
Received February 16, 2017, accepted March 16, 2017, date of publication March 22, 2017, date of current version April 24, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2685629

Continuous Integration, Delivery and
Deployment: A Systematic Review on
Approaches, Tools, Challenges
and Practices
MOJTABA SHAHIN1, MUHAMMAD ALI BABAR1, AND LIMING ZHU2
1Centre for Research on Engineering Software Technologies, The University of Adelaide, Adelaide, SA 5005, Australia
2Data61, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW 2015, Australia

Corresponding author: M. Shahin (mojtaba.shahin@adelaide.edu.au)

This work was supported by Data61, a business unit of CSIRO, Australia. The work of M. Shahin was supported by the
Australian Government Research Training Program Scholarship.

ABSTRACT Continuous practices, i.e., continuous integration, delivery, and deployment, are the software
development industry practices that enable organizations to frequently and reliably release new features
and products. With the increasing interest in the literature on continuous practices, it is important to
systematically review and synthesize the approaches, tools, challenges, and practices reported for adopting
and implementing continuous practices. This paper aimed at systematically reviewing the state of the art of
continuous practices to classify approaches and tools, identify challenges and practices in this regard, and
identify the gaps for future research. We used the systematic literature review method for reviewing the peer-
reviewed papers on continuous practices published between 2004 and June 1, 2016. We applied the thematic
analysis method for analyzing the data extracted from reviewing 69 papers selected using predefined criteria.
We have identified 30 approaches and associated tools, which facilitate the implementation of continuous
practices in the following ways: 1) reducing build and test time in continuous integration (CI); 2) increasing
visibility and awareness on build and test results in CI; 3) supporting (semi-) automated continuous testing;
4) detecting violations, flaws, and faults in CI; 5) addressing security and scalability issues in deployment
pipeline; and 6) improving dependability and reliability of deployment process. We have also determined
a list of critical factors, such as testing (effort and time), team awareness and transparency, good design
principles, customer, highly skilled and motivated team, application domain, and appropriate infrastructure
that should be carefully considered when introducing continuous practices in a given organization. The
majority of the reviewed papers were validation (34.7%) and evaluation (36.2%) research types. This paper
also reveals that continuous practices have been successfully applied to both greenfield and maintenance
projects. Continuous practices have become an important area of software engineering research and practice.
While the reported approaches, tools, and practices are addressing a wide range of challenges, there are
several challenges and gaps, which require future research work for improving the capturing and reporting
of contextual information in the studies reporting different aspects of continuous practices; gaining a deep
understanding of how software-intensive systems should be (re-) architected to support continuous practices;
and addressing the lack of knowledge and tools for engineering processes of designing and running secure
deployment pipelines.

INDEX TERMS Continuous integration, continuous delivery, continuous deployment, continuous software
engineering, systematic literature review, empirical software engineering.

I. INTRODUCTION
With increasing competition in software market, organi-
zations pay significant attention and allocate resources to

develop and deliver high-quality software at much accel-
erated pace [1]. Continuous Integration (CI), Continuous
DElivery (CDE), and Continuous Deployment (CD), called

VOLUME 5, 2017
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3909



M. Shahin et al.: Continuous Integration, Delivery and Deployment

continuous practices for this study, are some of the practices
aimed at helping organisations to accelerate their develop-
ment and delivery of software features without compromising
quality [2]. Whilst CI advocates integrating work-in-progress
multiple times per day, CDE and CD are about ability to
quickly and reliably release values to customers by bringing
automation support as much as possible [3], [4].

Continuous practices are expected to provide several ben-
efits such as: (1) getting more and quick feedback from
the software development process and customers; (2) hav-
ing frequent and reliable releases, which lead to improved
customer satisfaction and product quality; (3) through CD,
the connection between development and operations teams
is strengthened and manual tasks can be eliminated [5], [6].
A growing number of industrial cases indicate that the con-
tinuous practices are making inroad in software development
industrial practices across various domains and sizes of orga-
nizations [5], [7], [8]. At the same time, adopting continuous
practices is not a trivial task since organizational processes,
practices, and tool may not be ready to support the highly
complex and challenging nature of these practices.

Due to the growing importance of continuous practices, an
increasing amount of literature describing approaches, tools,
practices, and challenges has been published through diverse
venues. An evidence for this trend is the existence of five
secondary studies on CI, rapid release, CDE and CD [9]–[13].
These practices are highly correlated and intertwined, in
which distinguishing these practices are sometimes hard and
their meanings highly depends on how a given organization
interprets and employs them [14]. Whilst CI is considered
the first step towards adopting CDE practice [15], truly
implementing CDE practice is necessary to support automat-
ically and continuously deploying software to production or
customer environments (i.e., CD practice). We noticed that
there was no dedicated effort to systematically analyze and
rigorously synthesize the literature on continuous practices
in an integrated manner. By integrated manner we mean
simultaneously investigating approaches, tools, challenges,
and practices of CI, CDE, and CD, which aims to explore
and understand the relationship between them and what steps
should be followed to successfully and smoothly move from
one practice to another. This study aimed at filling that gap
by conducting a Systematic Literature Review (SLR) of the
approaches, tools, challenges and practices for adopting and
implementing continuous practices.

This SLR provides an in-depth understanding of the chal-
lenges of adopting continuous practices and the strategies
(e.g., tools) used to address the challenges. Such an under-
standing is expected to help identify the areas where method-
ological and tool support to be improved. This increases the
efficacy of continuous practices for different types of orga-
nizations and software-intensive applications. Moreover, the
findings are expected to be used as guidelines for practitioners
to become more aware of the approaches, tools, challenges
and implement appropriate practices that suit their indus-
trial arrangements. For this review, we have systematically

identified and rigorously reviewed 69 relevant papers and
synthesized the data extracted from those papers in order to
answer a set of research questions that motivated this review.
The significant contributions of this work are:

1. A classification of the reported approaches, associated
tools, and challenges and practices of continuous practices
in an easily accessible format.

2. A list of critical factors that should be carefully considered
when implementing continuous practices in both software
development and customer organizations.

3. An evidence-based guide to select appropriate approaches,
tools and practices based on the required suitability for
different contexts.

4. A list of researchable issues to direct the future research
efforts for advancing the state-of-the-art of continuous
practices.

The rest of the paper is organized as follows: In
Section II, we define continuous terminologies with summa-
rizing related work and outlining the existing research gap.
Section III describes the systematic literature review process
with the review protocol. The quantitative and qualitative
results of the research questions are described in Section IV.
The Section V reports a discussion on findings. The threats to
validity are discussed in Section VI. Finally, we present our
conclusions in Section VII.

II. FOUNDATIONS
A. BACKGROUND
Here we give an overview of continuous software engineering
(e.g., continuous integration, continuous delivery, and contin-
uous deployment) paradigm.

Continuous software engineering is an emerging area of
research and practice. It refers to develop, deploy and get
quick feedback from software and customer in a very rapid
cycle [4], [18]. Continuous software engineering involves
three phases: Business Strategy and Planning, Development
and Operations. This study focuses on only three software
development activities: continuous integration, continuous
delivery and continuous deployment. Figure 1 shows the
relationship between these concepts.

Continuous Integration (CI) is a widely established
development practice in software development industry [4],
in which members of a team integrate and merge devel-
opment work (e.g., code) frequently, for example multiple
times per day. CI enables software companies to have shorter
and frequent release cycle, improve software quality, and
increase their teams’ productivity [4]. This practice includes
automated software building and testing [5].

Continuous DElivery (CDE) is aimed at ensuring an
application is always at production-ready state after success-
fully passing automated tests and quality checks [19], [20].
CDE employs a set of practices e.g., CI, and deployment
automation to deliver software automatically to a production-
like environment [15]. According to [6] and [21], this prac-
tice offers several benefits such as reduced deployment risk,

3910 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

FIGURE 1. The relationship between continuous integration, delivery and deployment [16], [17].

lower costs and getting user feedback faster. Figure 1 indi-
cates that having continuous delivery practice requires con-
tinuous integration practice.

ContinuousDeployment (CD) practice goes a step further
and automatically and continuously deploys the application
to production or customer environments [19], [22]. There
is robust debate in academic and industrial circles about
defining and distinguishing between continuous deployment
and continuous delivery [4], [19], [20]. What differentiates
continuous deployment from continuous delivery is a pro-
duction environment (i.e., actual customers): the goal of con-
tinuous deployment practice is to automatically and steadily
deploy every change into the production environment. It is
important to note that CD practice implies CDE practice but
the converse is not true [20]. Whilst the final deployment
in CDE is a manual step, there should be no manual steps
in CD, in which as soon as developers commit a change,
the change is deployed to production through a deployment
pipeline. CDE practice is a pull-based approach for which a
business decides what and when to deploy; CD practice is a
push-based approach [23]. In other words, the scope of CDE
does not include frequent and automated release, and CD is
consequently a continuation of CDE. Whilst CDE practice
can be applied for all types of systems and organizations, CD
practice may only be suitable for certain types of organiza-
tions or systems [20], [23], [24].

B. EXISTING LITERATURE REVIEWS
During this review, we also found five papers that have
reported reviews on different aspects of continuous software
engineering - two studies have investigated continuous inte-
gration in the literature [11], [13], two papers have explored

continuous delivery [10] and deployment [9], and one study
has targeted rapid release [12] (See Table 1). We summarize
the key aspects of these studies. Ståhl and Bosch [11] have
presented a SLR on different attributes or characteristics of
CI practice.

That review has explored the disparity in implementations
of CI practice in the literature. Based on 46 primary studies,
the study had extracted 22 clusters of descriptive statements
for implementing CI. The clusters have been classified into
two groups: (a) culled clusters (e.g., fault frequency) which
either came from one unique source or the literature inter-
preted and implemented them the same; and (b) preserved
clusters (e.g., build duration) were described as statements
that there is contention on them in the published literature.
The paper proposed a descriptive model (i.e., the main con-
tribution of the paper) to address the variation points in the
preserved clusters.

Eck et al. [13] conducted a concept-centric literature
review to study the organizational implications of continuous
integration assimilation in 43 primary studies. The review
revealed that organizations require implementing numerous
changes when adopting CI. The study proposed a concep-
tual framework of 14 organizational implications (e.g., pro-
viding CI at project start) of continuous integration. The
authors also conducted a case study of five software com-
panies to understand the organizational implications of CI.
Mäntylä et al. [12] performed a semi-systematic literature
review to study benefits, enablers and problems of rapid
release (including CI and CD) in 24 primary studies. The
review did not comply with several of the mandatory aspects
of a SLR’s guidelines reported in [25] (e.g., lack of doing
data extraction and analysis rigorously, including papers that

TABLE 1. Comparison of this SLR with existing secondary studies.

VOLUME 5, 2017 3911



M. Shahin et al.: Continuous Integration, Delivery and Deployment

were not found through search string). The review revealed
that rapid releases are prevalent industrial practices that
are utilized in several domains and software development
paradigms (e.g., open source). It has been concluded that
the evidence of the claimed advantages and disadvantages of
rapid release is scarce. Rodríguez et al. [9] reported a sys-
tematic mapping study on continuous deployment to identify
benefits and challenges related to CD and to understand the
factors that define CD practice. Based on 50 primary studies,
it has been revealed that moving towards CD necessitates
significant changes in a given organization, for example,
team mindsets, organization’s way of working, and qual-
ity assurance activities are subject to change. The authors
also found that not all customers are happy to receive new
functionality on a continuous basis and applying CD in the
context of embedded systems is a challenge. However, the
main contribution of this mapping study lies in the identified
10 factors that define CD practice. For example, (a) fast and
frequent release; (b) continuous testing and quality assurance;
(c) CI; (d) deployment, delivery, and release processes and
configuration of deployment environments.

We found that the work done by Laukkanen et al. [10] is
the closest work to our study. They conducted a systematic
review on 30 primary studies to identify the problems that
hinder adopting CDE practice. The authors also reported the
root causes for and solutions to the problems. The study
grouped the problems and solutions into seven categories:
build design, system design, integration, testing, release,
human and organizational, and resource. The review [10] only
focused on CDE practice rather than CD, in which the authors
investigated CDE as a development practice where software
is kept production-ready (i.e., CDE practice), but not nec-
essarily deployed continuously and automatically (i.e., CD
practice). Laukkanen et al. also revealed that the work of [9]
used the term CD, while it actually referred to CDE practice.
Furthermore, the SLR [10] indicated whilst it is interesting to
study CD, but it was failed to find highly relevant literature
on CD.

It is worth noting that it is common in software engi-
neering to conduct several SLRs on a particular concept
or phenomenon. To exemplify, there are four reviews (i.e.,
SLR or systematic mapping study) on technical debt [26].
What differentiates SLRs on a particular subject from each
other is having different high level objectives, research ques-
tions, included studies and results. Having done a thor-
ough analysis of the related reviews, we observed the
following differences between this SLR and the existing
reviews:

1) SEARCH STRING, INCLUSION AND EXCLUSION CRITERIA
Our search string, inclusion and exclusion criteria were
significantly different with [9]–[13] for selecting the pri-
mary studies. Our work was aimed at reviewing papers that
included empirical studies (e.g., case studies and experi-
ments); we excluded the papers with less than 6 pages, which
were included in [10], [11], and [13]. It is important to note

that the previous reviews except [10] used only automatic
search, but we used both automated searches and snow-
balling for finding the relevant papers. Due to the aforemen-
tioned reasons, there is a significant difference in the papers
reviewed by our SLR with the included papers in other SLRs.
Out of 69 papers in our SLR, there were only 2, 10, 7, and 12
common papers with [9]–[11], [13] respectively.

2) RESEARCH QUESTIONS AND RESULTS
Regarding RQ1 and RQ2 and their respective goals, there are
no similar questions in other reviews. Both goals and results
ofRQ4 are different toRQ1 in [11] and [13].Whilst the objec-
tive of our research question (RQ4) was to comprehensively
identify and analyze practices, guidelines, lessons learned
and authors’ shared experiences for successfully adopting and
implementing each continuous practice, the given statements
for implementing CI in [11] were not sufficiently abstracted
and generalized and were not reported as practices for adopt-
ing and implementing CI. In fact, the main goal was to
indicate there is a lack of consensus on implementing CI
in practice. The focus of the review reported in [13] is on
organizational aspects of assimilating CI practice rather than
individual software projects. Furthermore, for both reviews
[11], [13], the main contributions are model, conceptual
framework, and empirical study rather than systematically
summarizing, analyzing, and classifying the literature on CI.
It is worth noting that due to having different coding schemes,
level of details and emergence of categories, it was not easy
to make one-to-one comparison of the identified challenges
and practices between our SLR and [10]. However, our study
identified a more comprehensive list of challenges, practices,
guidelines, lessons learned and authors’ shared experiences.
Our findings show that we only have 5 common practices
with [10]. Regarding RQ3, there is a partial overlap among
our SLR and the RQ4 and RQ1 in [9] and [10] respectively.

However, the goal of the questions has some overlaps with
together, but closely looking at the result from each study,
it clearly indicates a complementary relationship between
them. Some of the major differences in the identified chal-
lenges are lack of awareness and transparency, general resis-
tance to change, distributed organization, team dependen-
cies, customer environment, dependencies with hardware and
other (legacy) applications, which were not reported in the
previous reviews [9], [10].

3) ANALYZING CI, CDE, AND CD PRACTICES
IN AN INTEGRATED MANNER
As discussed earlier, CI, CDE and CD practices are highly
correlated and intertwined concepts, in which there is no con-
sensus on the definitions of these practices [27]. In our under-
standing to obtain a clear understanding of the approaches,
tools, challenges and practices, it is essential to broadly study
and cover CI, CDE and CD practices across its different
dimensions, such as approaches, tools, contextual factors,
practices, and challenges simultaneously in an integrated
manner.

3912 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

TABLE 2. Research questions of this SLR.

C. MOTIVATION FOR THIS SLR ON
CONTINUOUS PRACTICES
According to [4], continuous software engineering includes
a number of continuous activities such as continuous inte-
gration, delivery and continuous deployment. It is asserted
that CI is a foundation for CDE, in which implementing
reliable and stable CI practice and environment should be
the first and highest priority for a given organization to suc-
cessfully adopt CDE practice. We have mentioned that CDE
and CD practices are frequently confused together and used
interchangeably in the literature and practitioners’ blogs. It is
sometime hard to distinguish these correlated and intertwined
practices. The meanings of these practices highly depend
on who uses them [14], [27]. Since the main objective of
this study is to systematically collect, analyze and classify
approaches, tools, challenges and practices of continuous
practices, we believe these practices, particularly CDE and
CD practices, should be investigated together. Analysing CI,
CDE, and CD practices in an integrated manner provides an
opportunity to understand what challenges prevent adopting
each continuous practice, how they are related to each other,
and what approaches, associated tools, and practices exist for
supporting and facilitating each continuous practice. Further-
more, this helps software organizations to adopt continuous
practices step by step and smoothlymove from one practice to
another. We could not find any systematic review, which has
studied these intertwined practices (i.e., integration, delivery,
and deployment) together. The abovementioned reasons indi-
cate the need of conducting a literature review tailored to the
scope of the continuous integration, delivery and deployment
in an integrated manner.

III. RESEARCH METHOD
We used Systematic Literature Review (SLR) that is one
of the most widely used research methods in Evidence-
Based Software Engineering (EBSE) [28]. SLR aims at pro-
viding a well-defined process for identifying, evaluating,

and interpreting all available evidence relevant to a partic-
ular research question or topic [25]. This research method
involves three main phases: defining a review protocol, con-
ducting a review, and reporting a review. Following the SLR
guidelines reported in [25], our review protocol consisted of:
(i) research questions, (ii) search strategy, (iii) inclusion and
exclusion criteria, (iv) study selection, and (v) data extrac-
tion and synthesis. We discuss these steps in the following
subsections:

A. RESEARCH QUESTIONS
This study aimed at summarizing the current research on
‘‘continuous integration, continuous delivery and contin-
uous deployment practices in software development’’. We
formulated a set of research questions (RQs) to be answered
through this report. Table 2 summarizes the research ques-
tions as well as the motivations for them. The answers to
these research questions can be directly linked to the objective
of this SLR: an understanding of the available approaches
and tools in the literature to support and facilitate CI, CDE,
and CD practices (RQ1, RQ2), challenges (RQ3) and prac-
tices (RQ4) reported by empirical studies during adopting
each continuous practices. The results of these research
questions would enable researchers to identify the missing
gaps in this area and practitioners to consider the evidence-
based information about continuous practices before decid-
ing their use in their respective contexts. It is worth noting
that we distinguish between approaches and practices in
this SLR. Cambridge and Longman dictionaries define
approach, method, and technique similarly as the following
‘‘a [special/planned/particular] way of doing something’’;
however, practice is defined as ‘‘the act of doing something
regularly or repeatedly’’ [29], [30]. In this SLR, we define
approach, method, and technique as a technical and for-
malized approach to facilitate and support continuous prac-
tices [31]. For simplicity purpose, the approaches, methods,
techniques, algorithms, and frameworks, along with the tools

VOLUME 5, 2017 3913



M. Shahin et al.: Continuous Integration, Delivery and Deployment

to support them, that are developed and reported in the
literature for this purpose, are classified as approach rather
than practice. On the other hand, software practice is a social
practice [32] and is defined as shared norms and regulated
rules and activities, which can be supported and improved by
an approach [31], [33].

B. SEARCH STRATEGY
In order to retrieve as many relevant studies as possible,
we defined a search strategy [25], [34]. The search strategy
used for this review is designed to consist of the following
elements:

1) SEARCH METHOD
We used automatic search method to retrieve studies in six
digital libraries (i.e., IEEE Xplore, ACM Digital Library,
SpringerLink, Wiley Online Library, ScienceDirect, and
Scopus) using the search terms introduced in Section III.B.2.
We complemented the automatic search with snowballing
technique [35].

2) SEARCH TERMS
We formulated our search terms based on guidelines provided
in [25]. The resulting search terms were composed of the
synonyms and related terms about ‘‘continuous’’ AND ‘‘soft-
ware’’. After running a series of pilot searches and verifying
the inclusion of the papers that we were aware of, we utilized
the final search string as presented in the following. It should
be noted that the search terms were used to match with
paper titles, keywords, and abstracts in the digital libraries
(except SpringerLink) during the automatic search. The rea-
son we included the ‘‘software’’ and its related terms in the
search string was that continuous delivery and continuous
deployment terminologies are also used in other disciplines
(e.g., medicine). Therefore, we were able to avoid retrieving
a large number of irrelevant papers.

3) DATA SOURCES
We queried six digital libraries, namely IEEE Xplore,
ACM Digital Library, SpringerLink, Wiley Online Library,
ScienceDirect, and Scopus for retrieving the relevant papers.
According to [36], these are the primary sources of liter-
ature for potentially relevant studies on software and soft-
ware engineering. For all these libraries, except SpringerLink,

we ran our search terms based on title, keywords and abstract.
It is important to note that currently SpringerLink search
engine does not provide any facility for searching on the
title, abstract and keywords [37]. We were forced to either
restrict our search on the title only or apply search terms
on the full text of the articles. While the former resulted in
a quite few number of papers, the latter strategy returned
more than 11700 papers. In order to address this situation,
we followed the strategy adopted in [37]; we examined only
first 1000 papers retrieved by search on the full text. However,
we believe that Scopus was a complement to SpringerLink as
Scopus indexes a large number of journals and conferences
in software engineering and computer science [38], [39]. It is
worth noting that Google Scholar was not selected as data
source because of the low precision of search results and
generating many irrelevant results [36].

TABLE 3. Inclusion and exclusion criteria of this SLR.

C. INCLUSION AND EXCLUSION CRITERIA
Table 3 presents the inclusion and exclusion criteria, which
were applied to all studies retrieved from digital libraries.
We did not choose a specific time as the starting point of the
search period. Only peer-reviewed papers were included, and
we excluded editorials, position papers, keynotes, reviews,
tutorial summaries, panel discussions and non-English stud-
ies. Papers with less than 6 pages were excluded. We selected
only those papers that have reported the approaches, tools,
and practices using empirical research methods such as case
study, experience report, and experiment. In cases where we
found two papers addressing the same topic and have been
published in different venues (e.g., in a conference and a
journal), the less mature one was excluded. We eliminated
duplicate studies retrieved from different digital libraries.

D. STUDY SELECTION
Figure 2 shows the number of studies retrieved at each stage
of this SLR. The inclusion and exclusion criteria were used
to filter the papers in the following way:

3914 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

FIGURE 2. Phases of the search process.

Phase 0: We ran the search string on the six digital
libraries and retrieved 14723 papers. Considering only first
1000 results from SpringerLink, we finally found 3942 poten-
tial papers.
Phase 1: We filtered the papers by reading title and key-

words.When therewere any doubts about the retrieved papers
and it was not possible to determine the papers by reading the
titles and keywords, these papers were transferred to the next
round of selection for further investigation. At the end of this
phase, 449 papers had been selected.
Phase 2:We looked at the abstracts and conclusions of the

retrieved articles to ensure that all of them were related to the
objective of our SLR. We applied snowballing technique [35]
to scan the references of the selected papers in the second
phase. We found 51 potentially relevant papers by title from
the references of these 174 papers.

Inclusion and exclusion criteria were applied to the
abstracts and conclusions of those 51 potentially relevant
papers and we finally selected 28 papers for the next phase.
It is important to mention that the main reason for conducting
snowballing in this phase rather than applying it in the third
phase, was to find as many relevant studies as possible.
Phase 3: In the last (third) selection round, we read the

full text of the selected studies from second phase and if a
paper met all the inclusion criteria, this paper was selected
for inclusion in this SLR. We excluded the papers that were
shorter than 6 pages, irrelevant, or whose full texts were not
available. Furthermore, we critically examined the quality
of primary studies to exclude those had low quality e.g.,
low reputation venues. We found four types of papers on
continuous practices:

• Papers that present approaches (e.g., methods, tech-
niques, frameworks, and algorithms) and associated
tools to facilitate each continuous practice (RQ1).

• The second group consists of experience report papers
which either present the challenges, problems, and con-
founding factors in adopting and implementing contin-
uous practices (RQ3) or discusses practices, guidelines
and lessons learned for this purpose (RQ4).

• A group of papers reporting surveys of the usage
and importance of agile practices (e.g., continuous
integration and delivery) in software development
organizations.

• The papers in forth group used the concepts of continu-
ous integration, delivery and deployment on developing
and deploying an application, for example, applying CI
practice on robotic systems, and mostly reported the
potential benefits obtained by these concepts.

Since most papers in third and fourth groups did not meet
any of research questions and were out of the objectives of
this review, we excluded a large number of the papers in
those groups. Finally, we selected 69 papers for this review.
A significant part of the study selection, data extraction and
synthesis phases has been conducted by first author. In each
phase, we recorded the reasons of inclusion or exclusion
decision for each of the papers, which were used for further
discussion with second and third authors and reassessment
whether a paper had to be included or not. A cross-check
using a random number of the selected papers for each step
was performed by the second author.

E. DATA EXTRACTION AND SYNTHESIS
1) DATA EXTRACTION
We extracted the relevant information from the selected
papers based on the data items presented in Appendix B
in order to answer the research questions of this SLR. It
shows the research question(s) (described in Section III.A)

VOLUME 5, 2017 3915



M. Shahin et al.: Continuous Integration, Delivery and Deployment

that were supposed to be answered using different pieces of
the extracted data. The extracted information was stored in
MS Excel Spreadsheet for further analysis.

2) SYNTHESIS
We divided the data extraction form into: a) demographic
and contextual attributes, b) approaches, tools, challenges,
practices and critical factors of continuous practices. We
used descriptive statistics to analyze the data items D1 to
D10. In order to identify the research types (i.e., data item
D7) reported in the selected papers, we classified them into
six well-known research types: validation research, evalua-
tion research, solution proposal, philosophical paper, opin-
ion paper, and experience report [40]. The second set of
data items (i.e., D11, D12, D13 and D14) were analyzed
using qualitative analysis method, namely thematic analy-
sis [41]. We followed the five steps of the thematic analysis
method [41] as detailed below:
(1) Familiarizing with data: we tried to read and examine the

extracted data items, e.g., D11 (approaches and tools),
D12 (challenges), D13 (practices) and D14 (critical
factors) to form the initial ideas for analysis.

(2) Generating initial codes: in the second step we extracted
the initial lists of challenges, practices and factors for
each continuous practice. It should be noted that in some
cases, we had to recheck the papers.

(3) Searching for themes: for each data item we tried to
combine different initial codes generated from the second
step into potential themes.

(4) Reviewing and refining themes: the challenges, prac-
tices and critical factors identified from third step were
checked against each other to understand what themes
had to be merged with others or dropped (e.g., lack of
enough evidence).

(5) Defining and naming themes: through this step, we
defined clear and concise names for each challenge,
practice and critical factor.

IV. RESULTS
Following subsections report the results from analyzing and
synthesizing the data extracted from the reviewed papers
to answer the research questions. The results are based on
synthesizing the data directly collected from the reviewed
papers with our minimal interpretations. We interpret and
reflect upon the results in the discussion section.

A. DEMOGRAPHIC ATTRIBUTES
This subsection reports the demographic and research design
attributes information: studies distribution, research types,
study context and data analysis type, and application domains
and project types. All of the included papers are listed in
Appendix A.

1) STUDIES DISTRIBUTION
It is argued that reporting demographic information on
the types and venues of the reviewed papers on particular
research topic is useful for new researchers who are inter-
ested in conducting research on that topic. Therefore, the
demographic information is considered one of the important
pieces of information in an SLR. Figure 3 summarizes how
69 primary papers are distributed along the years and the
different types of venues. The selected papers were published
from 2004 to 2016. Note that the review only covers the
papers published before 1st June 2016. In spite of continu-
ous practices, in particular continuous integration and deliv-
ery are considered as the main practices proposed by agile
methodologies (e.g., eXtreme Programming) introduced in
early 2000, we were unable to find many relevant papers
to our SLR before 2010. We found a couple of papers that
conducted surveys on the usage and importance of agile prac-
tices (e.g., continuous integration and delivery) in software
development organizations before 2010, but those papers
have been excluded as they did not report any approach,
practice and challenge regarding CI and CDE. It is argued that

FIGURE 3. Number of selected studies published per year and their distribution over types of venues.

3916 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

CDE and CD practices have recently been known and studied
in academia (i.e., last 5 years) [42]. Figure 3 indicates a steady
upward trend in the number of papers on continuous practices
in the last decade. We noticed that 39 papers (56.5%) were
published during the last 3 years, suggesting that researchers
and practitioners are paying more attention to continuous
practices. It is clear from Figure 3 that conference was the
most popular publication type with 48 papers (i.e., 69.5%),
followed by journal (14 papers, 20.2%), while only 7 papers
[S15], [S23], [S28], [S62], [S63], [S64], [S65] came from
workshops.

TABLE 4. Distribution of the selected studies on publication venues.

There are 11 out of 14 journal papers that have been
published in 2015 and 2016, which indicates that the research
in the area is becoming mature. Table 4 summarizes that
the reviewed papers were published in 47 venues, in which
IEEE Software and International Conference on Agile Soft-
ware Development (XP) are the leading venues for publishing
work on continuous practices research as they have published
10.1% (7 papers) and 8.6% (6 papers) of the reviewed papers.
The International Conference on Software Engineering (i.e.,
5 papers) and Agile Conference (e.g., 4 papers) maintained
the subsequent positions. There are two venues (i.e., ITNG
and RCoSE) with only two papers each. We note that more
than half of the papers (40 out of 69, 57.9%) were published
in 40 different venues. Some of the publication venues are
not directly related to software engineering topics such as
Robotic; it indicates that the research on continuous practices
is being adopted by researchers in several areas that require
software development.

2) RESEARCH TYPES
This section summarizes the results from analyzing the data
item D7 about research types. Table 5 shows that a large
majority (49 out of 69, 70.9%) of the papers were report-
ing evaluation or validation research, in which they each
correspond to 36.2% (25 papers) and 34.7% (24 papers) of
the selected papers respectively. The high percentage of the
evaluation research was not surprising because a noticeable

number of the reviewed papers investigated and extracted
challenges and practices of CI, CDE, and CD in industry
through case studies with interview as data collection method
(e.g., [S4]). That is why a vast majority of the papers in
this category had used qualitative research approaches. Since
prominent research methods of the validation papers are sim-
ulation, experiments, and mathematical analysis [40], 22 out
of 25 papers in this category employed quantitative research
methods. We also categorized 15 (21.7%) papers as per-
sonal experience papers, in which practitioners had reported
their experiences from introducing and implementing one
of the continuous practices. Solution proposal (5 papers)
maintained the subsequent position. To give an example,
[S9] collected opinions of three release engineers through
interviews on continuous delivery’s benefits and limitations,
the required job skills, and the required changes in education.
The reviewed papers were not fallen in the philosophical
and opinion categories because we only included empirical
studies.

3) STUDY CONTEXT AND DATA ANALYSIS TYPE
We classified the reviewed papers into industry and academic
cases. The industrial studies were carried out with industry
or used real-world software-intensive systems to validate the
proposed approach and tool; whilst academic category refers
to those studies, which were performed in an academic set-
ting. Our review reveals that a large majority of the reviewed
papers (64 out of 69, 92.7%) are situated in the industry
category, whilst only 6 [S1], [S2], [S16], [S20], [S22], [S40]
papers were conducted in academic settings.

It shall be noted that one paper [S40] has been placed into
both categories as it conducted two case studies in academic
and industry. The high percentage of the industry papers indi-
cates a significant level of relevance and practicality of the
results reported in this SLR. According to Table 5, there were
the same number of reviewed papers that used qualitative and
quantitative (26 out of 69, 37.6% each) research approaches,
whilst we found 14 papers (20.2%), which employed both
qualitative and quantitative research approaches for data anal-
ysis. It was not possible for us to specify data analysis method
of three studies [S15], [S30], [S47] based on the provided
information.

4) APPLICATION DOMAINS AND PROJECT TYPES
We analyzed the data items D9 and D10 in Appendix B in
order to provide potentially useful information for practition-
ers who are interested in project types and the domain specific
aspects of the approaches, tools, challenges and practices
reported for CI, CDE, and CD. Table 6 shows the application
domains in which the reviewed approaches, practices and
challenges can be placed. Regarding the application domain,
not all the reviewed papers provided this information, which
resulted in categorizing 38 studies under ‘‘unclear’’ category.
For those papers that reported the application domains, we
classified them into 13 application domains. The approaches,
tools and practices introduced in one study can be applied

VOLUME 5, 2017 3917



M. Shahin et al.: Continuous Integration, Delivery and Deployment

TABLE 5. Number and percentage of papers associated to each research type and data analysis type.

TABLE 6. Distribution of application domains of the selected studies.

in more than one application domains with several cases;
for example, the continuous integration testing approach
reported in [S40] has been applied in two different domains
such as communication software and information manage-
ment system. If one study uses more than one system as a
case study, then we count this study N (number of systems)
times in Table 6.

The work reported in [S34] uses two utility software as
case studies, and x represents the number of cases in S34(x).
It becomes clear from Table 6 that the ‘‘software/web devel-
opment framework’’ domain has gained the most attention
for continuous practices, followed by ‘‘utility software’’ and
‘‘data management software’’. We investigated the type of
project (i.e., greenfield and maintenance) that continuous

3918 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

practices have been applied to. Our analysis of the data item
D10 revealed that the greenfield and maintenance projects
were reported in 17 and 16 papers respectively. However,
there are 36 papers without any information about the types of
projects for which the proposed continuous approaches, tools
and practices had been applied.

B. RQ1. WHAT APPROACHES AND ASSOCIATED TOOLS
ARE AVAILABLE TO SUPPORT AND FACILITATE
CONTINUOUS INTEGRATION, DELIVERY AND
DEPLOYMENT?
We found 29 papers (42%) that reported approaches and asso-
ciated tools to support and facilitate continuous integration,
delivery or deployment practices. Table 7 lists all approaches
and associated tools presented in the reviewed papers. The
Description column provides a summary of the proposed
approaches and associated tools. Third column indicates the
proposed approaches and tools have been mainly used and
applied to facilitate what continuous practices. We classified
the available approaches and associated tools into six groups
depending on their features and/or the areas in which they
were used as the followings. Apparently, the six categories
are not mutually exclusive, as there were several approaches
and tools fallen in more than one category. For brevity pur-
pose, we only elaborate a small subset of the studies as
examples.

1) REDUCE BUILD AND TEST TIME IN CI
The approaches and tools in this category aim at minimizing
the total time in the build process and test phase, which conse-
quently improves performance and efficiency of continuous
integration practice [S3], [S19], [S23], [S25], [S34], [S55],
[S64], [S67]. Since slow build process can be an obstacle to
practicing continuous integration, Bell et al. [S3] proposed
two approaches namely VMVM (Virtual Machine in a Vir-
tual Machine) and VMVMVM (Virtual Machine in a Virtual
Machine on a Virtual Machine) to isolate in-memory and
external dependencies among test cases respectively. Whilst
eliminating in-memory dependencies between tests enables
running each test in its own process, which significantly
reduces the overhead of dependencies among short test cases,
VMVMVM approach executes the long-running test cases in
parallel. The combination of VMVM and VMVMVM accel-
erates the total build time, which can relieve a deployment
pipeline from long-running builds.

A number of papers [S34], [S55], [S64] in this category
developed approaches that reduce the time of test execution
by selecting a set of tests cases and prioritizing them, in
which developers are enabled to receive the results early in
the testing process. To give an example, Elbaum et al. [S55]
proposed CRTS (Continuous Regression Test Selection) and
CTSP (Continuous Test Suite Prioritization) approaches to
effectively run regression tests within continuous integra-
tion development environments. The proposed approaches
use test suite execution history data to improve the cost-
effectiveness of pre-submit testing (i.e., tests performed by

developers before committing code to repository) and reduce
test case execution costs.

McIntosh et al. [S25] revealed that in C and C++ appli-
cations there might be header files that not only increase
the time of rebuild process, but also due to frequent main-
tenance requires significant effort. Thus, these header files,
called hotspots, are bottleneck to continuous integration
build process. Through analysis of the Build Dependency
Graph (BDG) and the change history of a system, the pro-
posed approach in [S25] enables team to identify the header
files that should be optimized first to improve build perfor-
mance. Hence, the team members only can focus on header
files with added value.

2) INCREASE VISIBILITY AND AWARENESS ON
BUILD AND TEST RESULTS IN CI
As the frequency of code integration increases, the informa-
tion (build and test results) produced during practicing CI
would increase exponentially. This may considerably slow
down the feedback in CI. Therefore, it is critical to collect
and represent the information in timely manner to help stake-
holders to gain better and easier understanding and inter-
pretation of the results. Several studies [S1], [S2], [S13],
[S22], [S24], [S33], [S38], [S52], [S64], [S67] have reported
approaches and associated tools for improving developers’
understanding of their projects’ status when implementing CI
practice. The authors of [S2] found that stand-alone CI tools
(e.g., Jenkins) produce huge amount of data that may not be
easily utilized by stakeholders (e.g., developers and testers).
They reported a framework and platform called SQA-Mashup
to integrate and visualize the information produced in
CI-toolchain using two views: (1) dynamic view, which
is a visualization view for developers and testers and (2)
time view, which indicates a chorological view on events
(i.e., failure event) happened in CI-toolchain. It was found
that interpretation of the proposed views is time-consuming
and should be performed by professionals (e.g., tester).
Brandtner et al. [S24] proposed a rule-based approach, named
SQA-Profile, to classify stakeholders based on their activi-
ties in CI environment. The project-independent SQA-Profile
enables tailoring and dynamic composition of scattered data
in CI system. Nilsson et al. [S13] have found that companies
need to describe and arrange testing activities and efforts
before moving to CI. CIViT (Continuous Integration Visu-
alization Technique) aims at visualizing end-to-end process
of testing activities. CIViT enables team members to avoid
duplicate testing efforts and visually understand the status
(i.e., time and extent) of testing of quality attributes.

3) SUPPORT (SEMI-) AUTOMATED CONTINUOUS TESTING
There are 7 papers that have proposed approaches and tools
for (semi-) automating tests in deployment pipelines [S19],
[S32], [S38], [S40], [S52], [S53], [S54]. Two papers [S40],
[S53] have provided frameworks to support Continuous Inte-
gration Testing (CIT) in SOA systems. Whilst the work
reported in [S40] partly automates test case generation in CIT

VOLUME 5, 2017 3919



M. Shahin et al.: Continuous Integration, Delivery and Deployment

TABLE 7. A classification of approaches and associated tools to facilitate continuous integration, delivery and deployment: ¶ (reduce the build and test
time in CI); · (increase visibility and awareness of build and test results in CI); ¸ (support (semi-) automated continuous testing); ¹ (detect violations,
faults, and flaws in CI); º (address security and scalability issues in deployment pipeline); » (improve dependability and reliability of deployment
process).

3920 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

TABLE 7. (Continued.) A classification of approaches and associated tools to facilitate continuous integration, delivery and deployment: ¶ (reduce the
build and test time in CI); · (increase visibility and awareness of build and test results in CI); ¸ (support (semi-) automated continuous testing);
¹ (detect violations, faults, and flaws in CI); º (address security and scalability issues in deployment pipeline); » (improve dependability and
reliability of deployment process).

using sequence diagrams as input, Surrogate, the simulation
framework proposed by [S53], enables CIT for partial imple-
mentation. Through this framework, bugs can be identified
when some components or even all components are still
unavailable. Kim et al. [S38] proposed NHN Test Automa-
tion Framework (NAFT) as an integrator for existing CI
servers to facilitate CI practices through automating repetitive
and error-prone processes for testing. It aids communication
among various stakeholders using tables to represent tests and
test environments.

4) DETECT VIOLATIONS, FLAWS AND FAULTS IN CI
Addressing the failures and violations in continuous integra-
tion systems, particularly at the early stage of development
are the targets of several papers [S16], [S21], [S25], [S32],
[S33], [S34], [S42], [S52], [S53], [S54], [S55]. For example,
one study [S16] reported an approach and associated tool
called WECODE to automatically and continuously detect
software merge conflicts earlier than a version control sys-
tem is used by developers. The tool enables developers to
detect the conflicts in uncommitted code that version con-
trol systems are not able to detect. In [S21], the authors
developed a method includes incremental integration with

simple and true backtracking in order to reduce the impacts
of broken builds in the context of component-based software
development. In the normal situation, a failure in the build
process of a component stops the integration process. The
failure should be resolved and the component needs to be
rebuilt. But the incremental integration method addresses this
issue by building components using earlier build results of
the same components. This approach leads the integration
process becomes more resilient against build failures.

5) ADDRESS SECURITY AND SCALABILITY ISSUES
IN DEPLOYMENT PIPELINE
Our literature review has identified only two papers dealing
with security issue in deployment pipelines [S27], [S66].
Gruhn et al. argued that continuous integration systems are
vulnerable for security attacks and misconfiguration [S27].
Having proposed a secure build server, they encapsulated
build jobs using virtualization environment with snapshot
capability to prevent one project’s security attacks from
infecting other projects’ build jobs in multitenant CI systems.
In [S66], it has been discussed that the security of a deploy-
ment pipeline may be threatened by malicious code being
deployed through the pipeline and direct communication

VOLUME 5, 2017 3921



M. Shahin et al.: Continuous Integration, Delivery and Deployment

between components in the testing and production environ-
ments. Rimba et al. [S66] proposed an approach, which
integrates security design fragments (i.e., security patterns)
through four compassion primitives namely connect tactic,
disconnect tactic, create tactic, and delete tactic to secure
deployment pipelines. For a large-scale software project, the
full build can take hours as it includes compilation, unit test-
ing and acceptance testing. Roberts [S47] has extended nor-
mal continuous integration process and proposed Enterprise
Continuous Integration (ECI) approach to split up project
into several modules using binary dependencies. Despite
every module has its own CI, ECI provides the feedback that
single-project CI provides. ECI addresses scalability issue in
normal CI and enables small teams continuously integrate
with binary dependencies developed by other teams.

6) IMPROVE DEPENDABILITY AND RELIABILITY
OF DEPLOYMENT PROCESS
Some papers [S8], [S59], [S68] dealt with deployment pro-
cess of applications that have adopted continuous delivery
or deployment practices. The work reported in [S8] investi-
gated the reliability issue in high-frequency releases of Cloud
applications. It has been argued that two major contribut-
ing factors i.e., cloud-infrastructure APIs (EC2 API) and
deployment-tool (i.e., OpsWorks1 and Chef)2 can affect the
reliability of cloud applications when they adopt continuous
delivery and deployment. Four error-handling approaches
have been implemented on rolling upgrade tool to deal
with reliability issues and facilitating continuous delivery.
Increasing the frequency of deployment (e.g., by adopting
CD practice) would make error diagnosis harder during spo-
radic operations [S68]. An approach, called Process Oriented
Dependability (POD), has been proposed to improve depend-
ability of deployment process in cloud-based systems. The
POD approach models the sporadic operations as processes
through collecting metrics and logs in order to alleviate the
difficulty of error diagnosis in deploying cloud-based systems
on a continuous basis.

C. RQ2. WHICH TOOLS HAVE BEEN EMPLOYED TO
DESIGN AND IMPLEMENT DEPLOYMENT PIPELINE?
This section presents the findings to answer to RQ2. Deploy-
ing software on a continuous basis to end users has increased
the importance of deployment pipelines [42]; the success of
adopting continuous practices in enterprises heavily relies
on deployment pipelines [1]. Hence, the choice of appro-
priate tools and infrastructures to make up such pipeline
can also help mitigate some of the challenges in adopt-
ing and implementing continuous integration, delivery and
deployment practices. We have investigated the deployment
toolchain reported in the literature and the tools for imple-
menting deployment pipelines. Since continuous delivery and
deployment might be used interchangeably, we used the term

1https://aws.amazon.com/opsworks/
2https://www.chef.io/chef/

deployment pipeline, which is equal to the modern release
engineering pipeline [42], instead of continuous integration
infrastructure, or continuous delivery or deployment pipeline.

A deployment pipeline should include explicit stages (e.g.,
build and packaging) to transfer code from code repository
to the production environment [1], [43]. Automation is a
critical practice in deployment pipeline; however, sometime
manual tasks (e.g., quality assurance tasks) are unavoidable
in the pipeline. It is worth noting that there is no standard
or single pipeline [1]. Our literature reveals that only 25 out
of 69 studies (36.2%) discussed how different tools were
integrated to implement toolchain to effectively adopt con-
tinuous practices. It should be noted that the tools reported
in this section are mostly existing open sources and com-
mercial tools, which aim to form and implement a deploy-
ment pipeline. However, the tools discussed in Section IV.B
are intended to facilitate the implementation of continuous
practices. These tools can be also used as part of deployment
pipeline implementation provided that they are integrated and
evaluated in the pipeline. As shown in Figure 4, we divided
the deployment pipeline into 7 stages: (i) version control
system; (ii) code management and analysis tool; (iii) build
tool; (v) continuous integration server; (vi) testing tool;
(vii) configuration and provisioning; and (viii) continuous
delivery or deployment server. It should be noted that not
all stages are compulsory as well as we could not find any
primary study among the 25 studies that had implemented
a pipeline involving all stages mentioned in Figure 4. At
the first stage, developers continually push code to code
repository. The most popular version control systems used
in deployment pipelines are Subversion3 and Git/GitHub4

as each has been reported in 6 papers. We found 7 papers
[S2], [S14], [S18], [S20], [S42], [S52], [S62], which used
code management and analysis tools as part of deployment
pipeline to augment build process. Thework reported in [S20]
integrated SonarQube5 into Jenkins6 CI server for gathering
metric data such as test code coverage and coding standard
violations and visualized them to developers. Continuous
integration servers check the code repository for changes and
use automated build tool [44].

Through CI servers, it is possible to automatically trigger
build process and run unit tests. Jenkins [S2], [S14], [S17],
[S20], [S26], [S27], [S30], [S35], [S62], [S63], [S66] has
gained the most attention among existing CI servers in the lit-
erature. It should be noted that some CI servers (e.g., Jenkins,
Bamboo7 and Hudson)8 are also able to deploy software to
staging or production environment [45]. A study reported in
[S30] used Jenkins as continuous delivery/deployment server.
Bamboo and CruiseControl maintained the subsequent

positions. [S39], [S58] used TeamCity as CI server in the

3https://subversion.apache.org/
4https://github.com/git/git
5www.sonarqube.org/
6https://jenkins-ci.org/
7https://www.atlassian.com/software/bamboo/
8hudson-ci.org/

3922 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

FIGURE 4. An overview of tools used to form deployment pipeline.

pipeline and other CI servers have been reported in one
paper each. The next step of deployment pipeline is to run
a set of tests in various environments. There are only four
papers [S18], [S35], [S54], [S62], which integrated testing
tools as part of deployment pipeline. Two papers [S35], [S18]
employed JUnit9 and NUnit10 for unit test in the pipeline
respectively, while one paper [S35] also used a test runner
called Athena to execute test suites and store the results in a
format that can be used by Jenkins. Furthermore, TestLink11

as a test management framework has been employed to store
the results of acceptance tests run in different sites. The work
reported in [S54] combined CUTS as a system modeling
executing tool to CruiseControl12 to enable developers and
testers to continuously run system integration tests at the
early stages of the software lifecycle (i.e., before complete
system integration time) of component-based distributed real-
time and embedded systems. The tool can capture perfor-
mance metrics of executing systems such as execution time,
throughput, and the number of received events. It is asserted
that providing automated configuration of servers and virtual
machines is one of innovations in deployment pipelines [42].
That can be the reason why we observed only two stud-
ies [S58], [S63] that used configuration management tools
as integrated part of deployment pipeline to streamline the
configuration and provisioning tasks. One study [S1] used
HockeyApp13 as continuous delivery server to distinguish
external release from internal one as well as it enables to
deliver a build as a release to customers. The cases reported

9junit.org/
10http://www.nunit.org
11testlink.org/
12http://cruisecontrol.sourceforge.net/
13http://hockeyapp.net/features/

in [S17] and [S62] respectively used a Ruby-based software
deployment called deoloyr and Web Deploy tool to automat-
ically deploy code to production.

D. RQ3. WHAT CHALLENGES HAVE BEEN REPORTED FOR
ADOPTING CONTINUOUS PRACTICES?
This section summarizes the results of RQ3, ‘‘What chal-
lenges have been reported for adopting continuous prac-
tices?’’ As discussed in Section III.E.2, we analyzed the
data item D12 using the thematic analysis method [41] for
identifying and synthesizing the challenges for moving to
and adopting CI, CDE, and CD. Our analysis resulted in the
identification of 20 challenges, which are shown in Table 8.
We provide detailed descriptions of the identified challenges
as a follow:

1) COMMON CHALLENGES FOR ADOPTING CI,
CDE AND CD PRACTICES
Under this category, we list the challenges of implementing
all continuous integration, delivery and deployment practices
together. Most of the challenges are usually associated with
introducing any new technologies or phenomena in a given
organization.

a: Team Awareness and Communication
Lack of awareness and transparency: Our review has

identified several papers that report a lack of sufficient
awareness among team members may break down transition
towards continuous practices [S6], [S10], [S31], [S43], [S45],
[S50], [S56], [S62]. Espinosa et al. [46] defined ‘‘aware-
ness’’ as short-term knowledge about a team and its tasks.
Continuous delivery process should be designed in a way
that the status of a project, number of errors, the quality of

VOLUME 5, 2017 3923



M. Shahin et al.: Continuous Integration, Delivery and Deployment

TABLE 8. A classification of challenges in adopting CI, CDE, and CD practices.

3924 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

TABLE 8. (Continued.) A classification of challenges in adopting CI, CDE, and CD practices.

features, and the time when features are finished are visible
and transparent for all team members [S10], [S31], [S43],
[S50]. The work reported in [S31] asserted a lack of sufficient
knowledge about the changes made in the main branch during
developing work packages by self-organized teams resulted
in increased number of merge conflicts in delivery.
Coordination and collaboration challenges: Some of the

reviewed studies also reported that successfully implement-
ing continuous practices requires more collaborations and
coordination between all team members [S4], [S6], [S10],
[S41], [S45], [S56], [S62]. For example, compared to less
frequent release, deploying software on a continuous basis
requires more communication to and coordination with oper-
ations teams [S4]. Gmeiner et al. [S62] argued that real
benefits of deployment pipeline can be obtained by having a
common understanding and collective responsibilities among
all stakeholders. Another study [S41] noted that there is
a need of strong coordination and communication between
release manager and other team members (e.g., testers) to
improve the release process. Laukkanen el al. [S45] reported
that coordination and collaboration challenges as result of
adopting continuous integration in distributed teams.

b: Lack of Investment
Cost: Cost and investment play an important role in

embracing continuous practices in both customer and soft-
ware development organizations. Several of the reviewed
studies [S4], [S6], [S12], [S27], [S37], [S43], [S45], [S49],
[S57], [S62] reported that practicing efficiently each of
the continuous integration, continuous delivery or deploy-
ment is associated with high cost that can be attributed to
many factors. For example, a study [S37] reported that a
major resource upgrade was needed to support CI practice.
Gruhn et al. [S27] observed that adopting continu-
ous integration in Free, Libre and Open Source Soft-
ware (FLOSS) requires extra computation, bandwidth, and

memory resources. CI systems are required to perform build
jobs, which include downloading patch files, compiling new
versions of code, and running a large set of unit and accep-
tance tests. The work reported in [S43] revealed that perform-
ing automated acceptance tests in the deployment pipeline
requires a significant amount of resources from customers.
Two studies [S57], [S62] observed that building, improving,
and maintaining infrastructures (e.g., deployment pipeline)
for continuous deployment practice needed a significant
amount of time, money and training. There was also cost
associated with training and coaching teammembers to adopt
continuous practices [S57].
Lack of expertise and skill: Several papers [S4], [S5],

[S6], [S12], [S45], [S49], [S57] reported a significant gap in
the required skills when implementing continuous practices.
This is mainly because most of the practices (e.g., test and
deployment automation) associated with CI, CDE, and CD
demand new technical and soft (e.g., communication and
coordination) skills and qualifications. Several studies [S4],
[S6], [S57] indicated the needs of highly skilled developers
for practicing CD.
More pressure and workload for team members: It has

been reported that building high-quality applications that are
supposed to be frequently released to customers may cause
some teammembers to facemore stress and extra efforts [S4],
[S5], [S6], [S45], [S49], [S58]. Callanan and Spillane [S58]
discussed that operations team was under more pressure to
deliver software on a continuous basis. The study reported in
[S49] has found that transforming a six month release into
continuous release noticeability increased the workload of
the developers and the release team. Whilst the transition
forced developers to more analyze their codes in order to
thoroughly identify negative side effects of their codes, the
release team experienced difficulties to find issues in release
process. One reason for this pressure could be that teammem-
bers are directly responsible for affecting their customers’
experiences.

VOLUME 5, 2017 3925



M. Shahin et al.: Continuous Integration, Delivery and Deployment

Lack of suitable tools and technologies: According to
eleven studies [S5], [S6], [S8], [S10], [S27], [S43], [S49],
[S56], [S57], [S60], [S66], the limitations of existing tools
and technologies are inhibitors to achieving the goals of
continuous practices. Researchers pointed out [S5], [S10]
that the existing tools are inefficient in reviewing code and
providing feedbacks from test activities in continuous inte-
gration. They emphasized that test automation is not suffi-
ciently provided by current infrastructure. Other studies [S8],
[S27] highlighted the build and deployment tools employed
in the deployment pipeline are vulnerable to security and
reliability issues. Analysing the reliability issue in high-
frequency releases of Cloud applications revealed that using
external resources and cloud-based tools in a deployment
pipeline leads to increased errors and delays, which conse-
quently hinders continuous delivery practice [S8]. Olsson
et al. [S10] indicated that the high frequency changes in
tools and the need of learning new tools are the major
barriers to adjust to continuous integration. Three papers
[S56], [S57], [S60] revealed that the current tools and tech-
nologies either have limited functionalities or cannot enable
all organization to truly adopting CD practice. To exemplify,
a study [S56] reported that lack of appropriate technologies
hindered automatically and continuously deploying applica-
tions in embedded system domain with customer-specific
environments.

c: Change Resistance
General resistance to change: Whilst employees gener-

ally resist to change, people may embrace changes pro-
vided that there are convincing reasons for those changes
[47]. Introducing continuous practices may necessitate adopt-
ing a new way of working for some team members (e.g.,
accepting more responsibilities by developers). The reviewed
studies reported that objections to change were a barrier to
move towards and successfully implement continuous prac-
tices [S4], [S5], [S6], [S12], [S56], [S57], [S62]. A study
[S62] found that establishing the necessary mindset required
by a continuous delivery was a time-consuming process;
another study [S5] concluded that changing the old habits
of developers was problematic when introducing CI. Our
investigation revealed that the team members were unwill-
ing to change their ways of working due to lack of trust
and rapport on the benefits of continuous practices, fear of
exposing low quality code, and suffering more stresses and
pressures.
Scepticism and distrust on continuous practices:

Six papers [S4], [S5], [S6], [S12], [S45], [S49] referred to
lack of trust and scepticism about the added values that may
bring by adopting continuous practices as potential risks for
moving towards these practices. To give an example, the
experience reported in [S49] revealed that the release team
was worried about allowing several concurrent releases. This
is mainly because continuous release might bring side effects
for them and make them unable to identify which release
was causing which problem. In addition, another study [S12]

reported that lack of trust in application’s quality may reduce
the confidence of team members to move from CI to CD
and deploy the application to production on a continuous
basis.

d: Organizational Processes,
Structure and Policies
Difficulty to change established organizational polices

and cultures: According to [48], the organizational culture
is a set of habits, behaviours, attitudes, values and man-
agement practices adopted by an organization. Two stud-
ies [S10], [S12] discussed the difficulties in changing organi-
zational cultures for aligning with the principles of continu-
ous practices. Based on a study, Olsson et al. [S10] reported
that being traditionally a hardware-oriented company was an
obstacle in transition towards CI practices, however, [S12]
highlighted this issue as the case company used to have six
month release cycle. Both papers revealed lack of suitable
and agile business model in organizations resulted in negative
consequences for continuous practices. Rissanen and Münch
[S43] found that practicing the short-lived feature branching,
which is regarded as one of the best practices in continuous
delivery is not easy to apply in a company with long estab-
lished practices.
Distributed organization: It has been reported that prac-

ticing continuous integration and deployment in distributed
development teams can be associated with a number of chal-
lenges (i.e., lack of visibility) [S12], [S37], [S45]. In both
cases [S12], [S45], the authors argued that introducing CI
practice in distributed development model was challenging.
That is mainly because it would prohibit having consistent
perceptions among distributed teams and decrease the vis-
ibility of development sites. In an experience reported by
Sutherland and Frohman [S37], it has been asserted that the
distributed development model adopted by Scrum team was
a barrier to CI practice. It is mainly because allocating a
dedicated and private integration server environment to each
individual Scrum team led to detecting integration issues that
have been postponed to a very large extent. As a result,
the team was forced to put all teams onto a single server
environment.

2) CHALLENGES FOR ADOPTING CI PRACTICE
a: Testing
Lack of proper test strategy: One of the most prominent

roadblocks to adopting continuous integration reported by
several studies was the challenges associated with testing
phase. Whilst it is asserted that automated test is one of
the most important parts of successfully implementing CI,
the case organizations studied in [S4], [S5], [S12], [S36],
[S41], [S43], [S45] were unable to automate all types of
tests. Lack of fully automated testing may stem from differ-
ent reasons such as poor infrastructure for automating tests
[S12], time-consuming and laborious process for automating
manual tests [S43] and dependencies between hardware and

3926 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

software [S5]. Whilst lack of test-driven development (TDD)
practice has been reported in [S12] as a barrier to estab-
lishing CI practice, Debbiche et al. [S5] have revealed that
regardless of TDD being practiced or not, a huge dependency
between code and its corresponding tests made integration
step very complicated. The work reported in [S36] revealed
that although automating Graphic User Interface (GUI) test-
ing through applying a set of GUI testing tools could partially
alleviate the challenges of rapid release, but due to reliability
concerns, the quality assurance (QA) members were needed
to manually check the system during running automatic test.
Poor test quality: The next challenge in testing phase dur-

ing CI adoption is about low test quality. This includes having
unreliable tests (i.e., frequent test failures) [S4], [S5], [S6],
[S41], [S45], [S50], [S62], high number of test cases [S50],
low test coverage [S56] and long running tests [S4], [S5],
[S45], [S50]. These issues not only can impede the deploy-
ment pipeline, but also can reduce the confidence of software
development organizations to automatically deploy software
on a continuous basis. Rogers [S50] observed that the num-
ber of tests grows in large-codebase and they run slowly.
Therefore, developers are not able to receive the feedback
from tests quickly and practicing CI starts to break down. To
give another example, the author of [S62] found that it is hard
to stabilize tests at the user interface level.

b: Merging Conflicts
Our review has revealed that conflicts during code integration
causes bottlenecks for practicing CI [S4], [S6], [S21], [S31],
[S41], [S45]. There are several reasons for these conflicts that
can occur when integrating code: one study [S45] reported
that third-party components caused severe difficulty to prac-
tice CI. Sekitoleko et al. [S31] observed that incompatibility
among dependent components and lack of knowledge about
changed components caused teams facing extra effort to
rewrite their solutions. It is asserted that merge conflicts are
mainly attributed to highly coupled design [S31], [S41].

3) CHALLENGES FOR ADOPTING CDE PRACTICE
a: Lack of Suitable Architecture
We found several studies discussing that unstable application
architectures create hurdles in smooth transition towards con-
tinuous delivery and deployment practices.
Dependencies in design and code: Some authors [S4],

[S5], [S6], [S10], [S31], [S41], [S57], [S60] asserted that
inappropriately handling dependencies between components
and code cause challenges in adopting continuous integration
and in particular continuous delivery and deployment prac-
tices. The work reported in [S10] argued that the existence of
huge dependency between components and the dependency
between components interfaces resulted in highly dependent
development teams and ripple effect of changes. It has been
concluded that highly coupled architectures can cause severe
challenge for CDE practice because changes are spanned
across multiple teams with poor communications between

them [S57], [S60]. There was only one paper [S5], which
considered software requirements as a challenge for CI as
the interviewees reported that (i) finding the right size of
requirements for being tested separately when broken down
is challenging; (ii) it is not easy to understand whether small
changes that do not directly add value to a feature are worth
integrating or not.
Database schemas changes: Technical problem relating to

database schemas changes should be effectively managed in
the deployment pipeline. A few number of the reviewed stud-
ies [S6], [S57], [S58], [S62] revealed that frequent changes in
database schema as a technical problem when moving to con-
tinuous delivery. One study [S6] in this category highlighted
that small changes in code resulted in constant changes in
database schemas. Another study [S62] argued that a large
part of concern in configuration of the automated test envi-
ronment involved setting up databases. The study reported
in [S57] discussed that one of the studied case companies did
not put extra effort to streamline its database schema changes,
which resulted in severe bottlenecks in its deployment
process.

b: Team Dependencies
Team structures and interactions amongmultiple teamswork-
ing on a same codebase system play an important role in
successfully implementing CDE and CD practices. Several
of the reviewed studies [S6], [S31], [S45], [S50], [S56], [S57]
reported that high cross-team dependencies prohibited devel-
opment teams to develop, evolve and deploy applications or
components and services into production independently of
each other. This issue also has major impact on practicing CI
as a small build break or test failuremay have ripple effects on
different teams [S50]. The author of [S56] argued that feature
and module (hardware) teams developing embedded domain
systems were highly dependent, in which each feature was
complied, tested and built by a combination of both teams.
This required a strong and proper communication and coor-
dination among them. Two studies [S50], [S57] in this group
also discussed that nonexistence of a suitable architecture can
increase the cross-team dependency.

4) CHALLENGES FOR ADOPTING CD PRACTICE
It has been noted that CD practice may not be suitable to any
organizations or systems. We discuss the challenges and bar-
riers that can limit or demotivate organizations from adopting
CD practice.

a: Customer Challenges
Customer environment: A set of papers discussed that

diversity and complexity of customers’ sites [S4], [S6], [S10],
[S29], [S43], manual configuration [S10], [S62], and lack
of access to customer environment [S56], [S60] may cause
challenges for team members when transferring software to
customers through CD practice. According to [S4], [S43],
continuously releasing software product to multiple cus-
tomers with diverse environments was quite difficult as it

VOLUME 5, 2017 3927



M. Shahin et al.: Continuous Integration, Delivery and Deployment

was needed to establish different deployment configurations
for each customer’s environment and component’s version.
A small set of papers [S56], [S60] reported that it was not
easy, if possible, to provide production-like test environment.
Lwakatare et al. [S56] also observed that lack of access
to and insufficient view on customer environment compli-
cated simulating production environment. The aforemen-
tioned issues caused organizations challenges in providing
fully automated provisioning and automated user acceptance
test.
Dependencies with hardware and other (legacy)

applications: Our analysis has revealed that albeit an appli-
cation might be production-ready, dependencies between
the application with other applications or hardware may
be roadblocks to transition from CDE to CD practices
(i.e., deploying the application on a continuous basis) [S6],
[S10], [S29], [S43], [S56], [S62]. It means it is needed to
ensure that there is no integration problem when deploy-
ing an application to production. For example, a study
[S10] reported that an increased number of upgrades and
new features made the networks highly complex with the
potential of becoming incompatible with legacy systems.
The authors of [S56] found that dependency with hardware
and compatibility with multiple versions as challenge for
steady and automatically deploying software into customer
environment.
Customer preference: Some studies considered the pref-

erence of customers and their policies as important fac-
tors which should be carefully considered to move towards
CD practice. It was revealed that not always customers are
pleased with continuous release due to frequent update noti-
fications, broken plug-in compatibility and increased bugs in
software [S6], [S29], [S43]. Customer organization’s policy
and process may not allow truly implementing CD, as in
an experience report Savor et al. [S57] reported that banks
did not allow them to continuously push updates into their
infrastructures.

b: Domain Constrains
A software system’s domain is a significant factor that should
be considered when adopting continuous deployment prac-
tice [S4], [S5], [S6], [S9], [S10], [S24], [S31], [S41], [S44],
[S48], [S56], [S57], [S60], [S65]. A large-scale qualitative
study by Leppänen et al. [S4] indicated that domain con-
straints could change the frequency of deploying software
to customers as well as the adoption of deployment method
(e.g., calendar-based deployment). Compared with telecom-
munication and medical systems, web applications more fre-
quently embrace the frequent deployment. In [S24], it has
been reported that despite continuous integration practice was
successfully adopted by a case company, it was not possible to
fully apply continuous deployment practice on safety critical
systems. We found two studies discussing the challenges
of adopting CD in embedded systems [S56] and pervasive
systems [S65].

E. RQ4. WHAT PRACTICES HAVE BEEN REPORTED TO
SUCCESSFULLY IMPLEMENT CONTINUOUS PRACTICES?
This section reports the findings from analysis of the data
extracted (i.e., D13) to answer RQ4, ‘‘What practices have
been reported to successfully implement continuous prac-
tices?’’ Similar to RQ3, we first provide a high level clas-
sification of practices to understand which practices can be
applied to each CI, CDE, CD and which practices are com-
mon for all CI, CDE, and CD. Table 9 presents 13 practices
and lessons learnt reported in the reviewed papers.

1) COMMON PRACTICES FOR IMPLEMENTING
CI, CDE, AND CD
a: Improve Team Awareness and Communication
In Section IV.B.2, we discussed how approaches and associ-
ated tools can increase a project’s visibility and transparency
for adopting continuous practices. This section reports the
analysis of a few papers [S6], [S31], [S37], [S43], [S44],
[S47], [S49] that provided practices for increasing team
awareness and communication. Robert [S47] observed that
appropriately labelling the latest version of client source and
keep updating the server version in client-server application
enabled developers to understandwhen everything is working
together. In order to make changes visible for customer, a
study [S44] in this category suggested recording the changed
features in a change log to enable customers to track what and
when features have changed. Marschall [S49] suggested that
team members be regularly informed (e.g., by email) about
branches that are completely out-dated.We found four papers
[S6], [S31], [S37], [S44] that argued that knowledge sharing
practice should be consolidated among team members as
enablers for adopting CI [S31], [S37] and improvement for
rapid release [S44].

b: Investment
Planning and documentation: It is argued that establish-

ing continuous practices in a given organization necessi-
tate planned and structured steps for clearly defining and
documenting all the business goals and development activ-
ities [S28], [S31], [S36]. This is considered helpful to min-
imize the challenges associated with continuously releasing
software features [S28], [S31], [S36]. Bellomo et al. [S28]
observed that weaving requirements and designs through pro-
totyping at the beginning of a release planning cycle enabled
the studied team to smooth continuous delivery process. The
release level prototyping with quality attributes focus enabled
product owner and architect to work closely for quickly
responding to prototype feedback. The case organization
studied in [S58] developed a standard release path (i.e., a set
of rules) for application packaging and deployment for which
all the steps and activities to production are determined. This
enabled the organization to easily embrace CD and release
frequently and with confidence. Adopting CD should be slow
with preparing, understanding and documenting engineering
processes. For example, one of the case companies studied

3928 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

TABLE 9. A classification of practices and lessons learnt for successfully implementing CI, CDE, and CD.

VOLUME 5, 2017 3929



M. Shahin et al.: Continuous Integration, Delivery and Deployment

TABLE 9. (Continued.) A classification of practices and lessons learnt for successfully implementing CI, CDE, and CD.

in [S57] spent 2 years to institutionalize CD practice. Five
studies [S6], [S11], [S17], [S37], [S43] emphasized the
importance of documentation when adopting continuous
practices. It has been suggested that continuous activities
(build, test, and packaging) should be well documented to
help different stakeholders to understand the history of the
activities in deployment pipeline. For example, Ståhl and
Bosch [S11] proposed a descriptive Integration Flow Model
for enabling team members to describe and record integra-
tion flow implementations in software development compa-
nies. The model consists of ‘‘input’’ (e.g., binary repository),
‘‘activity’’ (e.g., packaging) and ‘‘external triggering factors
(e.g., scheduling)’’ elements.
Promote team mindset: As discussed earlier, lack of pos-

itive mindset about continuous practices is a confounding
factor in adoption of these practices. Two papers [S5], [S45]
reported that organizational management organized CI
events, which were run by the team who built the CI infras-
tructure to spread the positive mindset about CI. In order
to encourage new developers to commit code several times
per day, Facebook runs a six-week boot camp [S48] to help
developers to overcome their fear of code failure. Another
paper [S57] argued giving freedom to developers (e.g., full
access to the company’s code) enabled them to feel empow-
ered to release new code within days of being hired.
Improve team qualification and expertise: Our review

has identified the practices that aim at improving team quali-
fication and expertise to bridge the skills gap to successfully

implement continuous practices. We found several studies
[S5], [S6], [S45], [S48], [S57] that provided formal training
and coaching (for example through events) arranged by orga-
nizations. For instance, OANDA, a company studied in [S57],
assigned new developers to the release engineering team
for several months in order to get trained and familiar with
CD practice. Claps et al. [S6] reported a software provider
that leveraged CI developers’ experience for transition from
CI to CD by integrating automated continuous deployment
of software into the existing CI workflow of developers to
ensure there is no, or a low learning curve.

c: Clarifying Work Structures
Our analysis identified the practices that emphasize the
importance of clarification of the work structures in success-
fully adopting and implementing continuous practices.
Define new roles and teams: A noticeable practice is

defining new roles and responsibilities in software develop-
ment lifecycle when a project adopts continuous practices
[S1], [S9], [S29], [S30], [S45], [S48], [S49], [S51]. Krusche
and Alperowitz [S1] defined hierarchical roles such as release
manager and release coordinator to introduce continuous
delivery to multi-customer projects. Another work [S29]
indicated that using a dedicated build sheriff role proved
successful in practicing CI. The build sheriff engineer not
only watches the build machine continuously but also aids
developers by identifying and resolving the backouts that

3930 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

previously had to be addressed by developers. Another
case [S45] reported the rotational policy implemented to
enable team members to take different responsibilities to
get higher understanding about the status of CI process.
Another study [S57] also reported similar practice as devel-
opers were encouraged to rotate between different teams.
Hsieh and Chen [S30] advocated having a single respon-
sible person in team to constantly authorize and watch CI
system. This helps to prevent ignoring broken builds by
developers, particularly those happen during overnight. It
was also reported that establishing a temporary or dedicated
team to facilitate transitions towards continuous practices was
helpful. The experience reported in [S37] highlighted that
establishing a virtual Scrum teamwith expertise in infrastruc-
tures and operations was helpful to mitigate potential risks
in software release. Another study [S5] observed the usage
of pilot team who trained other team members and provided
guidelines about CI goals to them through workshops and
meetings to stimulate CI concepts. Two studies reported the
establishment of a dedicated team for design andmaintenance
of infrastructure and deployment pipeline. This helps organi-
zations in CD transformation [S57] and reduces release cycle
time [S58].
Adopt new rules and policies: Several studies have

reported the need of new rules, regulations, policies and
strategies for enabling CI/CD [S26], [S39], [S45], [S46],
[S48], [S50], [S58]. For example, one company [S39]
enforced developers to solve the errors occurred during their
commits in less than 30 minutes or revert the check-in. A
paper [S46] reported a set of rules for improving deployability
such as: creating tests cases at the system-level should take
one day on average. In another paper [S26], the authors
argued that having deployable software all the time has been
reached by the following rule ‘‘whenever a test complained,
the integration of a change set failed, and the software
engineer is obliged to update the test code or production
code’’.

2) PRACTICES FOR IMPLEMENTING CI
This category presents three types of practices namely
improving testing activity, branching strategies and decom-
posing development into smaller units, to enable and facilitate
practicing CI.

a: Improve Testing Activity
Whilst Sections IV.B.1 and IV.B.3 summarized a set of
approaches and tools proposed in the literature for improving
test phase during CI, this section discusses three practices for
this purpose. Karvonen et al. [S12] indicated that adopting
test-driven development (TDD) and daily build practices are
essential for CI practice. Neely and Stolt [S17] reported
that one of the appropriate practices for removing manual
tasks of QA was ‘‘test planning’’. This practice stimulates
close collaboration between QA and developers to docu-
ment a comprehensive list of automated tests. They argued
that this practice liberates QAs from manually testing the

majority of the software applications for regression
bugs [S17]. The authors in [S39] suggested another practice
called ‘‘cross-team testing’’, which means integration test of
module A should be performed by programmers or testers
who have not been involved in the implementation of module
A.

It has been argued that this practice helped detect more
defects and build an objective appreciation of the modules.
Rogers [S50] argued that the problem of slow unit tests in CI
system can be alleviated by separating them from functional
and acceptance tests.

b: Branching Strategies
Branching is a well-known CI practice. The practices such
as repository use [S30], [S44] and short-lived feature branch-
ing [S43] were presented as software development practices
that support CI. Short-lived branching also supports the adop-
tion of CDE practice as one study [S43] reported that an
organization changed the long-lived feature branches to short-
lived and small ones for exposing new features faster to the
clients to receive feedback faster. Two studies [S29], [S48]
reported the practice of having developers to commit changes
to a local repository and later on those changes would be
committed to a central repository. However, in one case [S29],
the code that passed all build and automated tests would be
committed to the central repository by build sheriffs (i.e.,
introduced in Section IV.E.1.c). In this way, a release pro-
cess will be more stable. It was also reported that having
many branches hampers practicing CI. Feitelson et al. [S48]
observed that working on a single stable branch of the code
reduces time and effort on merging long-lived branches into
trunks.

c: Decompose Development into Smaller Units
A set of the reviewed papers [S5], [S10], [S30], [S36], [S45],
[S47], [S48], [S49], [S50], [S51], [S57] emphasized that
software development process be decomposed into smaller
units to successfully practice CI, but none of them provided
concrete practice for this purpose. The main goal of this type
of practice is to keep build and test time as much small as
possible and receive faster feedback. Three papers [S10],
[S48], [S49] argued that large features or changes should be
decomposed into smaller and safer ones in order to shorten
the build process so that the tests can be run faster and more
frequently. For cross-platform applications, the complexity
of dependency between components increases dramatically
and it can be an obstacle to applying CI to them. Hsieh and
Chen proposed a set of patterns namely Interface Module,
Platform Independent Module and Native Module to con-
trol dependency between modules of cross-platform appli-
cations [S30]. They suggested that the platform-independent
code should be placed into Platform Independent Module and
these modules should be built in the local build environment.
Through this pattern not only the build time reduces, but also
the build scripts remain simple. Another paper [S5] proposed
dead code practice, which can reduce dependency between

VOLUME 5, 2017 3931



M. Shahin et al.: Continuous Integration, Delivery and Deployment

components before integration through activating and test-
ing a code or component only if all dependencies among
them are in place. Decomposing development process into
independent tasks enables organizations to have smaller and
more independent teams (e.g., cross-functional teams), which
was argued as an enabler for fully practicing CI [S50] and
CDE [S51], [S57].

3) PRACTICES FOR IMPLEMENTING CDE
a: Flexible and Modular Architecture
As discussed in Section IV.D.3.a, technical dependency
between codes or components can act as an obstacle to adopt
CDE and CD. The reviewed studies reported that deliver-
ing software in days instead of months requires architec-
tures that support CDE adoption [S7], [S12], [S28], [S30],
[S45], [S51], [S57]. The software architecture should be
designed in a way that software features can be developed
and deployed independently. Loosely coupled architecture
minimizes the impact of changes as well. For example,
Laukkanen et al. [S45] observed that the studied organization
had to re-architect their product (e.g., removing components
caused trouble) to better adopt CI and CDE. It is also asserted
that teams that are not architecturally dependent on (many)
other, they would be more successful in implementing CDE
and CD [S57]. The work reported in [S7] has conducted an
empirical study on three projects that had adopted CI and
CDE. The study concluded that most of the decisions (e.g.,
removing web services and collapsing the middle tier) made
to achieve the desirable state of deployment (i.e., deployabil-
ity quality attribute) were architectural ones. The collected
deployability goals and tactics from three projects have been
used as building blocks for the deployability tactics tree. Two
studies [S5], [S30] recommend that the component inter-
faces be clearly defined for making continuous delivery- or
deployment-ready architectures.

b: Engage All People in Deployment Process
A set of papers [S6], [S9], [S43], [S44], [S48], [S57], [S58]
argued that achieving real benefits of continuous delivery and
deployment practices requires developers and testers being
more responsible for their codes in production environment.
With this new responsibility, they are involved in and aware
of all the steps (e.g., deploy into production), and are forced
to fix problems that appear after deployment [S44]. As an
example of involving developers in release process, Facebook
adopted a policy, in which all engineers team who committed
code should be on call during the release period [S48].

4) PRACTICES FOR IMPLEMENTING CD
a: Partial Release
Releasing software to customers potentially may be risky
for software providers as their customers may receive buggy
software. This issue can intensify when deploying software
on a continuous basis (i.e., practicing CD). It is critical for
software organizations to adopt practices in order to reduce

potential risks and issues in release time. We identified three
types of practices for this purpose: (i) deploying software
to small set of users [S44], [S17], [S57]; (ii) hiding and
disabling new or problematic functionalities to users [S6],
[S17], [S44], [S48]; (iii) rolling back quickly to stable state
[S48]. Three papers [S17], [S44], [S48] pointed out dark and
canary deploymentmethods that can significantly help transit
to continuous deployment. In canary deployment method,
the new versions of software are incrementally deployed
to production environment with only a small set of users
affected [49]. Deploying software by this method enables
team to understand how new code (i.e., the canary) works
compared to the old code (i.e., the baseline). In [S57], it was
found that both Facebook and OANDA released software
products to a small subset of users rather than releasing
them to all customers. For example, Facebook first releases
the software products to its own employees to get feedback
to improve the test coverage. Another incremental release
method, dark deployment, hides the functional aspects of
new versions to end-users [50]. This method tries to detect
potential problems, which may be caused by new versions
of software before end-users would be affected. In order to
deal with the large features (i.e., dark features) in OnDemand
software product that may not be developed and deployed in
a small cycle, one organization [S6] employed the practice of
small batches. Through this practice, the development pro-
cess of dark features was hidden from customers. However,
when the entire feature is finally developed, the switch of dark
feature will be turned on and then customer is able to interact
with and use them. Another study [S58] reported the imple-
mentation of microservices that were independently released
while maintaining backward compatibility with each release
as a tactic of addressing delays in deployment pipeline. In
order to introduce CD practice to novice developers, Krusche
and Alperowitz [S1] suggested ‘‘empty release’’ practice, in
which besides development teams get in touch with contin-
uous workflows and infrastructures from day 0, continuous
pipeline is initially run with simple application (e.g., ‘‘hello
world’’).

b: Customer Involvement
Several papers [S10], [S12], [S28], [S36], [S43], [S44], [S49],
[S61], [S63] aimed at exploring the role of customers or end-
users as enabler in transition towards continuous deployment.
A couple of papers [S10], [S12] defined the concept of ‘‘lead
customer‘‘, at which customers not only are incorporated in
software development process, but also are eager to explore
the concept of continuous deployment. The work reported
in [S43] used the term ‘‘pilot customer’’ and argued that
it would be better to apply CDE or CD to those compa-
nies that are willing to continuously receive updates. It has
been noted that it is needed to renew existing engagement
model with customers to be compatible with the spirit of
CD. Agarwal [S36] described a process model based on
Type C SCRUM, called Continuous SCRUM, and leveraged
a number of best practices to augment this process model

3932 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

and achieve sustainable weekly release. One of the noticeable
practices was ‘‘triagemeeting’’, in which product-owner runs
the meeting and she/he determines the triage committee.
A product-owner review has been introduced into the sprint
to enable and approve changes to product requirements as
well as the product-owner was enabled to prioritize the back-
log of product requirements. We found a set of papers [S61],
[S63] arguing the involvement of customer in testing was
an effective practice for adopting CDE and CD practices.
A study [S61] revealed that involving customers in testing
phase is a helpful practice for those companies that do not
have enough resources for practicing CD. The study indicated
that customers can be greatly successful in finding lower
impact functional defects.

V. DISCUSSION
Continuous practices (i.e., Continuous Integration (CI), Con-
tinuous DElivery (CDE), and Continuous Deployment (CD))
are increasingly becoming popular in software industry.
Several dozens of approaches, tools, challenges, and practices
have been reported for adopting, implementing and promot-
ing CI, CDE, and CD. It is equally important to systematically
review and thoroughly document the reported approaches,
tools, challenges, and practices as a body of knowledge.
Such body of knowledge can help understand their nature
and potential areas of applications and identify the areas of
future research direction. The abovementioned needs stim-
ulated four key research questions to be answered through
this SLR. The previous section has presented the findings
from this SLR with respect to the research questions. Now
we discuss the findings and reflect upon the potential areas
for further research.

A. MAPPING OF CHALLENGES TO PRACTICES
Figure 5 presents a mapping of the identified challenges in
Section IV.D onto the practices reported in Section IV.E.
This mapping is intended to provide a reader (i.e., researcher
or practitioner) to quickly determine which challenges are
related to which practices. For example, a flexible and mod-
ular architecture is expected to decrease dependencies in
design and code. Figure 5 also indicates that that there might
be dependencies among the challenges (i.e., exacerbation) or
practices (i.e., support). A practice may support or positively
affect another practice, for example, by making the imple-
mentation of that practice easier. For example, we found that
distributed organization can exacerbate the challenge of and
need for coordination and collaboration in adopting contin-
uous practices; however, adopting and implementing partial
release can be greatly supported by engaging all people (in
particular customer) in deployment process.

B. CRITICAL FACTORS FOR CONTINUOUS
PRACTICES SUCCESS
Based on our analysis in Sections IV.D and IV.E, we have
identified 20 challenges and 13 practices for CI, CDE, and
CD. We have also found 30 approaches and associated tools

that have been proposed by the reviewed studies to address
particular challenges in each continuous practice. It is impor-
tant to point out that there was no one-to-one relationship
between the identified challenges and the proposed practices,
approaches and associated tools as there were some chal-
lenges for which we were unable to identify any practice
or approaches to address them and vice versa. We decided
to define a set of critical factors that should be carefully
considered to make continuous practices successful. To iden-
tify what factors (i.e., both in software development and
customer organizations) are important to successfully adopt
and implement continuous practices, we again analyzed the
results reported in Sections IV.B, IV.D, and IV.E. A factor
is accumulated challenges, approaches, and practices per-
taining to a fact. For example, we found a number of chal-
lenges (Sections IV.D.2.a), approaches and associated tools
(Sections IV.B.1 and IV.B.3), and practices (Section IV.E.2.a)
for testing activity in moving towards continuous practices.
Therefore, we considered ‘‘testing’’ as a factor, which should
be carefully considered when adopting continuous practices.
If a factor is cited in at least 20% of the reviewed studies then
we regard that factor as a critical factor for making continuous
practices successful.

Table 10 shows the list of 7 critical factors, which
may impact the success of continuous practices. ‘‘Testing’’
(27 papers, 39.1%) is the most frequently mentioned factor
for continuous practices success, followed by ‘‘team aware-
ness and transparency’’ (24 papers, 34.7%), ‘‘good design
principles’’ (21 papers, 30.4%) and ‘‘customer’’ (17 papers,
24.6%). Our results indicate that ‘‘testing’’ plays an important
role in successfully establishing continuous practices in a
given organization. Our research reveals that long running
tests, manual tests, and high frequency of test cases failure
have failed most of the case organizations in the reviewed
studies to realise and achieve the anticipated benefits of con-
tinuous practices. Whilst we have reviewed several papers
that revealed a lack of test automation was a roadblock to
move toward continuous practices, there were only a few
papers (i.e., 7 papers), which had developed and proposed
approaches, tools and practices for automating tests for this
purpose.

Continuous practices promise to significantly reduce inte-
gration and deployment problems. It should be designed in
a way that the status of a project, number of errors, who
broke the build, and the time when features are finished are
visible and transparent to all team members. We have found
‘‘team awareness and transparency’’ as the second-most
critical factor for adopting continuous practices. Improved
team awareness and transparency across the entire software
development enables team members to timely find potential
conflicts before delivering software to customers and also
improves collaboration among all teams [51].

Our review has identified 17 papers that report chal-
lenges, practices and lessons learnt regarding customers,
which enabled us to consider ‘‘customer’’ as a critical factor
for successful implementation of continuous practices. It is

VOLUME 5, 2017 3933



M. Shahin et al.: Continuous Integration, Delivery and Deployment

FIGURE 5. An overview of challenges and practices of adopting CI, CDE, CD, and the relationship among them.

worth mentioning that this factor mostly impacts on CD. We
found that not always customer organizations are happy with
continuous release. That is why we need to investigate the
level of customer satisfaction when moving to CD practice:
unavailability of customer environments, extra computing
resources required from customers, incompatibility of new
release with existing components and systems, and increased
chance of receiving buggy software all together can demoti-
vate customers about advantages of continuous deployment.
Our results also indicate that ‘‘highly skilled and motivated
team’’ (15 out of 69, 21.7%) is a critical factor to drive soft-
ware organizations towards continuous practices. We argue
that releasing continuously and automatically software can

be achieved with solid foundation of technical and soft skills,
shared responsibilities among team members, and having
motivated teams to continuously learn new tools and tech-
nologies.

Whilst this SLR reveals that continuous practices have
been applied successfully to both maintenance and greenfield
projects, we argue that ‘‘application domain’’ can play a
significant role in transition towards continuous practices,
in particular continuous deployment. As discussed earlier,
continuous delivery can be applied to all types of applications
and organizations. However, practicing CD in some appli-
cation domains (e.g., embedded systems domain) is asso-
ciated with unique challenges, in which they make almost

3934 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

TABLE 10. List of critical factors for continuous practices success.

impossible to truly practice CD or affect the frequency of
releases to customer environments. We emphasize that appli-
cation domains and limitations of customers should be care-
fully studied before adopting continuous deployment. Our
SLR reveals that one of the leading causes of failure in
fully implementing continuous practices is missing or poor
infrastructures. By ‘‘appropriate infrastructure’’, we mean all
software development tools, infrastructures, networks, tech-
nologies and physical resources (e.g., build server and test
automation servers) employed by an organization to do con-
tinuous practices well. This is mainly because implementing
each continuous practice, in particular continuous delivery
and deployment in a given organization requires extra com-
puting resources and also tools and technologies to automate
end-to-end software development (e.g., testing) and release
process as much as possible. This consequently would affect
organizational budget. We assert that one of the core com-
ponents of an appropriate infrastructure, which considerably
enables automation support and impact the success of con-
tinuous practices, is deployment pipeline. We will concretely
discuss the engineering process of deployment pipeline
in Section V.E.

C. CONTEXTUAL FACTOR
The importance of contextual attributes and what should be
reported as contextual attributes have been discussed in the
software engineering literature [52]–[54]. It has been argued
that software development approaches, tools, challenges,
lessons learnt and best practices need to be explored and
understood along with their respective contexts [53], [55].
Particularly, we tried to understand in which methodolog-
ical and organizational contextual settings (i.e., research
type, project type, application domain, organization size
and domain) the proposed approaches, tools, best practices
and challenges have been reported. According to the results

reported in Section IV.A.2, the reviewed studies were eval-
uation research (25 papers, 36.2%), followed by validation
research (24 papers, 34.7%) and experience report (15 papers,
21.7%). Since all of the experience papers were based on
practitioners’ experiences, the combination of both evalua-
tion and experience papers means that 57.9% of the reviewed
papers came from industry setting. The high percentage of
the papers with industrial level evidence improves the prac-
tical applicability of the reported results and encourages
practitioners to adopt and employ the proposed approaches,
tools, practices and consider the challenges when adopting
each continuous practice. As reported in Section IV.A.4,
a considerable number of the reviewed papers did not provide
the information on application domain and type, resulting in
these papers being categorized as ‘‘unclear’’. There was a
general lack of information about the organizational contexts
(i.e., size and domain) in the reviewed papers.Wewere forced
to drop them for data analysis and interpretation. We strongly
suggest that more attention be paid to reporting the contex-
tual information about the reported studies. The contextual
information is likely to improve the quality and credibility
of the reported approaches, tools and practices in continuous
integration, delivery and deployment. Such information can
also help a reader to better understand the reported research.

D. ARCHITECTING FOR DEPLOYABILITY
The results of this SLR indicate that sound architecture design
(i.e., ‘‘good design principles’’ factor) has a significant influ-
ence on the success of practicing CI, CDE, and CD. Several
of the reviewed papers have discussed modular architecture,
loosely coupled components, and clearly defined interfaces
as contributing factors for adopting and implementing con-
tinuous practices, in particular CDE and CD. Based on
Section IV.D.4.a, the importance of this issue increases
sharply in heterogeneous environments that can hinder

VOLUME 5, 2017 3935



M. Shahin et al.: Continuous Integration, Delivery and Deployment

continuous software deployment. We argue that one of the
most pressing challenges of adopting and implementing
continuous practices is how software applications should be
(re-) architected to develop, integrate, test and deploy inde-
pendently in multiple environments. Therefore, the architect-
ing phase should be considered as one of the most important
phases for appropriately adopting and implementing contin-
uous practices [56]. Deployability as an emerging quality
attribute has a high priority for continuous delivery and
deployment [15], [57], [58]. By deployability, we mean ‘‘how
reliably and easily an application/component/service can be
deployed to (heterogeneous) production environment’’ [58].
Architecting with testability and deployability in mind

during the design time has been featured inmanywhite papers
and practitioners’ blogs [15], [57] as a noticeable practice for
CDE and CD, but we could find only one paper [S7] that has
explicitly considered the deployability scenarios for upfront
design decisions and concluded that most of the decisions
made for deployment-related issues were architectural one.
We assert that there is an important need of research to
gain a deep understanding of how continuous delivery or
deployment adoption can influence the architecting process
and their outcomes in an organisation. We argue that this
research area (i.e., architecting for deployability) should be
more investigated in the future. This motivates the following
questions: How can we evaluate and measure the deploya-
bility of a designed architecture at the early stage of devel-
opment time? What quality attributes are in support of or
in conflict with deployability? Which architectural patterns,
tactics, and styles are more-friendly for deployability?

E. ENGINEERING DEPLOYMENT PIPELINE
In Section IV.C, we have discussed that deployment pipeline
is a key enabler for enterprises to successfully adopt continu-
ous practices. Our review has revealed that despite a signifi-
cant number of the reviewed papers conducted in industrial
settings and reported by practitioners, many papers lacked
sufficient details about how enterprises design and implement
deployment pipelines and what challenges they might expe-
rience. In fact, only 36.2% of the included studies presented
the tools, which have been employed to implement deploy-
ment pipelines. This investigation was interesting because
there is no standard or single pipeline [1] and modelling and
implementing a deployment pipeline in a given enterprise
may be influenced by a number of factors such as team
skills, experience and structure, organization’s structure and
budget, customer environments, and project domain [43].
Therefore, software development organizations need to allo-
cate time and resources to appropriately select and integrate
a wide variety of open source and commercial tools to form
a deployment pipeline tailored to them. The evidence of
this growing need is the emergent of consulting companies
such as Sourced Group14 and Xebia15 that are assisting

14http://www.sourcedgroup.com/
15https://xebia.com/

enterprises in designing and implementing deployment
pipeline.

In the meanwhile, with the increasing size and com-
plexity of software-intensive systems, the number of builds
and test cases increase dramatically. Whilst infrastructures
with high-performance computing resources and selecting
appropriate tools are mandatory for implementing continu-
ous practices and deployment pipeline, this is not sufficient
to deal with such tremendous growth rate. Therefore, it is
needed to develop innovative approaches and tools, which
not only enable team members to receive build and test
results correctly and timely, but also they should be aligned
and integrated with deployment pipeline. In Section IV.B,
thirty approaches and associated tools have been reported
to support and facilitate continuous practices. Most of them
(24 out of 30) only target CI practice; 18 out of 30 are
stand-alone tools that have not been integrated and evalu-
ated in a deployment pipeline. Another increasing concern
in the deployment pipeline is how to secure a deployment
pipeline [59]. According to [59], the main concern raised
during RELENG16 workshop in 2014 was ‘‘what happens
if someone subverts the deployment pipeline’’. All stages
and tools involved in the deployment pipeline as well as
integrating application to other infrastructures can potentially
be compromised by attackers. Two papers [S27], [S66] have
investigated the security issue in deployment pipelines. We
conclude that there is a paucity of research aimed at systemat-
ically studying engineering process of deployment pipelines.
We assert software engineering researchers and practitioners
need to pay more attention to systematically architect deploy-
ment pipelines and rigorously selecting appropriate tools for
the pipelines.

VI. THREATS TO VALIDITY
Whilst we strictly followed the guidelines provided by [25],
we had similar validity threats like other SLRs in software
engineering. The findings of this SLRmay have been affected
by the following threats:

A. SEARCH STRATEGY
One of the threats that may occur in any SLR is the possibility
of missing or excluding the relevant papers. To mitigate this
threat, as discussed in Section III.B.3, we used six popular
digital libraries to retrieve the relevant papers. We argue that
using Scopus as the largest indexing system which provides
the most comprehensive search engine among other digital
libraries [55], enabled us to increase the coverage of the
relevant studies. Additionally, we employed three strategies
to mitigate any potential threat in the search strategy: i) search
string was improved iteratively based on the pilot search
and were tested carefully before executing for searching the
relevant papers for this review; 2) we consulted the search
strings used in the existing SLRs [12], [13] for building our
search string; 3) a snowballing technique (i.e., manual search

16http://releng.polymtl.ca/RELENG2014/html/

3936 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

on references of the selected papers) was employed in the
second round of the papers searching process (see Figure 2)
to identify as many related papers as possible.

B. STUDY SELECTION
This step can be influenced by researchers’ subjective judge-
ment about whether or not a paper meets the selection criteria
for inclusion or exclusion. The potential biases in the study
selection have been addressed by strictly following the pre-
defined review protocol, recording the inclusion and exclu-
sion reasons for on-going internal discussions among first
and second authors about the papers that raised doubts about
their inclusion or exclusion decisions. At the first step, the
inclusion and exclusion criteria have been validated by the
first two authors on a small subset of primary studies. Any
disagreements during study selection were resolved through
discussions between them. Furthermore, the second and third
authors performed a cross-check using a random number of
the selected papers.

C. DATA EXTRACTION
Researchers’ bias in data extraction can be a basic threat in
any SLR, which may negatively affect the results of SLRs.
We implemented the following steps to address this threat.
First we created a data extraction form (see Table 12) to
consistently extract and analyze the data for answering the
research questions of this SLR. Second, since a large part of
the data extraction step was conducted by the first author; in
the case of any doubt, continuous discussions were organised
with the second author for correcting any disparities in the
extracted data. Third, a subset of the extracted data was
verified by the second and third authors.

D. DATA SYNTHESIS
As we argued in Section III.E.2, we applied quantitative and
qualitative methods to analyze the extracted data. It should be
noted that sometime there were some difficulties in interpret-
ing the extracted data due to lack of sufficient information
about the data items. We had to subjectively interpret and
analyze the data items, which might have had an effect on
the data extraction outcomes. To reduce the researchers’ bias
in interpretation of the results, besides reading the given
study, where possible we also referred the approach’s and
tool’s website and any training movie (e.g., RQ1 and RQ2)
to get more reliable information. It should be noted that for
other data items, we did not have any interpretation unless
the data items have been explicitly provided by the study
(e.g., application domain).

VII. CONCLUSIONS AND IMPLICATIONS
This work has presented a Systematic Literature
Review (SLR) of approaches, tools, challenges and practices
identified in empirical studies on continuous practices in
order to provide an evidential body of knowledge about the
state of the art of continuous practices and the potential areas
of research.We selected 69 papers from 2004 to 1st June 2016

for data extraction, analysis, and synthesis based on
pre-defined inclusion and exclusion criteria. A rigorous anal-
ysis and systematic synthesis of the data extracted from the
69 papers have enabled us to conclude:
(1) The research on continuous practices, in particular con-

tinuous delivery and deployment is gaining increas-
ing interest and attention from software engineering
researchers and practitioners according to the steady
upward trend in the number of papers on continuous
practices in the last decade (see Figure 3). More than
half of the reviewed papers (39 papers, 56.5%) have been
published in the last three years.

(2) With respect to the research type, most of the selected
papers were evaluation (25 out of 69, 36.2%) and valida-
tion (24 out of 69, 34.7%) research papers. While 21.7%
of the selected papers were experience papers, a small
number of papers were solution proposal (7.2%). A large
majority of the papers were conducted in industrial (i.e.,
64 out of 69, 92.7%) rather than academic (i.e., 5 papers)
settings. With respect to the data analysis approach, the
same number of the selected papers used quantitative and
qualitative research approaches (i.e., 37.6% for each),
while this statistic was 20.2% for mixed approaches.

(3) The approaches, tools, challenges, and practices reported
for adopting and implementing continuous practices have
been applied to a wide range of application domains, and
among which ‘‘software/web development framework’’
and ‘‘utility software’’ have received the most attention.
This SLR also revealed that continuous practices can be
successfully applied to both greenfield and maintenance
projects.

(4) Thirty approaches and associated tools have been iden-
tified by this SLR, which facilitate the implementation
of continuous practices in the following ways (i.e., not
mutually exclusive): reducing build and test time in CI (9
approaches), increasing visibility and awareness on build
and test results in CI (10 approaches), supporting (semi-)
automated continuous testing (7 approaches), detect-
ing violations, flaws and faults in CI (11 approaches),
addressing security, scalability issues in deployment
pipeline (3 approaches), and improve dependability and
reliability of deployment process (3 approaches).

(5) We observed that only 36.2% of the selected papers
reported what and how tools and technologies were
selected and integrated to implement deployment
pipeline (i.e., modern release pipeline). Subversion and
Git/GitHub as version control systems and Jenkins as
integration server were the most popular tools used in
deployment pipelines.

(6) The identified approaches (see Section IV.B), challenges
(see Section IV.D) and practices (see Section IV.E) of
CI, CDE, and CD have enabled us to find seven criti-
cal factors that impact the success of continuous prac-
tices, in an order of importance: ‘‘testing (effort and
time)’’, ‘‘team awareness and transparency’’, ‘‘good
design principles’’, ‘‘customer’’, ‘‘highly skilled and

VOLUME 5, 2017 3937



M. Shahin et al.: Continuous Integration, Delivery and Deployment

TABLE 11. Selected studies in the review.

3938 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

TABLE 11. (Continued.) Selected studies in the review.

VOLUME 5, 2017 3939



M. Shahin et al.: Continuous Integration, Delivery and Deployment

TABLE 11. (Continued.) Selected studies in the review.

3940 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

TABLE 11. (Continued.) Selected studies in the review.

TABLE 12. Data items extracted from each study and related research questions.

motivated team’’, ‘‘application domain’’, and ‘‘appropri-
ate infrastructure’’.

(7) Implications for researchers: (i) this SLR has revealed
the scarcity of reporting contextual information (e.g.,

organization size and domain) in the selected papers.
To improve the quality and credibility of the results,
researchers ought to report detailed contextual informa-
tion. (ii) In this review, we found only two papers that

VOLUME 5, 2017 3941



M. Shahin et al.: Continuous Integration, Delivery and Deployment

investigated the security issue in deployment pipelines.
Given the increased importance of security in deploy-
ment pipelines, there is a need of further research to
explore how deployment pipelines should be designed
and implemented to mitigate security issues. (iii) Out of
30 approaches and associated tools reported in this SLR,
only 12 approaches and tools were integrated and eval-
uated in deployment pipeline. We encourage researchers
to evaluate their proposed approaches and tools with real
deployment pipelines. (v) As discussed in Section V.D,
architecture design and deployability quality attribute
are very important factors in successfully adopting and
implementing continuous practices, however, there is a
lack of guidance of architecting for deployability. We
suggest that researchers in cooperation with practitioners
come upwith frameworks, processes, and tools to support
deployability quality attribute at design time.

(8) Implications for practitioners: (i) a very high percentage
of the reviewed papers provide industrial level evidence
(i.e., evaluation and practitioners’ experience papers as
presented in Section IV.A.2). This improves the practical
applicability of the reported results. Such findings are
expected to encourage software engineering practition-
ers to adopt and employ appropriate approaches, tools,
practices and consider the reported challenges in their
daily work based on the suitability for different con-
texts. (ii) The identified approaches, tools, challenges,
and practices have been classified in a way that prac-
titioners are enable to understand what challenges are
for adopting each continuous practice, what approaches
and practices exist for supporting and facilitating each
continuous practice. We found a number of challenges
and practices that were common in transition towards all
CI, CDE, and CD. (iii) The identified critical factors can
make practitioners aware of the factors that may affect the
success of continuous practices in their organizations. For
example, whilst it is important for practitioners to know
that a lack of team awareness and transparency may fail
them to realise and achieve the real anticipated benefits
of continuous practices, this SLR has identified several
approaches, associated tools and practical solutions to
improve and sustain team awareness and transparency in
continuous practices.

APPENDIX A
SELECTED STUDIES
See Table 11.

APPENDIX B
DATA EXTRACTION FORM
See Table 12.

REFERENCES
[1] A. Phillips, M. Sens, A. de Jonge, and M. van Holsteijn, The IT Man-

ager’s Guide to Continuous Delivery: Delivering Business Value in Hours,
XebiaLabs, Hilversum, The Netherlands, 2015.

[2] J. Humble, andD. Farley,ContinuousDelivery: Reliable Software Releases
Through Build, Test, and Deployment Automation, 1st ed. Reading, MA,
USA: Addison-Wesley, 2010.

[3] M. Fowler, Continuous Integration, accessed on Oct. 21, 2015. [Online].
Available: http://martinfowler.com/articles/continuousIntegration.html

[4] B. Fitzgerald and K.-J. Stol, ‘‘Continuous software engineering:
A roadmap and agenda,’’ J. Syst. Softw., vol. 123, pp. 176–189, Jan. 2017.

[5] M. LeppÃďnen et al., ‘‘The highways and country roads to continuous
deployment,’’ IEEE Softw., vol. 32, no. 2, pp. 64–72, Mar. 2015.

[6] L. Chen, ‘‘Continuous delivery: Huge benefits, but challenges too,’’ IEEE
Softw., vol. 32, no. 2, pp. 50–54, Mar. 2015.

[7] A. A. U. Rahman, E. Helms, L. Williams, and C. Parnin, ‘‘Synthesizing
continuous deployment practices used in software development,’’ in Proc.
Agile Conf. (AGILE), Aug. 2015, pp. 1–10.

[8] H. H. Olsson, H. Alahyari, and J. Bosch, ‘‘Climbing the ‘stairway to
heaven’: A mulitiple-case study exploring barriers in the transition from
agile development towards continuous deployment of software,’’ in Proc.
38th Euromicro Conf. Softw. Eng. Adv. Appl., Sep. 2012, pp. 392–399.

[9] P. Rodríguez et al., ‘‘Continuous deployment of software intensive prod-
ucts and services: A systematic mapping study,’’ J. Syst. Softw., vol. 123,
pp. 263–291, Jan. 2017.

[10] E. Laukkanen, J. Itkonen, and C. Lassenius, ‘‘Problems, causes and solu-
tions when adopting continuous delivery—A systematic literature review,’’
Inf. Softw. Technol., vol. 82, pp. 55–79, Feb. 2017.

[11] D. Ståhl and J. Bosch, ‘‘Modeling continuous integration practice differ-
ences in industry software development,’’ J. Syst. Softw., vol. 87, pp. 48–59,
Jan. 2014.

[12] M. V. Mäntylä, B. Adams, F. Khomh, E. Engström, and K. Petersen,
‘‘On rapid releases and software testing: A case study and a semi-
systematic literature review,’’ Empirical Softw. Eng., vol. 20, no. 5,
pp. 1384–1425, 2015.

[13] A. Eck, F. Uebernickel, and W. Brenner, ‘‘Fit for continuous integration:
How organizations assimilate an agile practice,’’ in Proc. 20th Amer. Conf.
Inf. Syst., Savannah, GA, USA, 2014.

[14] A. Thiele. Continuous Delivery: An Easy Must-Have for Agile Develop-
ment, accessed on Jul. 10, 2016. [Online]. Available: https://blog.inf.ed.
ac.uk/sapm/2014/02/04/continuous-delivery-an-easy-must-have-for-
agile-development/

[15] (2015). State of DevOps Report, accessed on Oct. 5, 2015. [Online].
Available: https://puppetlabs.com/2015-devops-report

[16] Y. Sundman. (2013). Continuous Delivery vs Continuous Deployment,
accessed on Aug. 1, 2016. [Online]. Available: http://blog.
crisp.se/2013/02/05/yassalsundman/continuous-delivery-vs-continuous-
deployment

[17] P. Suzie. The Product Managers, Guide to Continuous Delivery and
DevOps, accessed on Nov. 2, 2016. [Online]. Available: http://www.
mindtheproduct.com/2016/02/what-the-hell-are-ci-cd-and-devops-a-
cheatsheet-for-the-rest-of-us/

[18] J. Bosch, ‘‘Continuous software engineering: An introduction,’’ in Contin-
uous Software Engineering, J. Bosch, ed. New York, NY, USA: Springer,
2014, pp. 3–13.

[19] I. Weber, S. Nepal, and L. Zhu, ‘‘Developing dependable and secure
cloud applications,’’ IEEE Internet Comput., vol. 20, no. 3, pp. 74–79,
May/Jun. 2016.

[20] J. Humble. Continuous Delivery vs Continuous Deployment, accessed
on Mar. 1, 2016. [Online]. Available: https://continuousdelivery.com/
2010/08/continuous-delivery-vs-continuous-deployment/

[21] J. Humble. What is Continuous Delivery? accessed on Mar. 5, 2016.
[Online]. Available: https://continuousdelivery.com/2010/08/continuous-
delivery-vs-continuous-deployment/

[22] What is Continuous Deployment, accessed on Jul. 12, 2016. [Online].
Available: http://electric-cloud.com/resources/continuous-delivery-101/
continuous-deployment/

[23] M. Skelton and C. O’Dell, Continuous Delivery With Windows and .NET,
O’Reilly, Newton, MA, USA, 2016.

[24] J. P. Reed. The Business Case for Continuous Delivery, accessed on
Jul. 12, 2016. [Online]. Available: https://www.atlassian.com/continuous-
delivery/business-case-for-continuous-delivery

[25] B. Kitchenham and S. Charters, ‘‘Guidelines for performing systematic
literature reviews in software engineering,’’ KeeleUniv. andUniv. Durham,
U.K., Tech. Rep. Ver. 2.3., 2007.

3942 VOLUME 5, 2017



M. Shahin et al.: Continuous Integration, Delivery and Deployment

[26] N. S. R. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola,
F. Shull, and C. Seaman, ‘‘Identification and management of techni-
cal debt: A systematic mapping study,’’ Inf. Softw. Technol., vol. 70,
pp. 100–121, Feb. 2016.

[27] E. Luke and S. Prince. No One Agrees How to Define CI or CD,
accessed on Aug. 1, 2016. [Online]. Available: https://blog.snap-
ci.com/blog/2016/07/26/continuous-delivery-integration-devops-
research/

[28] B. A. Kitchenham, T. Dyba, and M. Jorgensen, ‘‘Evidence-Based software
engineering,’’ in Proc. 26th Int. Conf. Softw. Eng., 2004, pp. 273–281.

[29] Cambridge Dictionary. [Online]. Available: http://dictionary.cambridge.
org/

[30] Longman Dictionary of Contemporary English Online. [Online]. Avail-
able: http://www.ldoceonline.com/

[31] Y. Dittrich, ‘‘What does it mean to use a method? Towards a practice the-
ory for software engineering,’’ Inf. Softw. Technol., vol. 70, pp. 220–231,
Feb. 2016.

[32] J. NÃÿrbjerg and P. Kraft, ‘‘Software practice is social practice,’’ in Social
Thinking, D. Yvonne, F. Christiane and K. Ralf, Eds. Cambridge, MA,
USA: MIT Press, 2002, pp. 205–222.

[33] K. Schmidt, ‘‘The concept of ‘practice’: What’s the point?’’ in Proc. 11th
Int. Conf. Design Cooperat. Syst., 2014, pp. 427–444.

[34] H. Zhang, M. A. Babar, and P. Tell, ‘‘Identifying relevant studies in
software engineering,’’ Inf. Softw. Technol., vol. 53, no. 6, pp. 625–637,
2011.

[35] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham, ‘‘Using mapping
studies in software engineering,’’ in Proc. 20th Annu. Meeting Psychol.
Programm. Interest Group (PPIG), 2008, pp. 195–204.

[36] L. Chen, M. A. Babar, and H. Zhang, ‘‘Towards an evidence-based under-
standing of electronic data sources,’’ in Proc. 14th Int. Conf. Eval. Assess-
ment Softw. Eng., London, U.K., 2010, pp. 135–138.

[37] D. Maplesden, E. Tempero, J. Hosking, and J. C. Grundy, ‘‘Performance
analysis for object-oriented software: A systematic mapping,’’ IEEE Trans.
Softw. Eng., vol. 41, no. 7, pp. 691–710, Jul. 2015.

[38] M. Daneva, D. Damian, A. Marchetto, and O. Pastor, ‘‘Empirical research
methodologies and studies in requirements engineering: How far did we
come?’’ J. Syst. Softw., vol. 95, pp. 1–9, Sep. 2014.

[39] B. Kitchenham et al., ‘‘Systematic literature reviews in software
engineering—A tertiary study,’’ Inf. Softw. Technol., vol. 52, no. 8,
pp. 792–805, Aug. 2010.

[40] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, ‘‘Requirements engi-
neering paper classification and evaluation criteria: A proposal and a
discussion,’’ Requirements Eng., vol. 11, no. 1, pp. 102–107, Mar. 2005.

[41] V. Braun and V. Clarke, ‘‘Using thematic analysis in psychology,’’ Quali-
tative Res. Psychol., vol. 3, no. 2, pp. 77–101, 2006.

[42] B. Adams and S. McIntosh, ‘‘Modern release engineering in a nutshell—
Why researchers should care,’’ in Proc. IEEE 23rd Int. Conf. Softw. Anal.,
Evol., Reeng. (SANER), Mar. 2016, pp. 78–90.

[43] L. Bass, I. Weber, and L. Zhu,DevOps: A Software Architect’s Perspective.
Reading, MA, USA: Addison-Wesley, 2015.

[44] M. Meyer, ‘‘Continuous integration and its tools,’’ IEEE Softw., vol. 31,
no. 3, pp. 14–16, May/Jun. 2014.

[45] V. Armenise, ‘‘Continuous Delivery with Jenkins: Jenkins Solutions to
Implement Continuous Delivery,’’ in Proc. IEEE/ACM 3rd Int. Workshop
Release Eng., May 2015, pp. 24–27.

[46] J. A. Espinosa, S. A. Slaughter, R. E. Kraut, and J. D. Herbsleb, ‘‘Team
knowledge and coordination in geographically distributed software devel-
opment,’’ J. Manage. Inf. Syst., vol. 24, no. 1, pp. 135–169, 2007.

[47] K. Dikert, M. Paasivaara, and C. Lassenius, ‘‘Challenges and success fac-
tors for large-scale agile transformations: A systematic literature review,’’
J. Syst. Softw., vol. 119, pp. 87–108, Sep. 2016.

[48] J. Greenberg, and R. A. Baron, Behavior in Organizations, 9th ed.
Englewood Cliffs, NJ, USA: Prentice-Hall, 2008.

[49] D. Sato. Canary Release, accessed on Oct. 10, 2015. [Online]. Available:
http://martinfowler.com/bliki/CanaryRelease.html

[50] J. Humble. Principle 2: Decouple Deployment and Release, accessed
on Oct. 22, 2015. [Online]. Available: http://www.informit.com/articles/
article.aspx?p=1833567&seqNum=2

[51] Five Habits of Highly Successful Continuous Delivery Practitioners,
accessed on Aug. 5, 2016. [Online]. Available: http://info.perforce.com/
continuous-delivery-five-habits-successful-practitioners.html?sc=blog

[52] D. Kirk and S. G. MacDonell, ‘‘Investigating a conceptual construct for
software context,’’ in Proc. 18th Int. Conf. Eval. Assessment Softw. Eng.,
London, U.K., 2014, pp. 1–10.

[53] T. Dybå, D. I. K. Sjøberg, and D. S. Cruzes, ‘‘What works for whom,
where, when, and why? On the role of context in empirical software
engineering,’’ in Proc. ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas.,
Lund, Sweden, Sep. 2012, pp. 19–28.

[54] K. Petersen and C. Wohlin, ‘‘Context in industrial software engineering
research,’’ in Proc. 3rd Int. Symp. Empirical Softw. Eng. Meas., 2009,
pp. 401–404.

[55] M. Zahedi, M. Shahin, and M. A. Babar, ‘‘A systematic review of knowl-
edge sharing challenges and practices in global software development,’’
Int. J. Inf. Manage., vol. 36, no. 6, pp. 995–1019, 2016.

[56] L. Chen, ‘‘Towards architecting for continuous delivery,’’ in Proc. 12th
Work. IEEE/IFIP Conf. Softw. Archit. (WICSA), May 2015, pp. 131–134.

[57] L. Northrop, ‘‘Trends and new directions in software architecture,’’
Softw. Eng. Inst., Carnegie Mellon Univ. Pittsburgh, Pittsburgh, PA,
USA, Tech. Rep., 2015. [Online]. Available: http://resources.sei.cmu.edu/
asset_files/webinar/2015_018_100_438676.pdf

[58] S. Newman, Building Microservices, O’Reilly Media, Inc, Newton, MA,
USA, 2015.

[59] L. Bass, R. Holz, P. Rimba, A. B. Tran, and L. Zhu, ‘‘Securing a
deployment pipeline,’’ in Proc. IEEE/ACM 3rd Int. Workshop Release
Eng. (RELENG), May 2015, pp. 4–7.

MOJTABA SHAHIN is currently pursuing the
Ph.D. degree in software engineering with the
School of Computer Science, The University of
Adelaide, Australia. He was a Lecturer and a
Researcher with the Department of Computer
Engineering, Neyriz Branch, Islamic Azad Uni-
versity. His current research mainly focuses on
software architecture, continuous delivery and
deployment, DevOps, and empirical software
engineering.

MUHAMMAD ALI BABAR is currently a
Professor with the School of Computer Science,
The University of Adelaide, Australia. He is also
an Honorary Visiting Professor with the Soft-
ware Institute University of Nanjing, China. He
has authored/co-authored over 180 peer-reviewed
research papers at premier software engineering
journals and conferences, such as the ACM Trans-
actions on Software Engineering and Methods, the
IEEE Software, and ICSE.

LIMING ZHU received the Ph.D. degree in
software engineering from the University of
New South Wales. He is currently the Research
Director of the Software and Computational
Systems Research Program at Data61, which
combines NICTA and Commonwealth Scientific
and Industrial Research Organisation (CSIRO)
researchers. He also holds conjoint professor posi-
tions at the University of New South Wales and
The University of Sydney. His research interests

include software architecture, dependable systems, and data analytics infras-
tructure. He is a Committee Member of the Standards Australia IT-015
(system and software engineering) Group and the IT-038 (cloud computing)
Group and contributes to ISO/SC7/WG42 on architecture-related standards.

VOLUME 5, 2017 3943


