SPECIAL SECTION ON EMOTION-AWARE MOBILE COMPUTING

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 1, 2017, accepted March 15, 2017, date of publication March 20, 2017, date of current version April 24, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2684129

Toward Emotion-Aware Computing: A Loop
Selection Approach Based on Machine
Learning for Speculative Multithreading

BIN LIU, (Member, IEEE), JINRONG HE, YAOJUN GENG, LVWEN HUANG, AND SHUQIN LI

College of Information Engineering, Northwest A&F University, Yangling 712100, China

Corresponding author: S. Li (Isq_cie@nwsuaf.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61602388, in part by the Postdoctoral
Science Foundation of Shaanxi Province of China under Grant 2016BSHEDZZ121, in part by the Fundamental Research Funds for the
Central Universities under Grant 2452015194 and Grant 2452016081, and in part by the Yangling Demonstration Zone Science and

Technology Planning Project under Grant 2016NY-31.

ABSTRACT Emotion-aware computing can recognize, interpret, process, and simulate human affects. These
programs in this area are compute-intensive applications, so they need to be executed in parallel. Loops
usually have regular structures and programs spend significant amounts of time executing them, and thus
loops are ideal candidates for exploiting the parallelism of sequential programs. However, it is difficult to
decide which set of loops should be parallelized to improve program performance. The existing research
is one-size-fits-all strategy and cannot guarantee to select profitable loops to be parallelized. This paper
proposes a novel loop selection approach based on machine learning (ML-based) for selecting the profitable
loops and paralleling them on multi-core by speculative multithreading (SpMT). It includes establishing
sufficient training examples, building and applying prediction model to select profitable loops for speculative
parallelization. Using the ML-based loop selection approach, an unseen emotion-aware sequential program
can obtain a stable, much higher speedup than the one-size-fits-all approach. On Prophet, which is a generic
SpMT processor to evaluate the performance of multithreaded programs, the novel loop selection approach
is evaluated and reaches an average speedup of 1.87 on a 4-core processor. Experiment results show that
the ML-based approach can obtain a significant increase in speedup, and Olden benchmarks deliver a better
performance improvement of 6.70% on a 4-core than the one-size-fits-all approach.

INDEX TERMS Emotion-aware computing, loop selection, machine learning, speculative multithreading.

I. INTRODUCTION

Emotion-aware computing is that computer has ability to
recognize the emotional state of humans and gives an appro-
priate response for these emotions. In recent years, emotion-
aware computing could offer benefits and plays an important
role in an almost limitless range of applications. For exam-
ple, in intelligent recommender systems, the computer can
assess emotional offset quantitatively to revise user rat-
ings for improving the objectivity of context data [1], [2].
In information retrieval systems, the computer can exploit
emotions in short films and automatically extract affec-
tive context from user comments for emotion-aware film
retrieval [3]. In healthcare cyber-physical systems, the com-
puter can recognize patient’s emotion and adjust the treat-
ment plan by collecting the information published on the
social networks [4]. In audio-visual emotion recognition, the
computer can identify a user’s emotion and behavior for

providing a rich user experience [5]. In mobile cloud com-
puting, the computer can offer emotion care for improving
people’s health status by providing personalized emotion-
aware services [6]. Other applications include community
activity prediction [7], human—computer interaction [8] and
cloud gaming [9]. Because the emotion-aware computing is
a compute-intensive task, the most existing emotion-aware
applications need to be executed in parallel for quickly getting
the results of the analysis.

With the rapid development of computer architec-
ture, multi-core processors are the only way to build
high-performance microprocessors now [10]. To improve
speedups of emotion-aware applications on multi-core pro-
cessors, these sequential programs must be reconstructed
so that they can be executed in parallel [11]. SpMT is an
auto-parallelization technology that depends on out of
order execution on multi-core processors. Examples of

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 5, 2017

Personal use is also permitted, but republication/redistribution requires IEEE permission. 3675

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE Access

B. Liu et al.: Toward Emotion-Aware Computing

SpMT include SEED [12], DOE [13], DOMORE [14] and
Prophet [15].

The programs usually spend a lot of time executing loops,
consequently, loops are being the target of parallel comput-
ing. These research of [16]-[19] partitioned the loops into
multithreads to improve program performance. Some existing
loop selection schemes only decomposed innermost loops
or outermost loops into multithreads, in which each thread
includes an outermost loop or innermost loop. Research
in [20]-[23] was still based on heuristics or simple evaluation
model to select loops and only indirectly estimated the specu-
lative multithreaded execution. The existing one-size-fits-all
approaches obtain some performance improvements, but they
apply the same strategies to select loops with different char-
acteristics to be parallelized. These approaches are one-size-
fits-all solutions and only fit for one kind of loops, while the
ML-based approach proposes a loop-aware selection scheme
for speculative parallelization according to the characteristics
of the target loops.

In this article, a novel ML-based loop selection approach is
proposed to select profitable loops to be executed in parallel.
Firstly sufficient training examples are provided for machine
learning model. The profiler is developed to collect the pro-
filing information. Using profiling information, the Prophet
compiler employs the thread partitioner to partition loops in
turn into multithreaded programs that are estimated on the
Prophet simulator. Finally these classification labels of loops
and themselves form the training examples. Furthermore,
features of these loops and their classification labels are
put together to form training samples. Then, these training
samples are used to build a K Nearest Neighbor (KNN) model
for predicting the classification label for unseen loops in
emotion-aware applications.

The novel ML-based loop selection approach is imple-
mented in Prophet Compiler [24] based on SUIF research
complier development framework. Experimental results show
that the ML-based approach can select profitable loops for
speculative parallelization and fully exploit the inherent par-
allelism of loops. Finally, the ML-based approach achieves
an average speedup of 1.87 in SpMT system and provides a
performance improvement of 6.70% for Olden benchmarks
than the one-size-fits-all approach.

The remainder of this article is organized as follows.
In Section II, the SpMT execution model of Prophet is first
briefly described. In Section III, based on program profil-
ing technology and the loop thread partitioning algorithm,
the sufficient training examples are established. Section IV
describes the ML-based loop selection framework, including
feature extraction, training sample generation, training and
applying prediction model to predict classification label for
an unseen loop in emotion-aware application. Section V ana-
lyzes experimental results provided by the ML-based loop
selection approach. In Section VI, related work is intro-
duced and summarized. Finally, we conclude this article in
Section VII.

3676

[P-slice Non-speculative thread [[T2] Speculative thread ~—» SP ——» CQIP

se[| & sp [} sP[[L} sp i
—> | —y| [PPEV < | —» P 3 2L |spavay, o
\ g i g |
g | = E | — £
= F g 7 g1 SRS A=
£ g | i g
:| gEl g £ |
y = g ‘ £
car 2| CQIP| Igccess ; | cQip failur (E:. ! CQIP % !
] & SR "1l 8 sl
==y cQIP yl — cQp| | 2 &
= — — !
g cQIp |
= |
g ° } g | e Y.
! |
| i
CQIP | CQIP
]y Rl)
(a) Serial execution (b) Speculative execution (c) Validation failed (d) RAW violations

FIGURE 1. Speculative mutithreading execution model of Prophet.

Il. PRELIMINARY

Speculative multithreading is an effective technology for
automatic parallelization of sequential programs. SpMT exe-
cution model of Prophet is shown in Fig. 1 [25], serial pro-
gram is decomposed into multiple speculative threads to be
executed in parallel, and a different part of the program is
executed by each speculative thread. During program run-
time, only one non-speculative thread is allowed to commit
calculation results to memory, and the results of all the other
speculative threads should be validated before committing.
On Prophet, spawning instruction pairs are used to label
speculative threads and each of them is composed of Spawn-
ing Point (SP) and Control Quasi Independent Point (CQIP)
in the program. If the sequence of SP-CQIPs is ignored,
the program is sequential as shown in Fig. 1(a). When an
SP defined in parent thread is identified during program run-
time, as shown in Fig. 1(b), the speculative thread following
the CQIP will be spawned by the parent thread. In SpMT
System, the data generated by speculative threads need to
be verified by the non-speculative thread. If it fails valida-
tion, non-speculative thread will continue to execute serially
the speculative threads as shown in Fig. 1(c). Otherwise,
non-speculative thread rewrites the memory value and the
speculative thread becomes non-speculative thread. In addi-
tion, Read after Write (RAW) dependence between non-
speculative thread and speculative thread occurs as shown in
Fig.1 (d), speculative child thread will restart itself on current
state.

Ill. ESTABLISHING TRAINING EXAMPLES

In order to select the ideal loops of sequential program
for speculative parallelization, loop selection is cast as the
problem of machine learning. The paper wishes to train a
prediction model which, given the feature vector X, of the
loop, predicts its classification label Y that whether it can be
parallel by speculative multithreading. However, a particular
problem encountered is that few sequential programs can
satisfy the requirements for establishing training samples.
To solve this problem, in our previous research [26], after

VOLUME 5, 2017

B. Liu et al.: Toward Emotion-Aware Computing

IEEE Access

SUIF MIPS
Program | SUIFFontend | R [MachsulF | Program Thread
L Back-end Partitioner
Optimizer
SUIF [
IR
v Profiling

Threaded
Program

Speedup

Classity Label

Prophet Simulator

Loop Extraction

Training
Examples

[

Information
Profiler

FIGURE 2. Generating training examples.

analyzing features affecting program’s speedup, these essen-
tial features are chosen to represent a sequential program.
Then, a feature set is built based on Olden benchmarks and
disturb it to generate a new feature set. Furthermore, using
the feature set, sufficient virtual programs are generated as
a supplementary to the existing Olden benchmarks. These
virtual programs will allow us to train the prediction model
on larger training examples.

Training examples are generated as shown in Fig. 2. The
serial program is transformed into SUIF intermediate repre-
sentation (IR). The IR is then optimized by applying various
optimizations available in SUIF. Then, the profiler is used to
analyze and collect executive information such as the aver-
age dynamic instruction counts of loop bodies, the average
dynamic instruction counts of called functions and the branch
probabilities of branch instructions. The MachSUIF back-end
takes SUIF IR with the profiling information and generates
low-SUIF IR with annotated MIPS program. The loops in
annotated MIPS programs are partitioned into multithreads
by thread partitioner and the threaded program is estimated
on the Prophet simulator for each loop. If the speedup of loop
in speculative parallelization greater than 1, the classification
label is YES, otherwise NO. Finally, classification label of
the loop and itself are chosen as a training example.

A. PROFILER
Program profiling is a method that gathers and analyzes the
runtime information during program execution in the past.
Once the profiling information is collected, it is fed back to
compiler which performs the predictive optimization. In the-
ory, if the compiler can figure out all the precise program
behavior, it can generate perfect binary code with the best
performance on any platform. However, in fact, the compiler
only obtains partial and imprecise program behavior, such
as calling frequency of functions, branch probability, etc.
Based on the profiling information, the compiler can elim-
inate uncertainty factors and obtain more precise program
behavior than static analysis. In this paper, each program has
been executed multiple times in advance by using multiple
different input data sets. A profiler has been realized for
generating these profiling information such as control flow
and structure information that are also fed back into the
Prophet compiler for guiding the loop thread partitioning.
Based on the control flow information, the Prophet com-
piler uses profiler to determine the most likely path of

VOLUME 5, 2017

Loop Structure

A

program by branch probability. Then, the control-based
approach is used to generate multithreads on the path.
Through the selection of the most likely path, it can eliminate
some data dependences with low probabilities and perform
data speculations.

For the sake of minimizing load imbalance among threads,
the size of the thread should be considered, so Prophet
compiler needs to know that how many instruction cycles a
piece of code will occupy during program execution. Because
there are unpredictable control flows, interrupts and nested
function calls, dynamic instruction is difficult to be cap-
tured by the static analysis. In this section, program is first
executed multiple times, and the profiler is used to collect
dynamic instructions of functions and loops. Because a thread
is composed of several basic blocks, Prophet compiler can
estimate the execution time of a thread. For a function, the
number of calls and the number of dynamic instructions
are counted to calculate the average dynamic instruction
count. For a loop, the profiler records its iteration times
and dynamic instruction count of loop body in every iter-
ation to get the average dynamic instruction count of its
body.

Profiler Collection-point

Call
Instruction

Label
Instruction

Conditional
branch

Unconditional

s Other
jump

Total execution
times

Loon? Y|Successful jump
p* times
N

ojut Surjyord
I

Loop body size
Iteration number

Total execution
times

Successful jump
times

[“Annofat Profiled
otate SUIF IR

ojut Suryoig

Call number
Dynamic
instructions

Update function
information

FIGURE 3. Profiling information collector.

ojut Suryoig

Synthesizing the above analyses, the profiler is developed
to collect the following profiling information on Suif VM that
is a virtual machine and can execute the SUIF IR instructions,
the workflow of which is shown in Fig. 3. When a SUIF
IR instruction is executed, the different instruction types are
processed in different ways:

3677

IEEE Access

B. Liu et al.: Toward Emotion-Aware Computing

« branch probability
The profiler monitors all the branch instructions and
counts the execution times of each branch instruction £
and the execution times of each branch instruction when
its criterion condition is true 7', then the profiler can cal-
culate the probability of a conditional jump instruction
with true P = T/E.

« average dynamic instruction count of a function
The profiler collects the number of current function
calls C and the number of current dynamic instruc-
tions S. Then, the average dynamic instruction count
is calculated: Nc = (Nc—1 * (C — 1) + S)/C, where
Nc—_1 is the average dynamic instruction count in the last
invocation.

« average dynamic instruction count of a loop
The profiler records the iteration times D and the
dynamic instruction count M in current iteration. Then,
the average dynamic instruction count of loop is Lp =
(Lp—1 * (D — 1) + M)/D, where Lp_; is the average
dynamic instruction count in the last iteration.

B. THREAD PARTITIONER

In this section, the Prophet compiler uses the thread parti-
tioner to partition loops into multithreads for program paral-
lelization. The thread partitioner is composed of control flow
graph (CFQG), control flow analysis, structure analysis, data
flow analysis, data dependence model and thread partitioning
algorithm.

Profiled
Low-SUIF IR

Control Flow
Analysis

Data Flow
Analysis

Structure
Analysis

Thread
Partitioning

Generation and
Optimization

Threaded IR

FIGURE 4. Thread partitioner.

As shown in Fig. 4, the source program is preprocessed
into profiled low-SUIF IR. The low-SUIF program is ana-
lyzed by Prophet compiler and the compiler builds its CFG.
Then Prophet compiler constructs the weighted control flow
graph (WCFG) with profiling information. Next step, a struc-
tural analysis identifies the loop and non-loop regions. After
that, based on data dependence model and data flow analysis,
the loop thread partitioning algorithm partitions the loops into
multithreaded programs. Hereto, the partitioner has finished
all the work and generates threaded IR.

3678

()

FIGURE 5. Program structure preprocessing. (a) CFG. (b) WCFG.

1) STRUCTURE PREPROCESSING
Before loop thread partitioning, the low-SUIF program is
preprocessed, the process has three major phases:

First, CFG is a directed graph of a program structure, so
CFG is used to represent a program for analyzing control
structures among basic blocks in high-level presentation.
Based on CFG library provided by MachSUIF, instruction
sequences can be divided into basic blocks. Fig. 5 (a) shows a
CFG of a program. In CFG, the basic blocks are represented
by vertices and the edges show the flow of control among the
basic blocks.

Second, profiler is used to collect branch probability, func-
tion and loop profiling information, and the profiling infor-
mation is annotated to CFG. The CFG of program and the
corresponding profiling information form a WCFG and The
WCEFGQG is realized as shown in Fig. 5 (b).

Third, based on structural analysis, the Prophet compiler
traverses the WCFG of each function and identifies the loop
regions.

2) DATA DEPENDENCE MODEL
In SpMT, all speculative multithreads are executed aggres-
sively in parallel and the inter-thread ambiguous data
dependences are permitted. At runtime, all the data miss-
speculations can be detected and the Prophet underlying sys-
tem can recover from data miss-speculations to ensure the
correctness of the program. However, excessive data depen-
dences among threads may lead to thread squash frequently.

In Prophet compiler, a data dependence model is imple-
mented based on data dependence counts to quantify the
data dependence degree between successive threads. If the
two successive threads have a small count value, it means
that successor thread has somewhat data independent on its
predecessor thread and is a good candidate thread to be
executed in parallel with its predecessor thread.

Definition 1: The data dependence counts DDC (T3, Tiy1)
are the number of data dependence arcs coming into a suc-
cessor thread 7; from predecessor thread 7.

3) LOOP THREAD PARTITIONING ALGORITHM

Thread partitioning algorithm is crucial to the performance

improvement in SpMT. Therefore, good thread partitioner

needs to consider control flow, thread size, and data depen-

dence model as a basis for thread partitioning algorithm.
The loop thread partitioning algorithm is described by

Algorithm 1. While partitioning a loop, the Prophet compiler

VOLUME 5, 2017

B. Liu et al.: Toward Emotion-Aware Computing

IEEE Access

Algorithm 1 Algorithm for Loop Thread Partitioning

Input: Loop region of each program for thread partitioning

loop
Output:Multithreded program of loop

loop_level_thread_partitoning(Loop region loop)
{
begin_block := loop.entry_block;
exit_block := loop.exit_block;
possible_executed_path := the possible executed path
between begin_block to exit_block;
opt_dep := compute_optimization_dependence
(begin_block, exit_block, possible_executed_path,
&spawn_location);
dynamic_thread_size :=dynamic_thread_size
(possible_executed_path);
if(loop_size <= LOOP_SIZE_ THRESHOLD)
unwinding(loop);
else (opt_dep <OPTIMAL_DATA_DEPENDENCE _
THRESHOLD)
new_thread := generated_next_thread(exit_block,
spawn_location, possible_executed_path);
end if
return multithreaded loop;

}

checks the profiling information on the average times of itera-
tions and the number of dynamic instructions of loop. In gen-
eral, small loops that has few dynamic instructions or iterates
fewer times are not be partitioned into multithreads for specu-
lative execution. On the contrary, the small loops are unwind-
ing to increase the loop size, after which these loop bodies can
be further partitioned into multithreaded program. For moder-
ate loops, the Prophet compiler considers the data dependence
counts OPTIMAL_DATA_DEPENDENCE_THRESHOLD
between two successive iterations. If the new thread spawned
at the next iteration is profitable, then the Prophet compiler
will generate the thread for speculative parallelism.

4) AN EXAMPLE OF LOOP THREAD PARTITIONING

The virtual programs generated by our research and genuine
programs are equal for loop thread partitioning. Although
the actual meaning of virtual programs does not already
exist, program features influencing speedup such as data and
control dependences are still retained. Before loop thread
partitioning, CFG is first constructed for each function, and
then all the loops of programs are identified by the Prophet
compiler using data and control flow analysis.

Figure 6 shows the example of loop partitioning. Only if the
thread size of loop body is proper and data dependence counts
between successive iterations is less than a fixed thresh-
old OPTIMAL_DATA_DEPENDENCE_THRESHOLD, the
SP instruction is kept at the beginning basic block of loop
body, and then a CQIP instruction is placed at the end
basic block of loop body. When the program is executed

VOLUME 5, 2017

FIGURE 6. An example of loop partitioning.

Training
Examples

Feature

representation

Training
Samples

Learning
Algorithm

Extract

[New Loop]Mi{ P';:;;'E'l‘"']——[ClassifyLahel
4{ Preprocessing]—{

Thread
Partitioner

Threaded
Assembly
Program

Program Output

Prophet

Simulator
Simulator Output

FIGURE 7. The ML-based Loop selection approach.

speculatively, these loop bodies can be executed in parallel
by the SP-CQIP instruction pair.

C. TRAINING EXAMPLES GENERATION

Our training examples are generated from prior knowledge
by off-learning. These Olden benchmarks and virtual pro-
grams run on the Prophet simulator for collecting training
examples. Using the loop partitioning algorithm (as shown in
Algorithm 1), all the loops of training programs are bro-
ken down into multiple speculative threads, and the paper
employs the Prophet simulator to evaluate the multithreaded
programs. By the experimental evaluation, these profitable
loops that can obtain good parallel performance are positive
examples, other loops are negative examples. The generation
process of training examples take two days by using eight
Prophet simulators.

IV. ML-BASED LOOP SELECTION APPROACH
In this section, an ML-based loop selection approach is used

to select loops for speculative parallelization and it mainly
includes feature representation and extraction, training sam-
ples generation, and ML-based loop selection as illustrated
in Fig. 7.

3679

IEEE Access

B. Liu et al.: Toward Emotion-Aware Computing

TABLE 1. Features description.

Features Category Descriptions

Block count The number of basic blocks
in a loop

Iteration count Loop iteration count

Static instruction count . The number of static

Static instructions in a loop

Load instruction count feature Static load instruction count
in a loop

Store instruction count Static store instruction count
in a loop

Loop depth The depth of the loop in the
loop tree

Dynamic instruction dynamic instruction count in
count a loop

Loop probability The probability that the
condition is true

DDC Dynamic The number of data
feature dependence between two
iterations
DDD The distance of data

dependence between two
iterations

A. FEATURE REPRESENTATION AND EXTRACTION

One of the key aspects in ML-based loop selection approach
is selecting the appropriate features to represent the loop.
As we know, if a loop has the similar features with another
loop, the two loops will have the same classification label for
speculative parallelization. As shown in Table 1, the paper
extracts these features from a loop and uses them to charac-
terize the loop.

When extracting the loop features, the SUIF-IR (high-level
intermediate representation of SUIF) of program is firstly
constructed, and then all feature analyses are performed on
SUIF-IR. Static features are counted and extracted from
training programs by Prophet compiler, while dynamic fea-
tures are dealt with by program profiling. For a given loop,
these features make up a fixed-length feature vector X,; =
[x1, x2, - - - , x,,] that is used to characterize the loop.

B. TRAINING SAMPLES GENERATION

The feature vector X,,;; of each loop and itself classification
label Y,;; constitute a training sample. Sample dataset is
composed of features of all the loops and their classification
labels. Feature vector of each loop X = [x1,X2, -+ -, Xp]
corresponds to a point in the n-dimensional space R", the clas-
sification label Y, is an eigenvalue representing whether the
loop can be speculatively parallelized.

C. LOOP SELECTION APPROACH BASED ON KNN
In this section, we focus on predicting classification label for
an unseen loop using prediction model, then the preprocess-
ing module will be in charge of converting a real program into
MIPS program that is taken as input for thread partitioner in
SUIF.

Classification label of an upcoming predicted loop is
equivalent to its nearest samples, which is the premise
whereon the ML-based loop selection approach partitions the

3680

loop into parallel threads. Once sufficient training samples
are generated, an ML-based loop selection approach can be
built. This prediction model is based on a KNN classification.
The loop selection algorithm is described by Algorithm 2.
When program is executing on Prophet, the feature vec-
tor X,ig of each loop and its label Y,,;, are collected dynam-
ically as a training sample. Once all the training program is
running over, all training samples < Xorg—i, Yorig(Xorg—i) >
are put together to form the KNN model.

Algorithm 2 Loop Selection Algorithm Based on KNN
Input: training examples <X, Y >(X represents feature
vectors and Y is a set of classification labels),
Xgq (feature vector of new, unseen loop)
Output: Y(Xq) (predicted classification label for Xq)
knn_classifier (training examples <X, Y >, feature vector
Xq)
{
All the training samples <x, y(x)> are put together to
form training_examples;
while (feature vector x, that need to be predicted) do
Find and locate the k-nearest neighbor examples
X1 ...x of the unseen feature vector Xq from
training_examples;
end while
return y(x,) = arg max{‘ §F,(x)==y), 1 <i<k)

0 if pistrue
spy=1. 0
1 if pis false.

KNN is a simple and effective classifier. KNN-based learn-
ing methods only simply store the training samples, and
the generalizing beyond these samples is postponed until a
new unseen sample must be classified. When a new sample
should be dealt with, the k£ nearest neighbor training samples
are retrieved from memory and voting among its k nearest
neighbors is used to classify the new sample.

In order to solve this problem, the ML-based approach
firstly extracts features of the unseen loop x4, and then its
k nearest training samples are found and located by the
formula 1.

n
dxg,x) = | Y (& —xI)? (1)
r=1
where n is the dimension of feature vector, x; is the
'™ attributes of feature vector x, and x! is the ' attributes
feature vector x;, respectively. Once the k nearest training
samples are found, the predicted classification label can
be obtained by a simple majority vote to the K nearest
training samples for guaranteeing model approximation and
generalization.
Because the objective function is a one-dimensional fea-
ture vector Y, predicted result of the new sample x, is the

VOLUME 5, 2017

B. Liu et al.: Toward Emotion-Aware Computing

IEEE Access

TABLE 2. Prophet simulator parameters (per PE).

Configuration item Value

Fetch, issue and commit width 4 instructions

Pipeline stages Fetch/Issue/Ex/WB/Commit
Architectural registers 32 int and 32 fp

Function units 4 int ALU (1 cycle)

2 int mult/div (3/12 cycles)

2 fp ALU (2 cycles)

2 fp mult/div (4/12 cycles)
4-way associative 64KB
(32B/block)

hit latency 2

LRU replacement

Fully associative 2KB (1 cycle)
4-way associative 2MB
(64B/block)

5 hit latency, 80 cycles(miss)
LRU replacement

L1-cache(multiversion)

Spec. buffer size
L2-cache(share)

Spawn overhead 5 cycles
Validation overhead 15 cycles
Local register 1 cycle
Commit overhead 5 cycles

label that is voted by K nearest training samples.

§(xg) = argmaxt 8(§,(x) ==vy,), (1<i<k)

0
8p) = e
1 if pis false

if p is true

(@)

When the prediction model is built as described above, the
classification label of the unseen loop can be predicted as
illustrated in Fig. 7. Once the classification label is predicted
successfully, given a new sequential program, the predicted
classification label is employed by the thread partitioner to
decide whether the loop should be partitioned into multi-
threads for speculative parallelism.

V. EXPERIMENTAL EVALUATION

In this section, experimental setup is introduced and details of
the Prophet simulator and benchmarks are provided. At last,
experimental results are analyzed and discussed.

A. EXPERIMENTAL SETUP

The execution model and the ML-based loop selection algo-
rithm are implemented on Prophet. The compiler analy-
ses and optimization of all the programs have been done
at the SUIF-IR. We have developed a profiler to execute
SUIF-IR programs and generate profiling information such
as the most likely path of control flow graph, the aver-
age dynamic instruction count of loop iterations and called
function, data value prediction. The Prophet simulator [27]
models a multi-core processor with speculative multithread-
ing technology. Each processing elements (PEs) has its own
program counter, fetch unit, decode unit, and execution unit
and it can fetch and execute instructions from a thread. Each
PE has a private multi-versioned L1 cache with 2 cycles
access latency and it is employed to cache the speculation
results for each PE and performs cache communication.
The prophet simulator uses MIPS ISA and the configuration
parameters are shown in Table 2.

VOLUME 5, 2017

O mutilevel-based BML-based

2.5

15 +

05

bh bisort em3d health mst power tsp voronoi mean

FIGURE 8. Speedup performance.

This paper uses Olden benchmarks to evaluate the
ML-based selection approach. Olden benchmarks are written
in C and they are classic benchmarks of emotion-aware appli-
cations. These programs usually manipulate complex data
structure such as lists and trees, so they are difficult to be
paralleled.

In this section, leave one out cross validation (LOOCYV) is
used to estimate the ML-based approach. That is, the program
that its loops will be predicted for speculative parallelization
is removed from the training samples and then a prediction
model based on the remaining programs is built. This guaran-
tees that the prediction model has not seen the target program
before. The prediction model is used to generate selection
scheme for the removed program. This process is repeated for
each program in turn. It is a standard evaluation methodology,
providing an estimation of the generalization ability of an
ML-based model for predicting an unseen program.

B. EXPERIMENTAL RESULTS AND ANALYSES

In this section, Olden benchmarks are tested on the Prophet
simulator by using the multilevel-based loop selection
approach [28] (it is a representative of one-size-for-all
approach) and the ML-based loop selection approach.

From Fig. 8, the experimental results show that, using the
ML-based loop selection approach, all the programs of Olden
benchmarks have gained better performance than multilevel-
based approach, particularly em3d and health have obtained
major performance improvement. Only program voronoi
exhibits a meager increase. For further analyses, increase rate
is defined as:

ML _speedup — multilevel _speedup 100%
0

3

As shown the right column in Table 3, the variation of the
increasing rate is from 0.61% to 24.97%. Compared with the
multilevel-based approach, experiment results show that
the ML-based loop selection approach can select profitable
loop for speculative parallelization and exploit more specula-
tive parallelism. And further explains that the ML-based loop
selection approach is valid and can get better performance
improvement than the multilevel-based approach.

rate_inc =
- multilevel _speedup

3681

IEEE Access

B. Liu et al.: Toward Emotion-Aware Computing

HSR1 EDDVI HIP1 MCVI WSR2 EDDV2 HLP2 mCV2
100% | o —I B E

go% M= .— .- II I me
so% N —I - - I
70— BN SN N .

eo% —NN— AN BN B B
sox — ANl BNEN- B B
20— - - N .
3. N HE BN BN B Bl BE

20% | — — — — — — -

10% | — — — — — — -

0% -

bh bisort em3d health mst power tsp voronoi

FIGURE 9. Breakdown of speculative execution.

The comparison of speculative execution breakdown
between multilevel-based approach with 1 and ML-based
loop selection approach with 2 is shown in Fig.9. SR repre-
sents the success rate of speculative execution. DDV refers
to the failure rate of speculative execution caused by data
dependence violations. CV is the failure rate of speculative
execution caused by control dependence violation. LP means
the failure rate of speculative execution caused by low priority
of speculative threads.

Program bh is a solver of the classic n-body problem.
From Table 4 and 5, it is obvious that program bh adopts
heterogenous octree as the main data structures, there are
complex data dependences in loops, at same time the average
number of iterations and loop body size are 9.14 and 200.45
(Table 5), respectively. Compared with the multilevel-based
approach, the ML-based approach employs profitable loops
to execute in parallel, resulting that the speculative success
rate is decreased. However, program bh has some extent
of increase in the number of the spawned threads, so the
spawned thread count of speculative execution is increased
(Table 3), finally the ML-based approach provides a perfor-
mance improvement of 3.35% for program bh.

Program bisort implements forward and backward sort
algorithms. From Table 5, it is obvious that there are 3 loop
structures with fewer dynamic instructions and only 2 loops
are executed in fact. Because program bisort uses binary tree
data structure to store the numbers and has complex data
dependences (Figure 9), both the multilevel-based selection
approach and ML-based approach obtain lower speedup of
1.26 and 1.30 respectively. Compared with the multilevel-
based approach, the ML-based approach chooses profitable
loops that have larger data dependence counts and thread
size to exploit all possible parallelism in program. Due to
the increase of successful speculative threads, eventually the
ML-based approach achieves a performance improvement
of 3.87%.

Program em3d models the transmission of electromagnetic
waves in a three-dimensional object. As shown in Table 5,

3682

there are many larger loops that contain 265.99 average
dynamic instructions and the average iteration times are 8.73,
so program em3d has larger loop-level parallelism and
obtains the highest speedup by the multilevel-based approach
and the ML-based approach (Figure 8). Furthermore, using
the ML-based loop selection approach, program em3d gains
the optimal performance improvement. All nested loops are
parallelized by multilevel loop selection approach whereas
the ML-based approach has only selected profitable loops for
speculative parallelization according to the characteristics of
loops in program em3d. As shown in Table 3, both the success
rate of speculative execution and the spawned thread count of
program em3d have some increase, so that successful threads
have also increase, resulting that the ML-based loop selection
approach exploits more speculative threads to participate in
parallel computation and the speedup obtains improvement
of 24.97%.

Program health uses a four-way tree to model the multi-
level health-care system that includes multiple hospitals.
Health has 14 loops, just like program em3d, loop-level
parallelism is the major source of program health. Although
program health has many loops, there is only one nested loop,
so there are increased faintly in the success rate of speculative
execution and the spawned thread count. Previous multilevel-
based loop selection approach chooses some unprofitable
loops for speculative execution while the ML-based approach
selects all profitable loops to be executed in parallel by
machine learning to exploit loop-level parallelism. As shown
in Table 3, compared with the multilevel-based approach,
the successfully spawned threads is increased, hence, the
ML-based approach allows more speculative threads to take
part in speculative execution and has gained a performance
improvement of 6.39%.

Program mist is a kind of graph algorithm that calculates the
minimum spanning tree. Mst employs singly linked lists to
solve problem and has complex data structures. Meanwhile,
the multilevel-based approach selects 5 loops with larger
thread size for speculative execution while the ML-based
approach chooses all the profitable loops. Compared with the
multilevel-based approach, the ML-based approach predicts
the classification label for every loop by predicting model,
resulting the spawned thread count and the success rate of
spawned threads increased. At last, program mst spawns a
lot of the successfully spawned threads for speculative paral-
lelization and causes a performance improvement of 8.06%.

Program power is a solver of power pricing system prob-
lem. Power has similar data structure with mst, it adopts
multi-way tree and single-linked lists as data structure and has
complex data dependencies. As shown in Table 5, program
power contains 20 loop structures and loop body size is big.
Because of complex data dependences, compared with the
multilevel-based approach, the ML-based approach picks up
all the profitable loops and partitions them into multithreads
to executed in parallel. Through analysis, the parallelism
mainly comes from loop-level parallelism, especially in func-
tion main and optimize_node. From Table 3 and Fig. 9, it is

VOLUME 5, 2017

B. Liu et al.: Toward Emotion-Aware Computing

IEEE Access

TABLE 3. The dynamic information statistics of the olden benchmarks.

Spawned Threads Speculative Success Rate Successful Threads
Olden
benchmark Performance Improvement
enchmarks Multilevel ML Multilevel ML Multilevel ML
bh 119920 122887 0.963426 0.955195 115534 117381 3.35%
bisort 64577 60361 0.5106 0.583986 32973 35250 3.87%
em3d 2275 3807 0.774066 0.860783 1761 3277 24.97%
health 3684 3688 0.9541 0.9542 3515 3519 6.39%
mst 490 1014 0.8796 0.9375 431 951 8.06%
power 121083 122461 0.800525 0.835335 96930 102296 3.61%
tsp 198304 182394 0.68258 0.78612 135358 143384 2.77%
voronoi 111149 109972 0.924129 0.937484 102716 103097 0.61%
MEAN 70352 70616 0.8152 0.850644 58924 60779 6.70%
TABLE 4. The static characterization statistics of the olden benchmarks.
Olden benchmarks bh bisort em3d health mst power tsp voronoi mean variance
. Thread size 129.93 | 67.00 353.50 51.33 39.5 168.02 30.44 143.18 122.86 11346.34
Multilevel-based
method Slice/Thread 0.05 0.10 0.02 0.08 0.10 0.04 0.10 0.06 0.07 0.00
Live-ins 5.10 6.00 5.63 3.22 3.2 4.87 1.75 7.55 4.67 3.43
ML-based Thread size 42.00 43.00 38.67 47 40 58.41 28.58 133.85 53.94 1112.38
metiwiise Slice/Thread 0.13 0.15 0.11 0.10 0.10 0.10 0.09 0.04 0.10 0.00
Live-ins 428 5.50 3.33 3.55 3 4.71 1.83 3.92 3.77 1.25
TABLE 5. Chararistic of olden benchmarks.
Olden bh bisort em3d health mst power tsp voronoi
. . X . Double-linked Array of Multiway tree, X i
Main pointer data Heterogenous . Single-linked . . . j Binary tree, Binary
Binary tree . lists, singly Single-linked . .
structures Octree lists . : K Linked lists tree
Quadtree linked lists lists
Input parameters 64-2 512-1 10-3-30 2-16-1 8-1 1-1 100-1 128-1-0
excuted /sum 24/28 2/3 13/15 13/14 11/13 17/20 6/7 3/4
Average number
. . 9.14 5.87 8.73 3.51 3.92 2.88 94.5 1.3
of iterations
Loop body size 200.45 41.42 265.99 172.88 830.59 2625.27 1267.25 137

obvious that the spawned success rate and the spawned thread
count are increased, so the success spawned threads have
also increased. Finally, the ML-based approach obtains a
respectable performance improvement of 3.61%.

Program #sp implements the traveling salesman problem
in a planargraph. As shown in Table 5, only 6 loops are
executed in fact while there are 7 loop structures. However,
the average iteration times of loop are 94.5 and the average
dynamic instruction count of loop bodies is 1267.25. Previous
multilevel-based approach selects the 6 loops for speculative
execution while the ML-based approach chooses 4 loops.
Compared with previous approach, although the ML-based
approach generates a fewer spawned threads, it improves the
success rate and increases the successfully spawned threads.
Finally, the ML-based approach achieves a performance
improvement of 2.77%.

Program voronoi generates a voronoi digram for random
points. There are some loops in program Voronoi, but almost

VOLUME 5, 2017

no nested loops. As shown in Table 5, although loop body
size is 137, the iteration times are very small, only 1.3,
therefore loops contains fewer parallelism. Compared with
the multilevel-based approach, the ML-based loop selection
approach predicts the classification label for each loop by
prediction model and then the loop thread partitioner decom-
poses them into multithreads to be executed in parallel.
As illustrated in Table 3, although the spawned thread count
is reduced, the corresponding success rate of speculative
execution is increased. As a result, the successful spawned
thread count is increased. The results indicate that the
ML.-based loop selection approach doesn’t appear to be quite
different from the multilevel-based approach, so the speedup
only obtains a performance improvement of 0.61%.

As shown in Table 4, it is obvious that the mean and
variance of thread size generated by the ML-based loop
selection approach are lesser than multilevel-based approach.
It indicates that modest thread size can gain higher speedup.

3683

IEEE Access

B. Liu et al.: Toward Emotion-Aware Computing

Furthermore, some programs (bh, em3d, power and voronoi)
exploit the parallelism by coarse-grained threads (thread
size is greater than 100 instructions), while some programs
(bisort, health, mst, and tsp) use fine-grained threads to
exploit the parallelism.

Through the above analyses, two conclusions can be
concluded: (1) The ML-based loop selection approach can
choose profitable loops and partition them into multithreads
for speculative execution by coarse-grained or fine-grained
threads. Which thread size is helpful to improve the speedup?
This is determined by the loop’s characteristics; (2) Although
the sacrifice of a certain success rate of speculative execution
will increase the time overhead of thread squash, compared to
the multilevel-based approach, the ML-based loop selection
approach can pick up more speculative threads for speculative
parallelism; (3) The speedup of multithreaded program is
related to not only success rate and the spawned thread count
but also load imbalance and thread size. Whether the speedup
of program is improved depends on benefit is greater than
the overhead caused by speculative parallelism. In conclu-
sion, the ML-based approach achieves an average speedup of
1.87 and provides a performance improvement of 6.70% for
Olden benchmarks than the multilevel-based approach. The
experimental results show that the ML-based loop selection
approach can find the optimal classification label of loop
for speculative parallelization and is more stable approach in
different programs.

VI. RELATED WORK
Emotion-aware computing is computing that the computer

is capable of understanding and responding to human emo-
tions. Most existing emotion-aware applications in this area
are compute-intensive sequential programs and they need to
be executed in parallel for quickly obtaining these results
of emotion-aware computing. Because loops hold most of
the computation time during the execution, they are the tar-
get of parallel computing. Liu et al. [29] proposed a loop
selection approach based on performance prediction. Basing
on profiling information and various speculative factors,
they established a prediction model for selecting loops that
are executed in parallel. Shen et al. [20], using profiling
information, proposed an evaluation method to choose loops
for maximizing program performance. Liu et al. [30] lever-
aged the code structure of the loop iterations to generate
tasks and used profiling information to discard ineffective
tasks by estimation. Liu er al. [28], using expert experi-
ences, parallelized all the profitable nested loops by multi-
level spawning strategies. Li and Zhao [17] developed the
thread counter to predict the runtime performance of threads.
Based on the analysis of different thread behaviors, loops
are selected automatically to be performed in parallel. Using
misspeculation cost model, Johnson ef al. [31] decomposed
loop structure into multiple threads. Gayatri ef al. [18] used
task-based programming model to parallel all while-loops.
Aldea et al. [19] augmented the OpenMP capabilities by
using thread level speculation technology and supported the

3684

all nested loops for speculative execution. Hirata et al. [23]
used the expert experience to select loops and executed their
iterations speculatively in parallel. Bhattacharyya et al. [22]
proposed a framework that can use two different heuristics to
find loops for speculative parallelization. These studies have
obtained some acceleration effect for loop-level parallelism,
but there are still some limitations: First, these works select
loops for speculative execution based on simple cost model
and not all of them can obtain good parallel performance.
Second, the existing methods adopt one-size-fits-all strate-
gies to select loops, only partial loops are selected for
speculative execution. In contrast, this paper uses a loop-
aware characteristic approach to select loops for speculative
parallelization.

VII. CONCLUSION
The paper proposes a novel ML-based loop selection

approach to choose the profitable loops for speculative paral-
lelization in emotion-aware applications. For the sake of pro-
viding sufficient training examples for prediction model, the
profiler is developed to collect the profiling information that
reflects more precise program behavior than static analysis.
Using profiling information, the Prophet compiler employs
the thread partitioner to partition loops into multithreaded
programs, and then these programs are estimated by using the
Prophet simulator. Finally these classification labels of loops
and themselves form the training examples. Furthermore,
features of these loops and their classification labels are put
together to generate sufficient training samples. The paper
uses training samples to build automatically a model that
is used to predict the classification label for unseen loops
in emotion-aware sequential program, allowing for a quick
search for the thread solution space.

The ML-based loop selection approach is implemented on
the Prophet compiler. The results show that the ML-based
approach can accurately select profitable loops for spec-
ulative parallelization. From an overall perspective, using
Olden benchmarks, the results are satisfactory and the
ML-based approach achieves performance improvement by
an average of 6.70% on a 4-core processor than the one-
size-fits-all approach. In conclusion, the ML-based approach
employs a loop-aware selection strategy and delivers a signif-
icant increase in speedup for each of unseen emotion-aware
sequential programs.

ACKNOWLEDGMENT
The authors are grateful for anonymous reviewers’ hard work

and comments that allowed us to improve the quality of this
paper.

REFERENCES

[1]1 Y. Zhang, “GroRec: A group-centric intelligent recommender system
integrating social, mobile and big data technologies,” IEEE Trans. Serv.
Comput., vol. 9, no. 5, pp. 786-795, Oct. 2016.

[2] Y. Zhang, M. Chen, D. Huang, D. Wu, and Y. Li, “iDoctor: Person-
alized and professionalized medical recommendations based on hybrid
matrix factorization,” Future Generat. Comput. Syst., vol. 66, pp. 30-35,
Jan. 2017.

VOLUME 5, 2017

B. Liu et al.: Toward Emotion-Aware Computing

IEEE Access

[3]

[4]

[51

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

C. Orellana-Rodriguez, E. Diaz-Aviles, and W. Nejdl, “Mining affective
context in short films for emotion-aware recommendation,” in Proc. 26th
ACM Conf. Hypertext Soc. Media, 2015, pp. 185-194.

Y. Zhang, M. Qiu, C. W. Tsai, M. M. Hassan, and A. Alamri, ‘“Health-
CPS: Healthcare cyber-physical system assisted by cloud and big data,”
IEEE Syst. J., vol. 11, no. 1, pp. 88-95, Mar. 2017.

M. S. Hossain, G. Muhammad, M. F. Alhamid, B. Song, and K. Al-Mutib,
“Audio-visual emotion recognition using big data towards 5G,” Mobile
Netw. Appl., vol. 21, no. 5, pp. 753-763, 2016.

M. Chen, Y. Zhang, Y. Li, S. Mao, and V. C. M. Leung, “EMC: Emotion-
aware mobile cloud computing in 5G,” IEEE Netw., vol. 29, no. 2,
pp. 32-38, Mar./Apr. 2015.

Y. Zhang, M. Chen, S. Mao, L. Hu, and V. Leung, “CAP: Community
activity prediction based on big data analysis,” IEEE Netw., vol. 28, no. 4,
pp. 52-57, Jul./Aug. 2014.

Y. Fu, H. V. Leong, G. Ngai, M. X. Huang, and S. C. F. Chan, “‘Physiolog-
ical mouse: Towards an emotion-aware mouse,” in Proc. IEEE 38th Annu.
Int. Comput., Softw. Appl. Conf. Workshops, Jul. 2014, pp. 258-263.

H. S. Hossain, G. Muhammad, B. Song, M. M. Hassan, A. Alelaiwi,
and A. Alamri, “AudioUvisual emotion-aware cloud gaming framework,”
IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 12, pp. 2105-2118,
Dec. 2015.

Y. Luo and A. Zhai, “Dynamically dispatching speculative threads to
improve sequential execution,” ACM Trans. Archit. Code Optim., vol. 9,
no. 3, pp. 1-31, 2012.

X. Sun and Y. Chen, “Reevaluating Amdahl’s law in the multicore era,”
J. Parallel Distrib. Comput., vol. 70, no. 2, pp. 183-188, 2010.

L. Gao, L. Li, J. Xue, and P.-C. Yew, “SEED: A statically greedy and
dynamically adaptive approach for speculative loop execution,” IEEE
Trans. Comput., vol. 62, no. 5, pp. 1004-1016, May 2013.

M. Sharafeddine, K. Jothi, and H. Akkary, “Disjoint out-of-order execution
processor,” ACM Trans. Archit. Code Optim., vol. 9, no. 3, pp. 1-32,2012.
H. Jialu, T. B. Jablin, S. R. Beard, N. P. Johnson, and D. I. August, “Auto-
matically exploiting cross-invocation parallelism using runtime informa-
tion,” in Proc. IEEE/ACM Int. Symp. Code Generat. Optim., Feb. 2013,
pp. 1-11.

X. Wang, Y. Zhao, Y. Wei, S. Song, and B. Han, “Prophet synchronization
thread model and compiler support,” in Proc. Int. Symp. Parallel Distrib.
Process. Appl., 2010, pp. 81-87.

K. Ootsu, T. Yokota, and T. Baba, “‘Performance improvement of hot-path
based thread partitioning technique by unifying loop parallelization,” in
Proc. Parallel Distrib. Computing Syst., 2011, pp. 110-121.

M. Li and Y. Zhao, “A dynamically adaptive approach for speculative
loop execution in SMT architectures,” in Proc. 16th IEEE Int. Conf. High
Perform. Comput. Commun., Jun. 2014, pp. 1024-1031.

R. Gayatri, R. M. Badia, and E. Aygaude, “Loop level speculation in a
task based programming model,” in Proc. IEEE Int. Conf. High Perform.
Comput., Mar. 2013, pp. 39-48.

S. Aldea, A. Estebanez, D. R. Llanos, and A. Gonzalez-Escribano, “An
OpenMP extension that supports thread-level speculation,” IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 1, pp. 78-91, Jan. 2016.

L. Shen, F. Xu, and Z. Wang, ““Optimization strategies oriented to loop
characteristics in software thread level speculation systems,” J. Comput.
Sci. Technol., vol. 31, no. 1, pp. 60-76, 2016.

M. Li, Y. Zhao, Y. Tao, and Q. Wang, “A static greedy and dynamic
adaptive thread spawning approach for loop-level parallelism,” J. Comput.
Sci. Technol., vol. 29, no. 6, pp. 962-975, 2014.

A. Bhattacharyya and J. N. Amaral, ““Automatic speculative parallelization
of loops using polyhedral dependence analysis,” in Proc. Int. Workshop
Code Optim. Multi Many Cores, 2013, pp. 1-9.

H. Hirata, A. Nunome, and K. Shibayama, ‘““Speculative memory: An
architectural support for explicit speculations in multithreaded program-
ming,” in Proc. IEEE Int. Conf. Comput. Inf. Sci., Oct. 2016, pp. 1-7.

Z. Li, Y. Zhao, and D. Yanning, “Design and implementation of the
prophet speculative multithreading system,” Comput. Sci., vol. 38, no. 2,
pp. 296-301, 2011.

B. Liu, Y. Zhao, X. Zhong, Z. Liang, and B. Feng, “A novel thread
partitioning approach based on machine learning for speculative multi-
threading,” in Proc. IEEE Int. Conf. High Perform. Comput. Commun.,
Oct. 2014, pp. 826-836.

B. Liu, Y. Zhao, M. Li, Y. Liu, and B. Feng, “A virtual sample generation
approach for speculative multithreading using feature sets and abstract
syntax trees,” in Proc. 13th Int. Conf. Parallel Distrib. Comput., Appl.
Technol., Mar. 2012, pp. 39-44.

VOLUME 5, 2017

[27] Z. Dong, Y. Zhao, Y. Wei, X. Wang, and S. Song, “Prophet: A specu-
lative multi-threading execution model with architectural support based
on CMP,” in Proc. Int. Conf. Scalable Comput. Commun., Sep. 2009,
pp- 103-108.

[28] B. Liu, Y. Zhao, Y. Li, Y. Sun, and B. Feng, “A thread partitioning
approach for speculative multithreading,” J. Supercomput., vol. 67, no. 3,
pp. 778-805, 2014.

[29] B.Liuetal., “Aloop selection approach based on performance prediction
for speculative multithreading,” J. Electron. Inf. Technol., vol. 36, no. 11,
pp. 2768-2774, 2014.

[30] W. Liu et al., “POSH: A TLS compiler that exploits program structure,”
in Proc. 11th ACM SIGPLAN Symp. Principles Pract. Parallel Program.,
2006, pp. 158-167.

[311 T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar, “Speculative
thread decomposition through empirical optimization,” in Proc. 12th ACM
SIGPLAN Symp. Principles Pract. Parallel Program., 2007, pp. 205-214.

BIN LIU was born in Shaanxi in 1981. He received
the B.S. degree in computer science and technol-
ogy from the Shaanxi University of Science and
Technology, China, in 2004, and the M.Sc. degree
in technology with a major in parallel computing
and machine learning from Yunnan University,
China, in 2010, and the Ph.D. degree in electronic
and information engineering from Xi’an Jiaotong
University, China, in 2014. His research inter-
ests focus on emotion-aware computing, parallel
computing, and machine learning.

Since 2014, he has been an Assistant Professor with the College of
Information Engineering, Northwest A&F University, China. He is also a
Post-Doctoral Fellow with the College of Mechanical and Electronic Engi-
neering, Northwest A&F University. He currently serves as a Reviewer for
the IEEE TransacTiONs ON COMPUTERS, the Journal of Supercomputing, and
SO on.

JINRONG HE was born in Gansu in 1981.
He received the B.S. degree in science of informa-
tion and computation, the M.Sc. degree in compu-
tational mathematics from the Wuhan University
of Technology, China, in 2007 and 2010, respec-
tively, and the Ph.D. degree in computer software
and theory from the State Key Laboratory of Soft-
ware Engineering, Wuhan University, China, in
2014. He is currently an Assistant Professor with
Northwest A&F University. His research interests
include affective computing and machine learning.

YAOJUN GENG was born in Shanxi in 1982.
He received the B.S., M.sc., and Ph.D. degrees
in computer science and technology from Xidian
University. Since 2013, he has been an Assistant
Professor with the College of Information Engi-
neering, Northwest A&F University, China. His
research interests focus on emotion-aware com-
puting, machine learning, and bioinformatics.

3685

IEEE Access

B. Liu et al.: Toward Emotion-Aware Computing

LVWEN HUANG was born in Hunan in 1976.
He received the B.Eng. degree in automation engi-
neering in 1999, the M.Sc. degree in signal and
information processing from the Xi’an University
of Technology, China, in 2005, and the Ph.D.
degree in agricultural electrification and automa-
tion from Northwest A&F University, China, in
2013. Since 2005, he has been an Assistant Profes-
sor with the College of Information Engineering,
Northwest A&F University. His research interests

lie in emotion-aware computing, intelligent system, and image processing.

3686

SHUQIN LI was born in Shaanxi in 1965.
She received the B.S. and M.Sc. degrees from
Northwest Agricultural University, China, in 1986
and 1989, respectively. Since 2003, she has been
a Professor with the College of Information Engi-
neering, Northwest A&F University. Her research
interests include intelligent information system
and emotion-aware computing.

VOLUME 5, 2017

