45,
no. 17, pp. 5971–5985, Jul. 2006.

[17] D. Fabozzi and T. VanCutsem, ‘‘Assessing the proximity of time evolutions
through dynamic time warping,’’ IET Generat., Transmiss. Distrib., vol. 5,
no. 12, pp. 1268–1276, Dec. 2011.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009, p. 39.

[19] L. P. Kunjumuhammed, B. C. Pal, and N. F. Thornhill, ‘‘A test system
model for stability studies of UK power grid,’’ in Proc. IEEE PowerTech,
Grenoble, France, Jun. 2013, pp. 1–6.

[20] P. Kundur, Power System Stability and Control. New York, NY, USA:
McGraw-Hill, 1994.

[21] WECC Renewable Energy Modeling Task Force, ‘‘WECC wind power
plant dynamic modeling guide,’’ WECC, Tech. Rep., Nov. 2010.
[Online]. Available: http://renew-ne.org/wp-content/uploads/2012/05/
WECCWindPlantDynamicModelingGuide.pdf

LIANFANG CAI received the B.Eng. and Ph.D.
degrees from the China University of Petroleum,
Qingdao, China, in 2009 and 2014, respectively.
He is currently a Post-Doctoral Research Asso-
ciate with the Imperial College London, U.K. His
research interests include data-driven power sys-
tem monitoring, modeling of power systems with
energy storage, and multivariate statistics.

NINA F. THORNHILL (SM’93) received the B.A.
degree in physics from Oxford University, Oxford,
U.K., in 1976, the M.Sc. degree from the Impe-
rial College London, London, U.K., and the Ph.D.
degree from the University College London.

She is currently a Professor with the Depart-
ment of Chemical Engineering, Imperial College
London, where she holds the ABB Chair of Pro-
cess Automation.

STEFANIE KUENZEL (GS’11–M’14) received
the M.Eng. and Ph.D. degrees from the Imperial
College London, London, U.K., in 2010 and 2014,
respectively. She is currently a Lecturer with the
Department of Electronic Engineering, Royal Hol-
loway, University of London. Her current research
interests include wind generator modeling and
interaction studies.

BIKASH C. PAL (M’00–SM’02–F’13) is currently
Professor of Power Systems with the Imperial Col-
lege London. He is research active in power system
stability, control, and computation. He has grad-
uated 15 Ph.D. students and published 60 tech-
nical papers in the IEEE TRANSACTIONS and IET
journals. He has co-authored two books and two
awards receiving the IEEE Task Force/Working
Group reports. He is currently the Editor-in-Chief
of IEEE TRANSACTIONS ON SUSTAINABLE ENERGY. He

has contributed to IEEE in power system stability and control.

VOLUME 5, 2017 5639


