
Received February 16, 2017, accepted March 15, 2017, date of publication March 21, 2017, date of current version April 24, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2684188

A Switch Migration-Based Decision-Making
Scheme for Balancing Load in SDN
CHUAN’AN WANG1,3, BO HU1, SHANZHI CHEN2, DESHENG LI3, AND BIN LIU3
1State Key Lab of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100081, China
2State Key Lab of Wireless Mobile Communication, China Academy of Telecommunication Technology, Beijing 100081, China
3School of Information and Network Engineering, Anhui Science and Technology University, Chuzhou 233100, China

Corresponding author: B. Hu (hubo@bupt.edu.cn)

This work was supported in part by the National Science and Technology Major Projects for the New Generation of Broadband Wireless
Communication Networks under Grant 2016ZX03001017, in part by the National Natural Science Foundation of China for Distinguished
Young Scholars under Grant 61425012, in part by the National High-Tech Research and Development Program (863 Program) under
Grant 2014AA01A701 and Grant 2015AA01A705, and in part by the Key Project of Natural Science Research of Universities in Anhui
under Grant KJ2016A176 and Grant KJ2015A236.

ABSTRACT Elastic scaling and load balancing with efficient switch migration are critical to enable the elas-
ticity of software-defined networking (SDN) controllers, but learning how to improve migration efficiency
remains a difficult problem. To address this issue, a switch migration-based decision-making (SMDM)
scheme is put forward that could be made aware of the load imbalance by a switch migration trigger metric;
themigration efficiencymodel for this scheme is built tomake a tradeoff betweenmigration costs and the load
balance rate. An efficiency-aware switch migration algorithm based on greedy method is designed to utilize
themigration efficiencymodel and thus guide the choice of possiblemigration actions.We implement a proof
of the scheme and present a numerical evaluation using Mininet emulator to demonstrate the effectiveness
of our proposal.

INDEX TERMS Software-defined networking, switch migration, migration efficiency, migration cost, load
balancing.

I. INTRODUCTION
As an emerging technology, SDN makes it easy to manage
networks and enable innovation and evolution by decoupling
the control plane from the data plane. The intelligence of SDN
is shown by the fact that a logically centralized controller
manages switches by providing them with rules that can dic-
tate their packet handling behavior [1]. With the continuous
extension of network scale, the scalability of the central-
ized controller becomes a key issue in SDN [2]. Deploying
distributed controllers is a promising approach to solve the
problem, and each controller manages part of the switches
in the network. However, static switch-controller mapping
results in load imbalances and sub-optimal performance in
cases of uneven load distribution among controllers [3].

Dynamic switch migration is a promising approach to elas-
tic scaling and load balancing. In practice, switch migration
occurs in three cases. Firstly, if the aggregated traffic load
goes beyond the capacity of all controllers, the new con-
trollers should be added and the switches would be moved
to them. Secondly, as a controller is shut down or to sleep for
saving communication cost and power, its switches should
be migrated away. Thirdly, even if there is no change in the
number of deployed controllers, switch migration operation

must be performed by migrating selected switch to other
controllers when an individual controller load is beyond its
capacity. We call this operation as load balancing.

With live switch migration, the performance and scalabil-
ity in distributed controllers may be effectively increased.
However, such migration has to be performed with a well-
designed mechanism to decide which switch and where it
should be migrated, and we define it as switch migration
problem (SMP). In solving SMP, most existing studies only
consider utilizing the available controllers without taking
into account migration efficiency. As an example, controller
prefers to migrate a switch to a new master controller with
more efficiency for eliminating overload. In fact, seldom
researches have been made on considering it, i.e., in [3], the
authors design a synthesizing distributed algorithm for SMP,
but the switch is randomly selected for migrating. In this
paper, we focus on the third switch migration case.

To address the impact of migration efficiency on migra-
tion cost in the context of switch migration, we propose
an SMDM scheme. In SMDM scheme, our primary objec-
tive is how to elect an efficient controller as a master con-
troller to improve load balance factor, as well as which
switch with low migration cost should be selected for migrat-

VOLUME 5, 2017
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

4537

C. Wang et al.: SMDM Scheme for Balancing Load in SDN

ing. The scheme focuses on solving the following three
sub-problems of switch migration:
• How to measure the load imbalance of controllers and
decide whether to perform switch migration.

• How to make a tradeoff between migration costs and
load balance rate.

• How to employ a migration plan that utilizes the migra-
tion efficiency model to guide the choice of possible
migration actions.

The main contributions of our work compared to related
works are as follows.
• We use the aggregate load value to indicate the real load
information and provide the switch migration-triggered
metric.

• Webuild amigration efficiencymodel tomake a tradeoff
between migration costs and the load balance variation.

• On the basis of the optimal migration efficiency condi-
tions, the migration plan is formulated as a set of the
migration actions, and SMDM algorithm is designed by
the greedy method.

The rest of the paper is organized as follows. Section II
provides an overview of related works. An SMDM scheme
is proposed in Section III. We design SMDM algorithm and
implement it in Section IV.We describe the evaluation setting
and discuss the performance in Section V. We finally present
our conclusions in Section VI.

II. RELATED WORKS
Traditional SDN implementation relies on a centralized con-
troller and has several limitations related to performance
and scalability [2]. Some research works have proposed that
deploying distributed controllers is a promising approach to
solving the problem [4]–[6].To achieve more performance
and scalability in distributed controllers, MF Bari et al. [7]
provide a framework that adjusts the number of active con-
trollers and delegates each controller. This framework could
minimize flow setup time while incurring very low commu-
nication overhead. But it easily leads to network instability
because it has to perform a reassignment of the entire control
plane based on the collected traffic statistics.

To improve the performance of the control plane in SDN,
someworks advance the idea that multifaceted aspects should
be taken into consideration, e.g., maximize the performance
of each physical controller [8]–[10], offload the controller by
delegating some work to the forwarding devices [11], [12]
and enable a cluster of controller nodes to achieve a dis-
tributed control plane [13], [14]. These works have proposed
a logically centralized control plane and try to address the
global view and states consistency of distributed control
plane, which could achieve better scalability and reliability
with separate controllers, but this approachwould lead to load
imbalance among controllers when an uneven huge traffic
load arrive these distributed controller.

In addition, to enable a scalable SDN control plane,
G Cheng et al. [15] provided a game decision mechanism
to dynamically migrate switches from heavy load controllers

to light controllers whereby switch migration decisions are
formulated as a centralized available resource utilization
maximization problem with constraints on multiple resource
dimensions. In [7], a framework that automatically adjusts the
switch to controller connectivity is proposed, however it only
considers the flow setup latency involved in setting up paths
from controllers to switches without considering the increase
in migration cost.

Similarly, some research on controllers’ load balancing has
been done. C Liang et al. [16] propose a dynamic load balanc-
ing method based on switch migration mechanism for clus-
tered controllers. The proposed method can dynamically shift
the load across the multiple controllers through switch migra-
tion, but it needs to cluster the controllers before performing a
switch migration, and which leads to the increase of response
time. A distributed nearest migration algorithm (DNMA) for
load balancing is proposed [2]. In DNMA method, to save
migration time, the nearest neighbor controller is selected
as the immigration controller for receiving load shifting,
however it maybe bring about new load imbalance with-
out considering the nearest neighbor’s load. In [3], a maxi-
mizing resource utilization migration algorithm (MUMA) is
designed. When load imbalance occurs, the controller ran-
domly selects a switch for migrating, and coming migration
activity is broadcast to the controller’s neighbors. However,
after migration, controllers need to state the synchronization
for the global network view.

III. SWITCH MIGRATION-BASED
DECISION-MAKING SCHEME
In this section, we propose an SMDM scheme for making
switch migration decision whereby the migration efficiency
model is built to make a tradeoff between migration costs and
the load balance rate. We consider that the scheme can create
a migration plan to utilize the migration efficiency model
and thus guide the choice of possible migration actions. The
scheme is described in three phases. First, we measure the
load diversity of different controllers and decide whether to
perform migration. Then, we predict the migration cost and
migration efficiency, which can be used to guide the choice
of possible migration actions. Finally, we provide a switch
migration plan, which is also one of the core procedures for
performing load balancing across controllers.

A. LOAD BALANCE DETECTION
In this work, we consider a SDN network G# that consists
of N controllers C = {c1, c2, · · · , cN } and K switches
S = {s1, s2, · · · , sK }. Let Lci ∈ S denote the switches set
managed by controller ci.

As the literature [17], [18] indicates, the processing of
PACKET_IN events is generally regarded as the most promi-
nent part of the controller load. When a switch receives a
new flow, it requests the controller to calculate the flow path
and install appropriate rules. Thus, the cost of completing
the operation should also be considered. Here, we consider
two major types of load information for computing aggregate

4538 VOLUME 5, 2017

C. Wang et al.: SMDM Scheme for Balancing Load in SDN

load and use the aggregate load value to indicate the real load
information for controllers. The load γci for each controller
ci is calculated using the following equation:

γci =
∑
sk∈Lci

fsk · dskci (1)

where fsk represents the number of Packet_in messages sent
from switch sk to controller ci and dskci is the minimal path
cost from switch sk to controller ci.
Hence, the load diversity between controller ci and

controller cj is:

hcicj =
γci

γcj
(2)

Derived from above, the controller load diversity matrix
HK×K can be represented as:

HK×K

=

1 hc1c2 hc1c3 · · · hc1ck−1 hc1ck
hc2c1 1 hc2c3 · · · hc2ck−1 hc2ck

...

hck−1c1 hck−1c2 hck−1c3 · · · 1 hck−1ck
hckc1 hckc2 hckc3 · · · hckck−1 1

(3)

Given the threshold σ of load diversity, the switches
migration-triggered metric is:

∃hcicj > σ, i, j = 1, 2, · · · ,K (4)

From (4), it can be seen that if the load diversity between
any two controllers goes beyond the predetermined thresh-
old σ , switch migration is performed. In particular, switch
migration occurs without load diversity detection when a
controller is added to or moved from the deployed controllers
set C, and this case is referred to as an update to the set of
deployed controllers.

To effectively identify migrated switches and reduce the
complexity of migration, we check the load diversity matrix
and decide which controllers should be selected as the set
OM_S of outmigration controllers, and which should be
selected as the set IM_S of immigration controllers.1 If the
load diversity hij > σ , the controller ci and cj are added into
OM_S and IM_S, respectively. Note that a transit controller
ct, which is responsible for receiving load shifts and then
sending them to the destination controller, shoud be added to
IM_S when the transmission path between source controller
and destination controller is too long.

B. MIGRATION EFFICIENCY MODEL
An appropriate migration cost and efficiency model has a
guiding significance for deploying the migration scheme and
migration optimization. We assume that the network G# global
view is taken as common knowledge by different controllers.

1Immigration controller is the destination controller for receiving load
data shifting from migrated switches,and is seen as new master controller.

When switch migration occurs, the load balance of network
G# improves, but it also brings additional migration costs. For
convenience, we give the concept of migration cost.
Definition 1: The migration cost is mainly formed by

two components: (1) the increase in load cost; (2) the mes-
sage exchanging cost. When a switch sk is migrated from
controller ci to controller cj, the migration cost rskcj can be
defined as follows:

rskcj = rmc + rlc (5)

where rmc is the cost of message exchanging for switch sk
migration and rlc is the increase in the load cost, which is
defined by the following equation:

rlc =

{
fskdskcj − fskdskci , fskdskcj > fskdskci
0, fskdskcj ≤ fskdskci

(6)

We use the controllers’ load variance as a load balance
factor and let γ̄ be the average load ofN controllers. Then, the
load balance factor of network G# before migrating switch sk
is:

0 =
1
K

k∑
i=1

(γci − γ̄)
2 (7)

After switch sk migration, the new load balance factor
becomes:

0∗ =
1
K
(

k∑
i=1,i 6=j

(γci
∗
− γ̄ ∗)2+(γcj

∗
− γ̄ ∗)2 (8)

where γci
∗
= γci−fskdskci and γcj

∗
= γcj+fskdskcj are renewal

γci and γcj , respectively. γ̄
∗ is the renewal average load of N

controllers.
To make a tradeoff between migration cost and the load

balance rate, we give the definition of migration efficiency.
Definition 2: The migration efficiency of moving

switch sk to controller cj can be defined as the ratio of load
balance variation to migration cost:

τskcj =
∣∣0∗ − 0∣∣ /γskcj (9)

Therefore, the purpose of the migration efficiency model is to
select a controller as the destination controller for receiving
load shifting based on the principle of migration efficiency
maximization.

C. MIGRATION STRATEGY
The purpose of switch migration strategy is to migrate some
switches from outmigration controllers to immigration con-
trollers with higher migration efficiency. We formulate the
switch migration operation as a series of migration actions
and present a triplet <cu, se, cv> definition of migration
action, where cu ∈ OM_S is a outmigration controller and
se is the switch managed by cu for being migrated, and the
cv ∈ IM_S is an immigration controller . When a controller
cu is selected, our focus is which switch should be selected as
se and how to elect the controller cv from IM_S.

VOLUME 5, 2017 4539

C. Wang et al.: SMDM Scheme for Balancing Load in SDN

1) SWITCH se SELECTION
Controller cu chooses switch se based on the following con-
siderations. First, controller cu prefers to migrate a switch
with less load and more efficiency for eliminating overload;
then, it expects to select switch se, which could lead to
a smaller load difference in γu and γ̄ to migrate. Second,
controller cu expects switch sk , which has a large latency to
it. Thus, the probability that controller cu is:

pse = 1−

∣∣γ̄ − γLcu−{se}∣∣ edsecu
(γcu − γ)e

∑̄
sk∈Lcu

dsk cu
(10)

where γLcu−{se} is the load of controller cu after switch se is
migrated from it.

2) IMMIGRATION CONTROLLER cv SELECTION
When switch se is migrated to a controller ci, if the sum of
γci and γse is not beyond the load capacity of controller ci,
the controller ci will be added into temporary controller
set TS . Any controller ci in TS will calculate the migration
efficiency τseci . Guided by the concept of a migration effi-
ciency model, a controller ci is selected as the immigration
controller cv based on the following equation.

cv = argmax
ci∈T_S

{τseci} (11)

IV. SMDM ALGORITHM DESIGN AND IMPLEMENTATION
A. SMDM ALGORITHM
The SMP is an NP-hard bin packing problem [19].
On the basis of the optimal migration efficiency conditions,
the SMDM algorithm is designed by the greedy method, and
algorithm consists of two phases: load balancing detection
and migration actions generation. We briefly describe Algo-
rithm 1 as follows.

1) PHASE 1: LOAD BALANCING DETECTION
Assuming that any controller has gained its load information.
Controller ci calculate aggregated load γci and load diver-
sity hcicj , and then create load diversity matrix HK×K . If an
element hcicj in HK×K is beyond the threshold, the controller
ci and cj is added into outmigration controllers set OM_S and
inmigration controllers set IM_S respectively, and the switch
migration operation is triggered at the same time.

2) PHASE 2: SWITCH MIGRATION
In this phase, the switch migration operation is formu-
lated as a series of migration actions presented by a triplet
<cu, se, cv>. The objective of switch migration operation is
to determine switch se selection and controller cv selection.
Steps of Phase 2 are elaborated as follows:
Step 1: Each controller cu in OM_S chooses a switch se for

migration based on a special selector defined in the formula-
tion (10).
Step 2:Any controller ci in IM_S, if γci+γse ≤ ψci then add

ci to temporary controller set T_S, and calculate the migration
efficiency τseci . Let ψcu be the load capacity of controller cu.

Algorithm 1 SMDM Algorithm
Phase 1: Load Balancing Detection
1: Scanning for the load of controllers
2: if (Switch migration trigger) then
3: add ci to OM_S, cj to IM_S
4: do switch migration ()
5: end if
Phase 2: Switch Migration
1: initialize migration actions set P = { };

temporary controller set T_S = {}
2: let ψcu be the load capacity of controller cu
3: repeat
4: for each controller cu in OM_S do
5: calculate the migration probability psk of switches

managed by cu
6: se = argmax

sk∈Lcu

{psk }

7: for each controller ci in IM_S
8: if γci + γse ≤ ψci then
9: calculate the migration efficiency τseci
10: end if
11: end for
12: cv = argmax

ci∈T_S
{τseci}

13: add <cu, se, cv> to P
14: update the state of cu and cv
15: end for
26: until (load diversity ∀hcicj < σ)

Step 3: Controller cu is selected as immigration con-
troller cv based on formulation (11). Add <cu, se, cv> to
migration actions set P and update the state of cu and cv.

The pseudocode of SMDM is shown as following which
runs on each individual controller independently.

B. SMDM IMPLEMENTATION FOR LOAD BALANCING
We describe a load balancing framework based on SMDM
as illustrated in Figure 1. We consider the framework that
dynamically balances the load distribution among the con-
trollers and optimizes migration efficiency. It has five core
modules: the monitoring module, load balance detection
module, migration efficiency calculation module, migration
strategy decision module and migration execution module.
Monitoring module tracks real-time load information,

calculates the aggregate load value for each controller, and
provides the load data to the load balance detection module.
However, if the deployed controllers set C is updated, the
monitoring module delivers a signal to the migration strategy
decision module to perform switch migration without execut-
ing the load balance detection module.
Load balance detection modulemeasures the load diversity

of different controllers and decides whether to perform switch
migration. In this paper, the switch migration can be triggered
when the load diversity meets equation (4).

4540 VOLUME 5, 2017

C. Wang et al.: SMDM Scheme for Balancing Load in SDN

FIGURE 1. Load balancing framework based on SMDM.

Migration efficiency calculation module builds the migra-
tion efficiency model, which is used to make a tradeoff
between the migration efficiency and migration cost caused
by migrating switches. It then provides these migration fac-
tors for the migration strategy decision module to make a
migration plan.
Migration strategy decision module is responsible for cre-

ating the migration plan. In this paper, the migration plan
is formulated as set P of the migration actions, and each
migration action is a triplet <cu, se, cv>. We implement our
SMDM algorithm in this module. It utilizes those migration
factors from the migration efficiency calculation module to
generate corresponding migration actions.
Migration execution module is placed in each controller.

Its function is to coordinate the migration actions for switch
migration and change the switch-controller mapping.

We uses distributed storage mechanism to store load infor-
mation, which could provide a logically central view for all
controllers. Each controller runs such an SMDM framework
instance, and we install Beacon controller [21] in an individ-
ualmachine to simulate single centralized controller. Thenwe
implement load balancing detection module and migration
strategy module in Beacon controller, and we invoke IBeacon
Provider to interact with Open Flow switches.

V. EVALUATION
To assess the performance of the SMDMapproach, we deploy
Mininet, Beacon controller, and our SMDM on multiple
physical machines to emulate the testbed, and each physical
machines runs Ubuntu 16.04 LTS with JDK8. We modified
Mininet to enable us to run the software-based virtual Open
Flow switch instances on different machines. We use the real
internet service topologies BT North America (36 nodes and
76 links) from Internet Topology Zoo [20]. Note that we are
primarily concerned with the controller load and need not
emulate the high overhead data plane or the actual trans-
mission of packets through switches. Therefore, one server
runs Mininet, and the other five servers run SDN controller
instances. The six servers have the same configuration with
4GHz Intel Core i7 processor and 16 GB of DDR3 memory.

In this paper, special focus lies on quantifying the trade-off
between the load balance rate when using the switch migra-
tion approach and the migration cost in terms of accuracy that
is entailed. For this purpose, we first compare the average
response time of our SMDM method with two other switch
migration methods, DNMA [2] and MUMA [3]. Then, we
evaluate the cost from switch migration. Finally, we measure
the average migration operation execution time by varying
the number of migration switches.

In MUMA method ,a synthesizing distributed algorithm
hopping is designed for switch migration problem (SMP)
by approximating the optimal objective via Log-Sum-utility
function.When load imbalance occurs,the controller ran-
domly selects a switch for migrating,and coming migra-
tion activity is broadcast to the controller’s neighbors. After
migration, controllers need to state the synchronization for
the global network view.While in DNMA method,to save
migration time, the nearest neighbor controller is selected
as the immigration controller for receiving load shifting,
however,it maybe bring about new load imbalance without
considering the nearest neighbor’s load.

A. LOAD BALANCING
We run each simulation for 30 minutes. Figure 2 shows the
controllers’ load distribution under two scenarios: one during
the SMDM approach and one under static switch-controller
mapping. To simulate the uneven load distribution among the
controllers, we use aggregated load to stress the controllers
by adjusting the different sending rates of generated Packet-
In messages from the switches. From figure 2a, we can see
that controller5’s load becomes heavy at about 275 sec, and
that continues to be the case because of the lack of inter-
vention.Controller5’s load tends to balance again at about
300 sec in Figure 2b, which is affected by the SMDMmethod
under migrating some switches from controller5 to light load
controllers (e.g, controller1 and controller4).Whenwe use the
SMDM and DNMA, the Controller5’s load tends to balance
also at about 310 sec and 325 sec, respectively. From the
result of figure 2b, we can observe that the SMDM has the
least time on load balancing.

B. RESPONSE TIME
We know that if load imbalance occurs, response time will
shot up. We use average response time to measure the effect
of the three switch migration methods in the simulation.
Figure 3 shows their response time curves. We observe that
the response time and migration execution time of SMDM
are lower than MUMA and DNMA. Compared with MUMA,
DNMA has shorter migration execution time, while it has
higher response time. There are three reasons to explain this
result. First, to save migration time,MUMA randomly selects
switches for migrating and performs reassignment between
controllers and switches when the load becomes imbal-
anced, while SMDM only selects the switches with highly
probabilities for migrating based on given formulation (10).
Second, SMDM selects efficient controllers as immigration

VOLUME 5, 2017 4541

C. Wang et al.: SMDM Scheme for Balancing Load in SDN

FIGURE 2. Measured controllers’ load distribution. (a) under static
switch-controller mapping. (b) controller5’s load distribution under the
three approaches.

controllers for receiving load shifting by switches migration,
which could improve the migration efficiency and avoid new
potential load imbalance. Third, Although DNMA has a dis-
tributed control plane, its nearest neighbor migration method
could easily lead to new load imbalance, so DNMA suffers
from highest response time.

The cumulative distribution function (CDF) of response
time of each drop is depicted in Figure 4.We can see that our
proposed SMDM is less vulnerable to the number increase of
switches than MUMA and DNMA.

C. MIGRATION COST
We use migration cost and average response time to quan-
tify the migration efficiency and analyze the performance of
SMDM, DNMA and MUMA. Figure 5 shows the migration
cost and average response time.We can see that the migration
cost of SMDM is somewhat higher than that of DNMA, while
the average response time of SMDM is significantly lower
than that of DNMA. MUMA has the highest migration cost,
and the average response time is also higher than that of
SMDM. Two reasons explain the above results. Compared
with SMDM, DNMA has the lowest migration cost due to its

FIGURE 3. Response time.

FIGURE 4. Response time CDF of three methods with different numbers
of switches sr.

FIGURE 5. Migration cost and average response time.

neighbor node selection strategy and lower rate of message
exchange during the switch migration process. However, it
also creates a very high response time because of the new
load imbalance. In addition, to achieve a better load balance,
MUMA most likely migrates a switch multiple times, so it
has the highest migration cost, while SMDM only migrates
several switches from the OM_S to IM_S via our migration
strategy decision.

4542 VOLUME 5, 2017

C. Wang et al.: SMDM Scheme for Balancing Load in SDN

FIGURE 6. Migration execution time.

D. MIGRATION EXECUTION TIME
Furthermore, we built a wireless network topology in which
we measure the average execution time by varying the num-
ber of migration switches from 4 to 128. Figure 6 shows
the trend in average migration execution time variation of
MUMA, DNMA and SMDM. We observe that the aver-
age migration execution time of MUMA increases fastest
with the increase in the number of migrated switches because
controllers need to state the synchronization for the global
network view after migration, while the average migration
execution time of SMDM and DNMA exhibit a moderate
increase. Compared with the migration execution time, we
can conclude that SMDMwill evidently not increase response
time.

Based on the above results, our method enables the elastic-
ity of SDN controllers via switch migration and can improve
migration efficiency.

VI. CONCLUSION
In this paper, the primary objective is to make an efficiency
switch migration scheme for load balancing in SDN Con-
trollers. To this end, we first check the real-time controller
load information collected by the monitoring module and
decide whether to perform switch migration. Then, we built
the migration efficiency model to tradeoff between the migra-
tion cost and the load balance rate. Finally, an efficiency-
aware migration algorithm based on greedy method was
designed to utilize the migration efficiency model and thus
guide the choice of possible migration actions. In future
work, we plan to implement the SMDM in a real large-scale
wireless access network with more real-world traffic as well
as evaluate the performance.

REFERENCES
[1] B. Lantz, B. Heller, and N. McKeown, ‘‘A network in a laptop:

Rapid prototyping for software-defined networks,’’ in Proc. 9th ACM
SIGCOMM Workshop Hot Topics Netw., 2010, pp. 19–23.

[2] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,
‘‘Towards an elastic distributed SDN controller,’’ in Proc. 2nd ACM
SIGCOMM Workshop Hot Topics Softw. Defined Netw. (HotSDN), 2013,
pp. 7–12.

[3] G. Cheng, H. Chen, Z. Wang, and S. Chen, ‘‘DHA: Distributed decisions
on the switch migration toward a scalable SDN control plane,’’ in Proc.
IFIP Netw. Conf., May 2015, pp. 1–9.

[4] T. Koponen et al., ‘‘Onix: A distributed control platform for large-scale
production networks,’’ in Proc. OSDI, 2010, pp. 8–15.

[5] A. Tootoonchian and Y. Ganjali, ‘‘HyperFlow: A distributed control plane
for OpenFlow,’’ in Proc. Internet Netw. Manage. Workshop/Workshop Res.
Enterprise Netw. (INM/WREN), 2010, p. 3.

[6] S. H. Yeganeh and Y. Ganjali, ‘‘Kandoo: A framework for efficient and
scalable offloading of control applications,’’ in Proc. 1st Workshop Hot
Topics Softw. Defined Netw., 2012, pp. 19–24.

[7] M. F. Bari et al., ‘‘Dynamic controller provisioning in software defined
networks,’’ in Proc. Int. Conf. Netw. Service Manage. (CNSM), Oct. 2013,
pp. 18–25.

[8] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and
R. Sherwood, ‘‘On controller performance in software-defined networks,’’
in Proc. USENIXWorkshop Hot Topics Manage. Internet, Cloud,
Enterprise Netw. Services (Hot-ICE), 2012, pp. 19–25.

[9] D. Erickson, ‘‘The beacon OpenFlow controller,’’ in Proc. 2nd ACM
SIGCOMM Workshop Hot Topics Softw. Defined Netw., 2013, pp. 13–18.

[10] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, ‘‘DevoFlow: Scaling flow management for high-performance
networks,’’ in Proc. ACM SIGCOMM Comput. Commun. Rev., 2011,
pp. 254–265.

[11] S. Lange et al., ‘‘Heuristic approaches to the controller placement problem
in large scale SDN networks,’’ IEEE Trans. Netw. ServiceManage., vol. 12,
no. 1, pp. 4–17, Mar. 2015.

[12] J. C. Mogul and P. Congdon, ‘‘Hey, you darned counters! Get off my
ASIC!’’ in Proc. 1st Workshop Hot Topics Softw. Defined Netw., 2012,
pp. 25–30.

[13] A. Tootoonchian and Y. Ganjali, ‘‘HyperFlow: A distributed control plane
for OpenFlow,’’ in Proc. Internet Netw. Manage. Conf. Res. Enterprise
Netw., 2010, p. 3.

[14] S. H. Yeganeh and Y. Ganjali, ‘‘Kandoo: A framework for efficient and
scalable offloading of control applications,’’ in Proc. 1st Workshop Hot
Topics Softw. Defined Netw., 2012, pp. 19–24.

[15] G. Lan, H. Chen, H. Hu, and J. Lan, ‘‘Dynamic switch migration towards
a scalable SDN control plane,’’ Int. J. Commun. Syst., vol. 29, no. 9,
pp. 1482–1499, Jun. 2016.

[16] C. Liang, R. Kawashima, andH.Matsuo, ‘‘Scalable and crash-tolerant load
balancing based on switch migration for multiple open flow controllers,’’
in Proc. Int. Symp. Comput. Netw., Dec. 2014, pp. 171–177.

[17] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and
R. Sherwood, ‘‘On controller performance in software-defined networks,’’
in Proc. HotICE, 2012, pp. 52–57.

[18] G. Yao, J. Bi, Y. Li, and L. Guo, ‘‘On the capacitated controller placement
problem in software defined networks,’’ IEEE Commun. Lett., vol. 18,
no. 8, pp. 1339–1342, Aug. 2014.

[19] X. Qin et al. ‘‘Enabling elasticity of key-value stores in the cloud using
cost-aware live data migration,’’ J. Softw., vol. 24, no. 6, pp. 1403–1417,
Jun. 2014.

[20] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, ‘‘The
Internet topology zoo,’’ IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Oct. 2011.

[21] D. Erickson, ‘‘The beacon OpenFlow controller,’’ in Proc. 1st Workshop
Hot Topics Softw. Defined Netw., 2013, pp. 13–18.

CHUAN’AN WANG received the master’s degree
from the School of Computers, Jiangsu University,
China. He is currently pursuing the Ph.D. degree
with Beijing University of Posts and Telecom-
munications, China. He is currently a Lecturer
with the Department of Computer Science, Anhui
Science and Technology University, China. He is
also overseeing the Key Project of the Natural
Science Research of Universities in Anhui. His
research interests include mobile Internet services

and applications, mobile communication network technology, and software-
defined network.

VOLUME 5, 2017 4543

C. Wang et al.: SMDM Scheme for Balancing Load in SDN

BO HU received the Ph.D. degree in com-
munications and information systems from Bei-
jing University of Posts and Telecommunications
(BUPT), Beijing, China, in 2006. He is currently
an Associate Professor with the State Key Labo-
ratory of Networking and Switching Technology,
BUPT. His research interests include future wire-
less mobile communications, mobile computing,
and software-defined networks.

SHANZHI CHEN (SM’04) received the bache-
lor’s degree from Xidian University, China, in
1991 and the Ph.D. degree fromBeijing University
of Posts and Telecommunications, China, in 1997.
He was a member of the Steering Expert Group
on Information Technology of the 863 Hi-Tech
Research and Development Program of China
from 1999 to 2011. He joined the Datang Telecom
Technology and Industry Group in 1994. He has
contributed to the research and development of

TD-LTE 4G. He has been serving as an EVP Engineer and a CTO since
2008. He is currently the Director of the State Key Laboratory of Wireless
Mobile Communications and also a Board Member of the Semiconductor
Manufacturing International Corporation. His research interests include 5G
mobile communications, network architectures, vehicular communication
networks, and Internet of Things. He received the 2001, 2012, and 2016
National Awards for Science and Technology Progress, China; the 2015
National Award for Technological Invention, China; and the 2014 Distin-
guished Young Scholar Award of National Natural Science Foundation,
China.

DESHENG LI received the Ph.D. degree in com-
puter science and technology from the State Key
Laboratory of Networking and Switching Technol-
ogy, Beijing University of Posts and Telecommu-
nications, Beijing, China in 2011. He has taken
over the Natural Science Foundation of Anhui
Province, the Key Project of Natural Science
Research of Universities in Anhui, the Key Project
Support Program for Outstanding Young Talent at
the University of Anhui, the Research Project of

the Key Lab of Cloud Computing and Complex Systems, and the Guilin
University of Electronic Technology. Since 2013, he has been a Nokia CTIR
Inventor with the InventWith Nokia Team, Nokia Corporation, Helsinki, Fin-
land. He is currently an Associate Professor with Anhui Science and Tech-
nology University. His main interests are in the areas of swarm intelligence,
communication technology, and computational simulation and optimization.

BIN LIU received the master’s degree from Henan
University of Science and Technology. He is cur-
rently an Associate Professor with the Department
of Computer Science, Anhui Science and Tech-
nology University. His research interests include
network security, cloud computing, and communi-
cation network technology.

4544 VOLUME 5, 2017

