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ABSTRACT Multi-scale-based image fusion is one of main fusion methods, in which multi-scale decompo-
sition tool and feature extraction play very important roles. The quaternion wavelet transform (QWT) is one
of the effective multi-scale decomposition tools. Therefore, this paper proposes a novel multimodal image
fusionmethod usingQWT andmultiple features. First, we performQWTon each source image to obtain low-
frequency coefficients and high-frequency coefficients. Second, a weighted average fusion rule based on the
phase and magnitude of low-frequency subband and spatial variance is proposed to fuse the low-frequency
subbands. Next, a choose-max fusion rule based on the contrast and energy of coefficient is proposed
to integrate the high-frequency subbands. Finally, the final fused image is constructed by inverse QWT.
The proposed method is conducted on multi-focus images, medical images, infrared-visible images, and
remote sensing images, respectively. Experimental results demonstrate the effectiveness of the proposed
method.

INDEX TERMS Image fusion, quaternion wavelet transform, phase, magnitude, feature.

I. INTRODUCTION
In recent years, image fusion technology becomes more and
more important, which has been widely used in many fields
such as multi-focus image [1]–[3], medical image [4], [5],
infrared-visible image [6] and remote sensing image [7]. The
purpose of image fusion is to combine images containing the
same scene from different sensors to generate a more compre-
hensive and accurate image including all useful information
of these source images.

The current image fusion methods are divided into two
categories. One is to directly fuse source images in spatial
domain. However, this kind of methods is not good in dealing
with edge. The other one is to integrate source images in
transform domain. This type of approaches could remove
the block effect and get more consistent fusion result. Image
fusion methods based on MSD draw researcher’s attention
in recent years. For example, discrete wavelet transform
based method [8], [9], stationary wavelet transform based
method [10], double-tree complex wavelet transform based
method [11], curvelet transform based method [7], contourlet
transform based method [12], non-subsampled contourlet
transform based method [2] etc.

QWT, as a popular MSD tool, is first proposed in
2004 [13]. It provides a richer scale space analysis for image
compared to other MSD tools because it can decompose
image into magnitude and phase information. The magni-
tude of QWT is near shift invariant so it have better texture
representation than wavelet and complex wavelet, and the
phase of QWT contains richer geometric information. Based
on the above merits, QWT has been used in image denois-
ing [14], [15] and image classification [16]. Therefore, we use
QWT as MSD tool in our work.

The performance of feature extraction directly affects the
quality of fusion result in MSD based image fusion method.
In traditional MSD based fusion methods, often using a sin-
gle feature to describe the attribute of image, such as the
contrast of image for fusion [9], the phase congruency and
directional contrast for the fusion of low frequency subbands
and high frequency subbands [17], the sparse and energy for
the fusion of low frequency subbands and high frequency
subbands [18]. However, a single feature is often a partial
description of image. To overcome this drawback, multiple
features of image are extracted and integrated in our work to
get more accurate representation of image. Based on this idea,
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three features are extracted for the fusion of low frequency
subbands. The first one is based on the phase information of
low frequency coefficient, which can be used to measure its
clarity. The second one is the magnitude information of low
frequency coefficient, which presents its energy information.
Especially in medical or infrared images, the magnitudes of
target and bone area are outstanding. The third one is the
variance of spatial region corresponding to the low frequency
coefficient, which is used to represent the salience of coeffi-
cient. As for the high frequency subbands, two features are
extracted. Considering the fact that the human eyes are more
sensitive to the contrast than the intensity of image, we take
the contrast of image as the first feature. In addition, the
details of image often present large coefficient values. There-
fore, the energy of high frequency coefficient is employed
as the second feature. After feature extraction, we integrate
multiple features of low frequency coefficient and high fre-
quency coefficient into two comprehensive features, respec-
tively. The fusion result can be obtained based on them.

The rest of the paper is organized as follows: The quater-
nion and quaternion wavelet transform is introduced in
Section 2; The framework of the proposedmethod is shown in
Section 3; The fusion rules for low frequency subbands and
high frequency subbands are presented in Section 4 and 5,
respectively; The experimental results and analyses are given
in Section 6; Finally, we conclude this paper in Section 7.

II. QUATERNION WAVELET TRANSFORM
A. QUATERNION ALGEBRA
The quaternion algebra H is a generalization of the complex
algebra [19], and the mathematical representation is:

H = q = a+ bi+ ci+ dk a, b, c, d ∈ R (1)

where the orthogonal imaginary numbers i, j and k satisfy the
following rules:

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j (2)

The quaternion could also represent as

Q = |q|eiφekψejθ (3)

where (φ, θ, ψ) ∈ [−π, π) × [−π/2, π/2) × [−π/2, π/4].
|q| is magnitude and φ, θ, ψ are phases. The computational
formulas of them is written as

φ = arctan(
2(ac+ bd)

a2 + b2 − c2 − d2
)

θ = arctan(
2(ab+ cd)

a2 − b2 + c2 − d2
)

ψ = −
1
2
arcsin(2(ad − bd))

(4)

B. 2-D QUATERNION WAVELET CONSTRUCTION
The QWT of image f (x, y) can be defined as:

f (x, y) = Aqn f (x, y)

+

n∑
s=1

[Dqs,1f (x, y)+ D
q
s,2f (x, y)+ D

q
s,3f (x, y)]

(5)

where Aqs f (x, y) and D
q
s,pf (x, y) (p = 1, 2, 3) are approxi-

mation and difference directional components respectively,
which also be called as the low frequency subbands and
high frequency subbands of image. The analytic extension is
constructed by real wavelet and its 2-D Hilbert transform:

ψD(x, y) = ψh(x)ψh(y)
→ ψD

+ iHi1ψD
+ jHi2ψD

+ kHiψD

ψV (x, y) = φh(x)ψh(y)
→ ψV

+ iHi1ψV
+ jHi2ψV

+ kHiψV

ψD(x, y) = ψh(x)φh(y)
→ ψH

+ iHi1ψH
+ jHi2ψH

+ kHiψH

φ(x, y) = φh(x)φh(y)
→ φ + iHi1φ + jHi2φ + kHiφ

(6)

where φ is scaling function, ψD, ψV , ψH is wavelet func-
tions which are oriented at diagonal, vertical and horizontal
respectively. 2-D Hilbert Transform can get by 1-D Hilbert
Transform along x and y axis respectively:{

ψh, ψg = Hψh
φh, φg = Hφh

(7)

The 2-D QWT is defined as:

ψD(x, y) = ψh(x)ψh(y)+ iψg(x)ψh(y)
+ jψh(x)ψg(y)+ kψg(x)ψg(y)

ψV (x, y) = φh(x)ψh(y)+ iφg(x)ψh(y)
+ jφh(x)ψg(y)+ kφg(x)ψg(y)

ψH (x, y) = ψh(x)φh(y)+ iψg(x)φh(y)
+ jψh(x)φg(y)+ kψg(x)φg(y)

φ(x, y) = φh(x)φh(y)+ iφg(x)φh(y)
+ jφh(x)φg(y)+ kφg(x)φg(y)

(8)

where the first three rows are the computational formulas
of QWT high coefficients of image in diagonal, vertical and
horizontal directions, respectively. The last row presents the
computational formula of QWT low coefficient of image. The
2-D QWT can be represented by magnitude and phases by
means of substituting Eq.(8) into Eq.(4).

C. AN EXAMPLE OF QUATERNION WAVELET TRANSFORM
FOR IMAGE
After image is decomposed by QWT, we can obtain a low
frequency part and n groups of high frequency parts. The
QWT decomposition structure of image is shown in Fig. 1.
‘‘Low’’ represents the low frequency part which composed
by four low frequency subbands, that is, band 1 to band 4.
At each level, the high frequency information is presented in
3 directions (horizontal (H), vertical (V) and diagonal (D)),
and there are four subbands (band 1, band 2, band 3, band 4)
in each direction. These four subbands can be transformed
into one magnitude and three phases.
To intuitively illustrate the QWT decomposition, the QWT

is conducted on MRI medical image (Fig.2) and the decom-
position results are shown in Fig.3 and Fig.4. Fig. 3 and Fig. 4
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FIGURE 1. The QWT decomposition structure of image.

FIGURE 2. MRI image.

are the low frequency part and high frequency part of Fig.2
obtained by using one level quaternion wavelet decompo-
sition. In the first row of Fig.3, Fig. 3(a) to 3(d) are four
low frequency subbands. In the second row of Fig.3, the low
frequency part of image is transformed into magnitude and
phases. Fig. 3(e) is the magnitude which provides overview
information of source image and Fig. 3(f) to 3(h) are three
phases. The edge and contour information of image can be
seen from these three phases. Considering the spatial limi-
tation, Fig. 4 shows the high frequency part of Fig.2 in the
vertical direction. Similar to Fig.3, the first row is four high
frequency subbands, and the second row is the magnitude
and phase representation of high frequency part. The QWT
magnitude (Fig. 4(e)) represents structural. The two phases
(φ and θ ) (Fig.4(f) and Fig.4(g)) represent the image local
shift information and the other phase ψ (Fig.4(h)) represents
the texture features of the image. Through this example,
we can observe that QWT is an effective MSD tool because
it can reveal more internal information of image.

III. THE FRAMEWORK OF THE PROPOSED METHOD
In this paper, a novel multimodal image fusion using quater-
nion wavelet transform and multiple features is proposed.
The framework of the proposed method is given in Fig.5.
As can be seen from Fig.5, the fusion processing can be
divided into three parts. In the first part, the source image
A and B are decomposed by QWT into low frequency part
and high frequency part. In the second part, the weighted
average fusion rule and the choose-max fusion rule are
proposed to fuse the low and high frequency coefficients

respectively. Finally, the fused image is obtained by using
inverse QWT. The detail fusion procedure is described as
follows.

1) Assuming that the source images have been registered.
QWT is performed on the two source images A and B
to obtain low frequency part LnA,L

n
B and high frequency

part H l,d,n
A , H l,d,n

B . L∗n is the n-th low frequency sub-
band, H l,d,n

∗ represent the n-th high frequency subband
at level l in d direction.

2) The weighted average fusion rule based on multi-
feature is proposed for low frequency parts, in which
the multi-feature is proposed by the combination of
the phase information of coefficient, the magnitude
information of coefficient and the regional variance of
image.

LnF (x, y) = LnA(x, y)× w(x, y)

+LnB(x, y)× (1− w(x, y)) (9)

where (x, y) is the location of coefficient and w(x, y)
is the weight of coefficient. The calculation of weight
w(x, y) is based onmulti-feature of low frequency coef-
ficient, which will be discussed in Section 4.

3) The choose-max fusion rule based on multi-feature
is designed to get the fused high frequency parts, in
which the multi-feature MH

∗,l,d,n(x, y) is obtained by
combining the energy and local contrast of coefficient:

H l,d,n
F (x, y)

=

{
H l,d,n
A (x, y), if MH

A,l,d,n(x, y) > MH
B,l,d,n(x, y)

H l,d,n
B (x, y), if MH

A,l,d,n(x, y) ≤ M
H
B,l,d,n(x, y)

(10)

where MH
∗,l,d,n(x, y) are defined as the activity level

measure of high frequency coefficient, which will be
described in Section 5.

4) The final fused image F can be obtained by inverse
QWT over the fused low frequency coefficients LnF and
the fused high frequency coefficients H l,d,n

F .
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FIGURE 3. The low frequency part of Fig.2 at level=1; (a) to (d) are four low frequency subbands of QWT; (e) to (h) are
the low frequency subbands express in terms of magnitude and phases,;(e) the magnitude of low frequency part; (f) the
phase φ of low frequency part; (g) the phase θ of low frequency partč" (h) the phase ψ of low frequency part.

FIGURE 4. The high frequency part of Fig.2 at the first level in the vertical direction; (a) to (d) are four high frequency subbands
of QWT; (e) to (h) are the high frequency subbands express in terms of magnitude and phases; (e) the magnitude of high
frequency part in the vertical direction; (f) the phase φ of high frequency part in the vertical direction; (g) the phase θ of high
frequency part in the vertical direction; (h) the phase ψ of high frequency part in the vertical direction.

IV. THE FUSION RULE FOR LOW FREQUENCY SUBBANDS
There ismost of energy in the low frequency part of the source
image. The fused low frequency part is the approximation
of fused image. Therefore, the fused low frequency infor-
mation affect the whole perception of fused image. In this
paper, a weighted average fusion rule based on multi-feature
is proposed for low frequency subbands to get better fused
low frequency part. The fusion weight is calculated by a

comprehensive feature of low frequency coefficient consist-
ing of the phase and magnitude of coefficient and the spatial
variance of coefficient. The detail description of the com-
prehensive feature is given below. The QWT low-frequency
part can be transformed into one magnitude matrix and three
phase matrices. The first two phases φ and θ represent local
image shifts, and the last one denotes the texture information
of image. As can be seen from Fig. 3, phase φ and θ contain
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FIGURE 5. The framework of the proposed method.

rich useful information. Therefore, the first salient feature of
coefficient can be defined based on phase φ and θ , which
reflects the clarity of low frequency coefficient [17], [20].

P(x, y) =
√
σ 2
1 (x, y)+ σ

2
2 (x, y) (11)

where, σ 2
1 (x, y), σ

2
2 (x, y) is the variance of the phase φ, θ in

a window centered on (x, y). Here, the windows size is 5×5.
Besides the phases, the magnitude of coefficient is an

effective feature. Especially in medical image and infrared
image, the useful information such as the bone information
in CT image and the infrared object present more energy and
less detail. Therefore, we shouldmeasure the salience of them
from the energy point of view. Fortunately, the magnitude of
coefficient mag (x, y) is a good description of energy infor-
mation, so it is employed as the second feature of coefficient
and is named as G.

Considering the fact that the low frequency subband is
the approximation of source image, there are strong cor-
relative between the source image and its low frequency
subband. Moreover, the source image is downsampled in the
decomposition processing. Therefore, we take the variance of
region corresponding to the low frequency coefficient in the
source image as the third feature of low frequency coefficient.

Specifically, this feature is

S(x, y) = var{I (i, j) | (i, j) ∈ �(x, y)} (12)

where I (i, j) is the intensity value of pixel, var(∗) represents
the variance operation and �(x, y) is the corresponding spa-
tial window of the low frequency coefficient Ln∗(x, y). For
example, if the original image size is 512 × 512 and the
decomposition level of QWT is 3, then the size of �(x, y)
is 8 × 8. That is to say, when the decomposition level is
defined as n, the size of �(x, y) is 2n × 2n and the starting
position is (x · 2n, y · 2n).

Next, we integrate these three features into a compre-
hensive feature employed as the activity level measure to
accurately measure the salience of low frequency coefficient.

ML(x, y) = |P(x, y)|α1 · |G(x, y)|α2 · |S(x, y)|α3 (13)

where α1, α2, α3 are the weigh factor. The contributions of
features to M can be adjusted by them.

Finally, the weight of low frequency fusion rule is calcu-
lated by formula (14). The fused low-frequency subbands can
be obtained by using formula (9):

w(x, y) =
ML
A (x, y)

ML
A (x, y)+M

L
B (x, y)

(14)
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FIGURE 6. The source images (a(∗) and b(∗)) and the weight maps obtained by using P (c(∗)), G(d(∗)), S(e(∗)) and (f(∗)). (∗ = 1, 2,
3, 4), α1, α2, α3 are defined as 5, 5, 0.1; 2, 1, 4; 1, 1.4, 2 and 1, 1, 5 in four experiments, respectively).

To verify the effectiveness of ML compared to individual
feature P, G and S, experiments are conducted on multi-
focus images (Fig.6(a1) and Fig.6(b1)), medical images
(Fig.6(a2) and Fig.6(b2)), infrared-visible images (Fig.6(a3)
and Fig.6(b3)) and remote sensing images (Fig.6(a4) and
Fig.6(b4)). Fig.6(c(∗)), Fig.6(d(∗)) and Fig.6(e(∗)) are the
weight maps obtained by separately using three features such
as P, G and S to replace ML in the formula (14). Fig. 6(f(∗))
are the weight map calculating by using the comprehensive
featureML . In the weight map, the intensity correspond to the
size of weight. The white points mean that the weight is equal
to 1, that is to say, the fused low frequency coefficient is fully
from low frequency coefficient of image A, and vice versa.
As can be seen from these weight maps, the performances of
features P, G, S rely on the type of image. Feature P is good at
remote sensing images, feature G have a better performance
in multi-focus and medical images, feature S is better in
infrared-visible images. However, the performance of feature
ML is efficient and robust in all kinds of images becauseML

integrates the advantages of three feature P, G and S.

V. THE FUSION RULE FOR HIGH FREQUENCY SUBBANDS
The high frequency subbands represent the details of image
such as edge, line, and corner. In general, the detail of image
presents a large absolute value of the high frequency coeffi-
cient. However, sometimes noise has the same phenomenon.
Fortunately, the local contrast of image can address this prob-
lem [5]. The contrast is represented as follows.

D(i, j) =


(

1
L(i, j)

)α H (i, j)
L(i, j)

, if L(i, j) 6= 0

H (i, j), if L(i, j) = 0
(15)

where α is a visual constant and is determined by a physi-
ological visual test in a range of 0.6 to 0.7, L(i,j) and H(i,j)
are low frequency coefficient and high frequency coefficient,
respectively. The relationship between contrast and back-
ground intensity is non-linear, which makes the human visual
system highly sensitive to contrast variations.

It is worth noting that the contrast of high frequency
coefficient can effective distinguish noise and detail, how-
ever, it weaken the energy information of that. Therefore,
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FIGURE 7. The source images (a(∗) and b(∗)) and the selection maps obtained by using D∗,l,d ,n (c(∗)), E∗,l,d ,n (d(∗)) and
MH
∗,l,d ,n (e(∗)). (∗ =1,2,3,4), β1 and β2 are defined as 2, 1; 0.1, 2; 0.1, 1 and 1, 1 in four experiments, respectively,

and l = 1, d = 1, n = 1.

to accurately represent the salience of high frequency coef-
ficient, a combination of contrast and energy of coefficient is
proposed as the comprehensive feature of coefficientMH

∗,l,d,n
in this paper.

MH
∗,l,d,n(i, j) = |D∗,l,d,n(i, j)|

β1 · |E∗,l,d,n(i, j)|β2 (16)

where, E∗,l,d,n(i, j) = |H
l,d,n
∗ (i, j)|2 denotes the energy of

high-frequency coefficient. By changing the value of β1, β2
to adjust the proportion of these two indicators in MH

∗,l,d,n.
Then, MH

∗,l,d,n(i, j) is defined as the activity level measure of
high frequency subband. The fused high frequency subbands
can be obtained by formula (10).

A series of experimental results are shown in Fig.7 to test
the effectiveness of MH

∗,l,d,n. Fig.7(a) and Fig.7(b) are the
source images. Fig.7(c(∗) , Fig.7(d(∗) and Fig.7(e(∗)) are
the selection maps obtained by DH

∗,l,d,n, E
H
∗,l,d,n andM

H
∗,l,d,n.

if the activity level measure of H l,n,d
A (i, j) is larger than

that of H l,n,d
B (i, j), then the pixel of selection map is white.

Otherwise, the pixel of selection map is black. As can be

seen from Fig. 7, the selection map using DH
∗,l,d,n feature is

rough, which means that the DH
∗,l,d,n feature can represent

the large-scale characteristics, and as for the EH
∗,l,d,n feature,

thought the selection map is fine, there are noises in it. It is
obvious that the multi-feature metric MH

∗,l,d,n obtained by
combining the feature DH

∗,l,d,n and feature EH
∗,l,d,n get more

perfect selection results.

VI. EXPERIMENTAL RESULTS AND ANALYSES
To verify the effectiveness of the proposed method in vari-
ous types of source images, the experiments are conducted
on 4 pairs of source images. They are multi-focus images,
medical images, infrared-visible images and remote images
downloaded from the homepage of Yu Liu [18]. Several com-
parison fusion methods are employed including Laplacian
pyramid based method (LP) [18], dual-tree complex wavelet
transform based method (DTCWT) [18], curvelet transform
based method (CVT) [18], nonsubsampled contourlet trans-
form based method (NSCT) [18], directive contrast based
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FIGURE 8. Multi-focus image fusion results.

FIGURE 9. Medical image fusion results.

method (DC) [5], Guided filter based method (GFF) [21] and
Pulse Coupled Neural Networks based method (PCNN) [22].
The source images are decomposed into three levels in the
above mentionedMSD based fusion methods. All parameters
of comparison experiments are set according to the reference
paper. All experiments are conducted with Matlab 2014b and
run on a PC with a Pentium 3.5 GHz CPU and an 8GB RAM.

A. SUBJECTIVE EVALUATIONS OF
EXPERIMENTAL RESULTS
Fig. 8 is a set of multi-focus image fusion experimental
results. Fig. 8(a) and 8(b) are the left focus image and the

right focus image respectively. Fig. 8(c)-(j) are the fused
images obtained by using various methods. Because these
image fusion methods are implemented in transform domain,
the block artifacts are overcome. To facilitate observation, the
blue areas in fused results are zoomed. It can be seen that
the amplified areas of Fig. 8(d), (f), (h) and (i) are unclear.
There are some noises on both sides of ‘‘1’’ in Fig. 8(g).
Subjectively, the rest fusion results get a good performance.

Next, medical image fusion experimental results are pre-
sented in Fig. 9. Fig. 9(a) is the CT image, which usually
contains dense structures such as bone information. Fig. 9(b)
is the magnetic resonance imaging (MRI) image, which
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FIGURE 10. Infrared-visible image fusion results.

FIGURE 11. Remote sensing image fusion results.

contains the details of soft tissue information. As we can
see, Fig. 9(c), 9(e), 9(g), and 9(h) lose some CT image
information, Fig. 9(d), (e), (f) and (i) lose some MRI image
information. The MRI information is blurry in Fig. 9(g). In
the zoomed region, it can be found that the amplified area of
Fig. 9(g) loses the information of CT image, and the amplified
areas of Fig. 9(c)-(f), (h) get low contrast. Though the global
and local observation, it is easy to see that only Fig. 9(h)
obtained by the proposed method contains both CT and MRI
image information completely.

The third group experiment is the infrared-visible image
fusion. Fig. 10(a) is a visible image containing the lights
and billboard, Fig. 10(b) is an infrared image presenting the
cars and pedestrians. It is easy to see that the fused images
(Fig. 10(f), 10(g) and 10(i)) are coarse. The billboards of
Fig. 10(e) are blurry.

Fig. 11 shows the fusion results of the remote sensing
images Fig. 11(a) and Fig. 11(b). There are a number of white
spots in Fig. 11(g). The boundaries of bridge are unclear in
Fig. 11(c), (d), (f) and (h). Moreover, it can be found that in
the right border of river of Fig. 11(i) and the land of right river
of Fig. 11(e) also lose information. Generally, Fig. 11(j) is the
best fusion result in subjective.

Based on the above four groups of experiments, it can
be concluded that comparison fusion methods perform
well in multi-focus image fusion while they get poor
fusion quality in medical image fusion and infrared-visible
image fusion because the comparison methods only use
a signal feature to present the salience of source images
which reduce the robustness of the fusion method. Owing
to the usage of comprehensive features, the proposed
method can well preserve the information of source images

6732 VOLUME 5, 2017



P. Chai et al.: Image Fusion Using Quaternion Wavelet Transform and Multiple Features

TABLE 1. The objective evaluation indexes of fusion results.

without producing artifacts and distortions in all types of
images.

B. OBJECTIVE EVALUATIONS OF EXPERIMENTAL RESULTS
To provide further quantitative comparison of various fusion
methods, objective evaluations of fused results are given
in this section. The average gradient (AG), edge inten-
sity (EI), mutual information (MI), spatial frequency (SF) and
QAB/F [23] are adopted as evaluation indexes. Large values
indicate a better fusion result for all indexes.

The objective evaluation indexes of fusion results are
shown in Table 1, in which the best results are labeled in
bold. We did not consider the evaluation metrics of the NSCT
method and DC method in infrared-visible fusion experi-
ments because of bad subjective perception. Except for the
infrared-visible fusion result obtained by NSCT based and
DC based method, the proposed method gets the best values
in terms of AG, EI and SF. We use the superscript (2) to mark
them. It can be seen that the AG and EI indexes of the pro-
posed method are the best in all experiments. This means that
the proposedmethod can well preserve the useful information
of source images. The SF shows that the proposed method
has a good performance in all types of image fusion except
for multi-focus image fusion. The MI and QAB/F evaluate

the amount of information and edge information from source
image to fused image, respectively. Though Fig. 9(h) get
the best value in terms of QAB/F index, it presents a bad
work in the border, especially in zoomed region. In addition,
the objective evaluation of Fig. 11(c) is better than that of
Fig. 11(j) in terms of MI index, but the border of bridge is
blurry in Fig. 11(c). The above analyses demonstrate that
all metrics should be collectively considered in the objec-
tive evaluations of fused images and the performance eval-
uations of fused methods is determined by the subjective
and objective evaluations together. In general, a conclusion
can be drawn that the propose method can get better fusion
performance in various types of image fusion whatever the
subjective or objective evaluation because QWT can better
represent the source image and the proposed comprehensive
features are effective salience metrics.

VII. CONCLUSION
In this paper, a novel image fusion method Using QWT and
multiple features is proposed. Compared to traditional MSD
tools, the QWT can provide abundant magnitude and phase
information, which meet approximate translation invariance
and limited redundancy. Different from the traditional fusion
methods using a single feature as the activity level measure,
we combine the magnitude, phase and spatial variance of
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low frequency coefficient into a comprehensive feature as
the activity level measure of low frequency coefficient and
combine the contrast and energy of high frequency coefficient
into the other comprehensive feature as the activity level mea-
sure of high frequency coefficient. These two multi-features
are reliable and robust, which are available for image fusion.
Finally, the experimental results demonstrate the proposed
method is effective in all kinds of image fusion.
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