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ABSTRACT This paper presents the algorithmic design, experimental evaluation, and very large scale of
integration (VLSI) implementation of Geosphere, a depth-first sphere decoder able to provide the exact
maximume-likelihood solution in dense (e.g., 64) and very dense (e.g., 256, 1024) quadrature amplitude
modulation (QAM) constellations by means of a geometrically inspired enumeration. In general, linear
detection methods can be highly effective when the multiple input, multiple output (MIMO) channel is
well-conditioned. However, this is not the case when the size of the MIMO system increases and the
number of transmit antennas approaches the number of the receive antennas. Via our wireless open access
research platform (WARP) testbed implementation, we gather indoor channel traces in order to evaluate
the performance gains of sphere detection against zero-forcing and minimum mean-square errors (MMSE)
in an actual indoor environment. We show that Geosphere can nearly linearly scale performance with the
number of user antennas; in 4 x 4 multi-user MIMO for 256-QAM modulation at 30-dB SNR, there is a
1.7 x gain over MMSE and 2.4 x over zero-forcing and a 14% and 22% respective gain in 2 x 2 systems.
In addition, by using a new node labeling-based enumeration technique, low-complexity integer arithmetic,
and fine-grained clock gating, we implement for up to 1024-QAM constellations and compare in terms of
area, delay, power characteristics, the Geosphere VLSI architecture, and the best-known best-scalable exact
ML sphere decoder. Results show that Geosphere is twice as area-efficient and 70% more energy efficient in
1024-QAM. Even for 16-QAM, Geosphere is 13% more area-efficient than the best-known implementation
for 16-QAM, and it is at least 80% more area-efficient than the state-of-the-art K -best detectors for 64-QAM.

INDEX TERMS Wireless communication, MIMO, application specific integrated circuits, sphere decoding,
VLSI implementation.

I. INTRODUCTION

Multi-user, multiple-input multiple-output (MIMO) systems
with spatial multiplexing constitute one of the most promis-
ing techniques to to address the ever-increasing demand for
throughput while retaining the level of bandwidth usage.
This is because, at least in theory, such systems can scale
capacity with the number of user antennas [1]. However,
in order to translate the theoretically predicted capacity
gains into actual throughput, efficient methods are required
to detect and demultiplex the mutually interfering infor-

mation streams at the receiver side. In this direction,
frequently employed solutions involve linear detectors
like the zero-forcing (ZF) and the minimum-mean-square-
error (MMSE) approaches. However, it is well-known in the
literature [2], [3] that these methods are highly sub-optimal
in cases where the MIMO channel is poorly conditioned [4],
as often occurs when the number of transmit antennas
approaches the one of the receive antennas. In Section VI-A,
we evaluate this performance loss, in terms of achievable
spectral efficiency, for the ZF and MMSE detectors via
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simulations based on actual channel traces gathered using
our WARP testbed implementation, and we show that ZF
and MMSE detection cannot consistently increase network
throughput when increasing the number of concurrently
transmitting (single-antenna) users up to the number of
receive antennas. To increase throughput when numbers of
user-antennas approach the number of antennas at the receiver
side, maximum-likelihood (ML) detection should be applied,
and can be efficiently realized by means of sphere decoding.

Sphere Decoders (SD) [5], [6] avoid exhaustively
searching for the ML solution by transforming the detec-
tion problem into a tree search. Sphere Decoding-based
MIMO detection is not new and as such has been well-
examined throughout the literature [5]-[14]. The merits of
sphere-decoding-based detection have been documented in
theoretical results [5], [14], [15] and supported by vari-
ous efficient implementations [7], [16]-[20]. Still, while
actual channel measurements are already present in the
literature ([21]-[23]), the exploration of the practical thro-
ughput gains of SD have been limited. For instance, in [24]
the capacity of MIMO channels in the downlink has been
evaluated, but without accounting for the actual achievable
throughput of specific methods. Also, Suzuki et al. [25]
evaluated ZF against a ““list sphere decoding” approach, their
focus was on the effects of transmitter noise correlation on the
error rate probability.

While recent [26] and upcoming wireless standards [27],
dictate modulation schemes with very dense constellations,
to the best of the authors’ knowledge, no ‘“‘exact” SD
architecture has been yet proposed that is able to guarantee
the ML performance when very dense QAM constellations
are transmitted. The main reason is that the proposed tree
enumeration approaches for exact SDs [7], [14] do not
scale efficiently with the size of the employed constellation.
In particular, most efficient implementations adopt the
Schnorr-Euchner (SE) [12] tree-traversal strategy, according
to which, when expanding a parent node, the children are
visited in ascending order of their (partial) Euclidean metric.
This strategy has the ability to substantially decrease the
number of nodes that need to be visited until the ML solution
is found. However, the computational complexity required
to perform this sorting can determine the efficiency of the
SD, especially for very dense QAM constellations. In single-
dimensional (e.g., PAM) or constant envelope (e.g., PSK)
constellations, where only the phase or the amplitude of
the signal changes, one-dimensional “‘zig-zag” enumera-
tions can be used to avoid the exhaustive Euclidean metric
calculations and the corresponding sorting of the expanded
nodes [7]. However, such one-dimensional approaches are
not directly applicable to two-dimensional constellations
like QAM. To do that, the complex SD tree search can
be translated into a real tree search [28], [29]. However,
since the height of the new, real-valued tree is double the
height of the original complex-valued tree search, this results
in a substantially increased number of visited nodes, and
therefore, in a substantially increased processing latency [7].
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In order to reduce the SE enumeration’s implementa-
tion cost and increase circuit throughput without translat-
ing the complex SD problem into a real one, the ASIC-II
implementation in [7] realized an alternative non-exhaustive
SE scheme, which subdivided the two-dimensional QAM
constellation plane into one-dimensional concentric circles,
and performed partial enumeration and sorting across the
concentric cycles, reducing area for both Euclidean metric
calculations and node enumeration. Focusing on optimizing
the throughput of [7], the work in [30] introduced pipeline
interleaving and early termination. In [31], a new enumera-
tion scheme subdivided the constellation into vertical pulse-
amplitude modulated (PAM) subsets allowing the authors to
present results in 64-QAM. To the best of the authors’ knowl-
edge, this is the most efficient enumeration for dense and
very dense constellation, that can provide the exact SE sorting
required by exact SDs. As such, it has been implemented
in the benchmark architecture of this work. Geometry-
based enumeration solutions such as [10], [18], and [32]
aim to greatly reduce storage and computation require-
ments but can only sort a small subset of the constellation’s
nodes. Conversely, to preserve the exact optimality of the
algorithm [33], [34] propose a predefined visiting order in
combination with a new pruning criterion that preserves
SD optimality. However, the memory requirements of these
approaches make them unsuitable for very dense constella-
tions. Therefore, what prior work shows, and the problem this
work aims to address, is that optimal detection is practical
only in less dense constellations.

This work presents the design and evaluation, both in
terms of software-defined radio and VLSI architecture, of
Geosphere; a depth-first SD that can provide the exact
ML solution and can efficiently scale to very dense constel-
lations like 1024-QAM. Geosphere is based on a geometri-
cally inspired two-dimensional (2D) “zigzag” enumeration
scheme, that can be directly applied to QAM constellations
without requiring decomposing the complex-valued tree-
search into a real-valued one, and perform exact node sorting
while avoiding unnecessary Euclidean metric calculations.
To that end, Geosphere’s implementation should adhere to
the two-dimensional process (i.e., dual node storage and sib-
ling detection), without excessive overhead compared to that
of one-dimensional enumeration. Therefore, its implemen-
tation needs to maintain a) similar hardware logic latency,
b) slightly increased yet not doubled storage requirements
c¢) the one-node-per-cycle property of the current state-of-
the-art. Based on this two-dimensional enumeration, we pro-
pose a new node labeling approach that enables the efficient
mapping of our 2D zigzag method on hardware architectures.
As a basis for our implementation work, we choose the best
known and, to the best of our knowledge, most efficient
VLSI architecture [7], able to deliver the exact ML solution.
However, for benchmarking purposes, we have replaced the
authors’ proposed enumeration with the PAM-based enumer-
ation of [31], since the original enumeration, evaluated for
16-QAM modulation in [7], is not efficient for very dense
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constellations (as a very large number of sub-constellations
is required as we also show in Section IV). Hereafter, we will
refer to this new implementation as “PAM-based-ETH SD”.
Our results show that Geosphere’s VLSI implementation is
substantially more efficient than the PAM-based-ETH. For
example, Geosphere is twice as area-efficient and 70% more
energy efficient while displaying a 13% higher area efficiency
than the PSK-based SD for 16-QAM in [16]. These results
are achieved by a parameterizable design relying on Geo-
sphere’s enumeration scheme, by a low-complexity integer
arithmetic as well as by fine-grained clock gating. To the best
of our knowledge this is the first time where resource cost,
delay, power consumption and scalability are all simultane-
ously explored and documented in the framework of sphere
detection. In general, the contributions of this work can be
summarized as follows:

o The actual gains of exact sphere decoding, and therefore
Geosphere, against linear detection approaches, have
been evaluated for actual channel traces collected by
means of a software-defined implementation (using the
Rice WARP v3 radio hardware) for an indoor scenario,
showing spectral efficiency gains of more than two times
for 4 x 4 256-QAM transmissions at 30 dB SNR and,
in contrast to linear detection approaches, nearly-linear
spectral efficiency increase with the number of users.

« A geometrically inspired 4AlJzigzagdAl enumeration
and a new node labeling approach have been proposed
that enable the implementation of exact sphere decoders
that efficiently scale to very dense constellation
symbols.

o According to the best of our knowledge, this is the first
time that an exact ML hard-output SD for 1024-QAM
has been implemented and evaluated in the literature.

o Two exact depth-first SDs (i.e., Geosphere and the
PAM-based-ETH) have been implemented in VLSI,
with their designs allowing scalability at arbitrarily
dense square QAM constellations.

« It is shown for the first time (instead of simply remark-
ing) that traditional SD architectures do not scale well
with very dense constellations and to that end, the first
time the traditional architectures have been implemented
for such dense constellations.

« This is the first time in the open literature that resource
cost, delay, power consumption and scalability are
simultaneously explored and documented in the frame-
work of sphere detection.

This work focuses on depth-first solutions for several rea-
sons. First, in contrast to breadth-first approaches [9], [17],
[35]-[37] depth-first SDs can guarantee exact ML perfor-
mance. Furthermore, and as we also show in Section VII,
while breadth-first SDs allow efficient parallelization and
pipelining which can lead to a high processing throughput,
this typically comes at a very high area and power cost.
Still, approximate versions can be attained via early termi-
nation, probabilistic pruning [15], [38], [39], or metric-based
approaches ( [7]-ASIC-II, [31], [40]).
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The rest of the paper is structured as follows: Section II
begins with a primer on sphere decoding, setting up our
subsequent discussion of Geosphere’s design in Section III.
In Section III-B we propose a node enumeration procedure in
the complex domain, which is based on attaching labels to the
constellation point nodes and will enable Geosphere’s imple-
mentation. We then lay the groundwork for its implemen-
tation by describing the general structure of non-exhaustive
SE enumeration architectures (Section IV). Section V
describes the proposed VLSI SD implementation details.
Algorithmic evaluation follows in Section VI, where we eval-
uate Geosphere using actual indoor gathered channel traces.
In Section VII we evaluate the VLSI architectures’ function-
ality and assess their power consumption by employing both
simulated and actual channel traces. Finally, Section VIII
concludes the manuscript.

Il. PRIMER: SPHERE DECODER

This section provides essential background on the sphere
decoder which achieves ML detection, i.e., it determines
the most likely transmitted vector x* chosen from a
constellation & of size || = 22 (i.e., Q bits per symbol):

x* = arg min |y — Hs|?, M
seOne

where y is the received signal vector, H the channel matrix
and s the transmitted signal vector. Solving Eq. 1 exhaustively
would entail |£|" Euclidean distance d(s) calculations. The
SD reduces this complexity by transforming the ML problem
into a search in a tree of height n, (number of transmit
antennas) and branching factor || (constellation size) as
shown in [5] and [6].

rrrrrrrrrrr T @ 000 000 @0

FIGURE 1. The sphere decoder tree search for nc = 3 transmit antennas,
each sending a QPSK-modulated symbol (| &| = 4). The branches of the
tree are numbered at the topmost level (/ = 3). Constellation points are
denoted with x and the received signal with o. Coloring is used to depict
visited nodes.

Figure 1 shows an example for n, = 3 and QPSK
(0] = 4). Each level [ of the tree corresponds to a
decision on the value s; of the transmitted symbols from
antennas / through nc, i.e., the partial symbol vector s =
[s1. Si41, - sn.]- To realize this tree search the channel
matrix first has to be QR-decomposed as H = QR, where
QQ = Iand R = [rlj] is upper triangular (i,j €
[1, n.]). Each partial symbol vector (i.e., branch) s in the
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tree is associated with a non-negative branch cost c(sVy =
2
‘371 - Z}Zz rljsj) . We then calculate the partial Euclidean

distance for s as: d(sV) = d(s'+V) + c(s?) where s!* D is
the tentative solution constructed up to the level above. Due to
the QR-decomposition the Euclidean distances d(s) become
d(s) = |y —Rs|?>, wherey = Rs + Q*w, and § = Q*y
is the transformed received signal. Therefore, the detection
problem is transformed into the minimization of ||y — Rs||%.
Since the branch cost is non-negative, the sphere decoder can
prune all children below partial symbol s if they violate the
sphere constraint (i.e., ds®y > ).

Traversing the tree: Continuing our example of Figure 1,
a conventional Schnorr-Euchner SD with radius update will
initially have its radius set to infinity, then exhaustively deter-
mine the path to a leaf a that minimizes partial Euclidean
distance at each level (the path is highlighted using thick
lines in the figure). This entails computing distances for all
children as well as all sibling nodes along the path (all nodes
in this diagram). Upon reaching a, the decoder sets its sphere
radius to d(a) and backtracks up one level to check node b
whose distance is second-closest. In the case of d(b) < d(a),
the sphere decoder needs to expand b, enumerate its children,
and find the one with minimum distance (c¢). Once this is
finished, the decoder backtracks up one level againto [ = 3
and considers node d. Now d(d) > d(a), so none of d’s
children or siblings (note that the nodes are sorted) could
possibly be the maximum-likelihood solution, so the sphere
decoder terminates and returns a as the ML solution.

Even though this pruning reduces the number of visited
nodes compared to a naive exhaustive search, it can be com-
putationally expensive. In particular, the sorting requirement
of Schnorr-Euchner enumeration for higher-order constella-
tions (e.g., 16- and 64-QAM), can compromise the sphere
decoder’s efficiency, preventing its employment in very dense
constellations.

Ill. GEOSPHERE: DESIGN AND NODE

LABELING ENUMERATION

This section first presents the design of Geosphere’s enumer-
ation technique which we use in order to avoid exhaustively
sorting the children of a node in the sphere decoder and then
proposes a new node labeling approach which will aid in Geo-
sphere’s VLSI architecture implementation. In Section VI,
we experimentally evaluate the relative gains under varying
channel conditions.

The goal of Geosphere’s enumeration technique is to deter-
mine the order in which the sphere decoder should explore
the set of constellation points &, when it is considering the
possible children of a particular parent node in the tree shown
in Fig. 1. We wish to explore constellation points in order of
increasing branch cost, but the only soft information at our
disposal is the received symbol.

However, since constellation distance is related to partial
Euclidean distance by

¢ (s?) = 1l 157 - i @)
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~ Vi—> i, rsio . .
(where §; = #), it suffices to explore the con-

stellation points in increasing Euclidean distance from the
received symbol in the constellation itself, rather than as
measured indirectly by the partial Euclidean distance metric.
If we were sending constellation points in one dimension
(this is known as pulse-amplitude modulation, or PAM), then
to find the closest constellation point to the received sym-
bol we would first need to follow a procedure called slic-
ing. Slicing compares the received symbol against decision
boundaries residing on the midpoint between consecutive
constellation points. Subsequent points would be determined
by the zigzag rule, based on which we visit the next closest,
unvisited constellation point from the initial closest point.

A. TWO-DIMENSIONAL ZIGZAG ENUMERATION

In the case of two-dimensional zigzag, we are in fact seek-
ing an approximation of an expanding ring search, starting
at an arbitrary, continuous-valued received symbol point o.
One inexact way of accomplishing this would be to parti-
tion the QAM constellation into PAM subconstellations, and
then zigzag “‘vertically” within each subconstellation [31].
But this approach neglects the in-phase component of the
received symbol.

Geosphere instead first slices the received symbol to find
the closest constellation point (denoted as a), and begins the
two-dimensional zigzag from that exact constellation point
to determine a’s next sibling. Node a’s Euclidean distance is
calculated and stored along with its partial vector in a priority
queue which is constantly sorted by the Euclidean distances
of its contents. Note that the sphere decoder will then expand
the branch corresponding to a and search that subtree. Once
the Geosphere SD returns to the node whose child nodes it is
sorting, this node is removed from the queue and the sphere
decoder zigzags both horizontally and vertically, since it is
searching for the next-closest sibling in (two-dimensional)
Euclidean distance. This entails calculating the Euclidean
distances of the nodes encountered on the horizontal and
vertical directions, and adding these nodes to the queue.
We avoid adding the node encountered through the horizontal
zigzag to the queue if a constellation point from the target
PAM subconstellation is already in our list of outstanding
constellation points to explore. This ensures that we have at
most one candidate constellation point per (vertical) PAM
subconstellation. A description of Geosphere’s algorithm can
be found in [11].

Notice that as a consequence of the two-dimensional
zigzag rule, the algorithm requires a priority queue of length
at most +/|]. By only taking zigzag steps one constellation
point at a time, the algorithm defers the Euclidean distance
computation until the point in time it is required, often by
which time the sphere decoder has pruned the relevant subtree
(we demonstrate this later in the experimental evaluation).

B. PROPOSED NODE LABELING ENUMERATION
To facilitate the design of a modular and scalable VLSI archi-
tecture which can be practical in very dense constellations
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FIGURE 2. The proposed binary-mapped constellation scheme (a) and the attached node labels for the received symbol o and the closest
constellation point X. Real indices are highlighted in dark blue and imaginary indices in red colour. Part (b) depicts Geosphere’'s
two-dimensional zigzag enumeration in the 16-QAM constellation employing the proposed node labeling technique. We denote constellation
points with x, label points whose partial Euclidean distances have been computed, and denote points that have been explored with X. Dark
blue color denotes horizontal zigzags while red color denotes vertical zigzags.

with a reasonable area/power cost, we propose a new node
representation approach which we apply to both Geosphere
and the PAM-based-ETH SD. This approach is based on
(i) labeling child nodes corresponding to a specific parent at
a tree level and (ii) employing binary-mapped constellation
point indices.

Node labeling assists in determining the sibling §/) which
will replace a child node and therefore the visiting order
of child nodes. Each node’s labels describe the number of
zigzag movements required for the node to be reached from
its currently visited sibling. We employ binary-mapped con-
stellation points as depicted in Fig. 2a, whereby indexing
begins from the top right constellation point and increases
towards the left and bottom directions. Notice that the labels
for all siblings of a particular received constellation point
are constant, as they also define a specific zigzag visit-
ing order. Then, each child node with a partial vector s)
can be described by its horizontal and vertical labels as
(hl(sD), vi(sD)), where hl, vl € [0, /[€]— 1]. By definition,
the first child nodes selected are the first to be possibly
visited (unless they violate the sphere constraint) and have
thus always the labels (hl,vl) = (0, 0) attached to them.
Replacement nodes §) as determined through Geosphere’s
zigzag enumeration in the horizontal and vertical direction
have the labels (hl(s,"), vi($i") = (als?) + 1,vi(s?))
and (hl($, "), vi($, ")) = (hi(sD), vi(s?) + 1) respectively
attached. As a consequence, horizontal labels are zero for
every node in the PAM-based-ETH SD.

As an example to the aforementioned enumeration tech-
nique, Fig. 2b depicts Geosphere’s 2D zig-zag enumeration
with the proposed labels attached to the nodes. Node a is
the first chosen child node and therefore (hi(a),vi(a)) =
(0,0). Node ¢ is its horizontal replacement, hence
(hi(c), vi(c)) (1,0) and, similarly for node b,
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(hl(b), vi(b)) (0, 1). In step (iii.) a 2D zig-zag from
node b would result in its replacement from nodes d and e.
While (hi(d), vi(d)) (0, 2), notice that node e would
normally require the labels (hl(e), vi(e)) = (1, 1). Visiting
e though would have violated Geosphere’s same-vertical-
subconstellation rule (as the queue already contains node ¢
which has the same vertical label as e). Continuing from
node ¢ and hence removing it from the queue, the respective
labels of its siblings f and e become (hl(f), vi(f) = (2,0)
and (hl(e), vi(e)) = (1, 1). Notice how this combined label-
ing/mapping describe the number of zigzags. For instance,
node i in step (vi.) whose labels are (hi(i), vi(i)) = (0, 3)
requires three leaps in the vertical direction in order to be
reached from its sibling d.

This scheme allows us to determine the next sibling by
adding or subtracting the label’s value as an offset which is
normally [log, +/]@[] bits wide, instead of storing all labels
beforehand (Fig. 2a). In the cases where enumeration has
reached one of the constellation’s margins, the next sibling’s
offset can also be set to one depending on the enumeration’s
direction.

IV. NON-EXHAUSTIVE SE ENUMERATION
ARCHITECTURES

We first describe the general features of non-exhaustive enu-
meration architectures as depicted in Fig. 3. We outline their
structure and the modules required to traverse the tree without
compromising the ML solution. This is a generalization of the
architecture originally introduced in [7]-ASIC-II in order to
facilitate the design description in the following section.

A. METRIC COMPUTATION (MCU)
The Metric Computation Unit detects the nodes to be possibly

visited on the current tree level / and computes their PDs,
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FIGURE 3. Architectural overview of sphere decoders with
non-exhaustive enumeration.

based on the nodes selected at the levels above. We will
refer to this process as the forward movement of the detec-
tor. Irgtially, the MCU computes the received symbol y; =
%ﬂ”l%, common to all possible child nodes. All SD
architectures execute this step once per forward movement.
The implementation cost of the MCU mainly depends on n,
the employed norm and the bit width. Normally, exhaustive
SE enumeration would require computation and minimum
search among the PDs of every possible child given a par-
ent node (i.e., at most || PD calculation units). The non-
exhaustive MCU instead contains slicing units which com-
pare the received symbol to appropriate decision boundaries
thereby mapping the symbol to a specific constellation point
considered as the closest. The exact number and nature of the
PD operations depend on detection requirements.

B. METRIC ENUMERATION UNIT (MEU)

The Metric Enumeration Unit operates in parallel with the
MCU in order to determine the next parent node. The MEU
forwards the next parent to the MCU in case of sphere con-
straint violation, or leaf occurence. In exhaustive enumeration
architectures, this would entail the MEU a) storing the PDs
of all possible children except for the node already chosen
by the MCU and, consequently, b) searching for the mini-
mum PD among these remaining nodes. In non-exhaustive
enumeration architectures, information about a smaller set of
nodes needs to be stored which reduces both area and delay
requirements. The MEU should then determine (i.e., node
replacement unit) the next sibling node §) which will replace
the visited node in a subsequent forward movement based on
a set of rules. These rules dictate both the optimality of the
detection process, and the scalability and performance of the
non-exhaustive architecture.

C. NEXT NODE UNIT (NNU)
In both exhaustive and non-exhaustive depth-first SDs, the
NNU resides between the MCU and the MEU and its role
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is to select the parent s’T1 of the child node to be visited
next in the traversal process. Selection is made between
the nodes provided by the MCU and the MEU based on
sphere constraint violation and leaf node validity. Both the
MCU and the MEU search among at most || nodes to
obtain the one with the minimum PD. This is usually carried
out through a comparator network arranged in a binary tree
fashion (MinTree in Fig. 3). The MEU will also employ the
NNU'’s contents to compute §0.

D. LEAF STORAGE AND CONTROL UNITS

At the lowermost tree level, if a leaf or a dead-end is reached
then the SD directly visits the corresponding node or selects a
new node from the MEU. Therefore at the bottom level only
the partial vector and the PD of the leaf need to be stored.
Finally, a control unit guides the whole detection process
controlling the dataflow inside the MCU, the input to the
NNU, the writing and replacement logic in the MEU and
finally, the detection’s start and termination.

V. SCALABLE DEPTH-FIRST SDs: PAM-BASED ETH

AND GEOSPHERE VLSI ARCHITECTURES

In this section, we employ the hierarchy outlined in Sect. IV
to facilitate our description of the proposed VLSI architec-
tures. We exploit the use of integer arithmetic throughout
all computations and utilize the node labeling enumeration
of Sect. III-B in order to present a modular approach that
achieves scalability to very dense constellations. Aiming at
exact detection with low power consumption, we jointly
explore the energy and delay of the multiplication units
and follow a low-complexity storage unit implementation
approach that uses fine-grained clock gating.

Due to this work’s goal in assessing the cost in very dense
constellations, instead of subdividing the plane into concen-
tric circles, we employ vertical PAM subsets due to their
better scalability [31]. For instance, in the cases where |0 €
{16, 64,256, 1024} the respective subset cardinality becomes
10| ire € {3,9,32, 109} in the case of concentric circles and
|O\pays € {4, 8, 16, 32} in the case of PAM subconstellations.

A. MCU: DESIGN AND IMPLEMENTATION

The MCU’s main computational burden lies in calculat-
ing c(s(l)) as in Eq. (2). Even though the diagonal ele-
Illent%v ry are real-valued, the division operation in y; =
%ﬂ’“% would on one hand significantly increase the
latency of the MCU even when replaced by a fixed-point
arithmetic reciprocal operation. On the other hand, the design
of throughput optimized architectures is beyond the scope
of this work and has already been addressed in the liter-
ature [18], [30], [41]. Introducing pipeline interleaving in
order to decrease the induced latency would compromise the
joint low area/power/scalability scope of this work due to the
presence of the feedback loop. Instead, we shorten the critical
path by computing y; — 27;1 L1 18 — rusy (i.e., multiply all
constellation point values by ry).
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FIGURE 4. Multiplierless Multiple Constant Multiplication (MCM)
architectures for integer constellation point multiplication:
256- and 1024-QAM.

1) LOW-COMPLEXITY MULTIPLE CONSTANT

MULTIPLIERS (MCMs)

As all constellation point values can be considered as
coefficients of integer nature, the design of low-complexity
constant coefficient multipliers is critical to maintain a low
overall area cost. A flexible multiplierless approach was
proposed in [32] for modulation schemes up to 64-QAM.
In this manuscript, we modify the work in [32] to employ the
proposed binary mapped constellation indices (Section III-B)
instead of the actual constellation point values and
additionally extend multiplication to 256 and 1024-QAM
constellations. As we focus on exact ML approaches, we
avoid the precision assumptions made in [32] through which
the authors replace two’s complement units by simple nega-
tion. The architecture of the multiplierless implementa-
tions (M-MCM) is depicted in Fig. 4. We employ the <
symbol to denote left arithmetic shifts and “2sC” to denote
a two’s complementing operation. We also consider two
additional multiplier-based implementations: a) integer con-
stellation points are stored in a (log,(+/[0]) x log,(/]0]) +
1)-bit lookup table (full-depth, MCM-FD, Fig. 5 bottom),
and b) where only the positive integer values are stored
and the most significant binary index bit (MSB(index)) is
employed to negate both the constellation index and the

product ((% VIoD log,(+/|0])+ 1)-bit half-depth lookup
table, denoted as MCM-HD in Fig. 5 top). To enhance
accuracy, we increase internal post-multiplication precision

by keeping M additional bits. The fractional and total
word length/precision are parameterizable.

To determine the most energy efficient solution, we eval-
uate the Register Transfer Level (RTL) synthesis results! of
each multiplier implementation for & € [16, 64, 256, 1024]

lSynthesis was performed using Synopsys Design Compiler on 45nm
TSMC library using typical case characteristics. Area is measured in Gate
Equivalents (GEs) where one GE is the area of a two input NAND gate
synthesized using the employed libraries.
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FIGURE 5. Look-Up Table-based (LUT-based) constant multipliers:
Half-Depth LUT (MCM-HD, top), Full-Depth LUT (MCM-FD, bottom).

TABLE 1. Synthesis comparison for three distinct multiple constant
multiplier (MVCM) implementations employing 16-bit numbers and
% /15) + 1 binary indices as constellation point constant coefficient

input: Multiplierless MCM case (M), Full-Depth LUT MCM (FD),
Half-Depth LUT MCM (HD).

Delay (ns) Area (GE)
implementation =~ M FD HD M FD HD
16-QAM 0.40 0.32 0.32 1018 769 784
64-QAM 0.42 0.35 0.34 1149 824 844
256-QAM 0.51 0.40 0.38 1332 984 1157
1024-QAM  0.54 0.41 0.38 1615 1165 1185
avg 0.467 0370 0355 1279 936 993
Power (mW) EDP (mW-ns?)
implementation M FD HD M FD HD

modulation

§ 16-QAM  0.4902 0.5620 0.5595 0.0784 0.0575 0.0572
é 64-QAM  0.5077 0.5282 0.5509 0.0895 0.0647 0.0637
'é 256-QAM  0.4413 0.5048 0.5748 0.1147 0.0807 0.0830

1024-QAM  0.4707 0.5507 0.6090 0.1372 0.0925 0.0879
avg 0477 0.536

0.573 0.1049 0.0738 0.0729

considering a 16-bit rj; input. Registers were employed at the
input and output paths of each multiplier in order to obtain
the minimum delay. Based on the synthesis results of Table 1
both MCM-HD and MCM-FD perform better than the
M-MCM in terms of minimum delay while they require
less area and consume less power. Consequently, they both
achieve better area efficiency as estimated by their Area-
Delay Products (ADP) at 351.43 and 356.95 GE-ns against
610.3 GE-ns of the M-MCM solution. Since our goal is the
joint optimization of energy, resource cost and performance,
we employ the Energy-Delay Product (EDP) metric which
takes into account both the energy consumption and the
critical path. Results slightly favor the MCM-HD solution in
almost all cases and thus it is the solution to be subsequently
employed as the proposed multiplication units are more
suitable for an ASIC implementation targeting maximum
precision. We note here that while the 1024-QAM constant
multipliers also calculate all products for less dense constella-
tions, implementing a flexible detector for multiple standards
is outside the scope of this manuscript which instead aims to
explore the scaling behavior.
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2) SLICING UNITS

Following the computation of §-ryy = §; — Z/'.';l 41 15j8j> each
detector determines the closest constellation point(s) to the
received symbol through its slicing units.

a: PAM-Based Architecture: During the forward movement
on a level of the tree, the closest point in each PAM subset
is found and, subsequently, /[ PD values are computed
among which the minimum is chosen as the node to be visited.
Regardless of the node chosen within each subset, nodes
among subsets share the same imaginary part. Additionally,
all points within a subset share the same real part. Therefore,
apart from fewer subsets, the subdivision into PAM subcon-
stellations results in a more simplified design versus the PSK
ALU of [7] in that only a single slicer unit is required to detect
the imaginary part of y - r;;. To employ the aforementioned
low-complexity multipliers and allow favorable scaling of the
proposed architecture in dense and very dense constellations,
slicing is performed on integer intermediate decision bound-
aries scaled by ry. Since these boundaries are located in the
midpoints between two consecutive constellation symbols,
only arithmetic shifts and two’s complement operations are
necessary to scale the value of r;. The received symbol is
compared with the scaled result and then directly mapped to
the binary mapped constellation point index. Therefore in this
specific architecture the real indices of the /[0 constella-
tion points form a binary arithmetic sequence € [0, /[O]],
and can thus be pre-stored to be directly input to the PD
calculators.

b: Geosphere Architecture: Owing to the much lower
complexity of Geosphere’s tree traversal, its MCU mainly
consists of a two-dimensional slicing unit and a sin-
gle PD calculator. The former comprises of two iden-
tical one-dimensional slicers which only differ at their
first input, i.e., the real and imaginary parts of y - ry.
Moreover, only a single sphere constraint comparator is
required and hence there is no need for a MinTree unit in
the NNU.

3) PD CALCULATORS

The proposed PD calculators follow the design depicted in
Fig. 6. They consist of two MCM units which compute the ry; -
s; products. The result is then subtracted from y - r;; and input
to a generic /> norm unit. The implemented PD calculator
also contains a partial vector generator module (Fig. 6) which
calculates s,

B. MEU

Whenever the MCU is unable to proceed further on its own,
the MEU needs to determine the next sibling node and thus
required to store the current state of the search for each tree
layer and the attributes of each tree node. These attributes
normally consist of the node’s partial vector, its PD, and a
single bit flag which verifies validity. Non-exhaustive
enumeration schemes require additional attributes to fully
describe each node and guide the enumeration process. In the
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FIGURE 6. The proposed partial distance calculator/partial vector
generator employing MCMs and a generic /2 norm unit.

case of the PAM-based architecture, the proposed enumera-
tion technique requires for each node to additionally store:
a) its vertical label vl and b) two flags which define whether
the top and bottom constellation margins (tm and bm respec-
tively) were encountered during enumeration. Geosphere’s
nodes require storage of their horizontal label (h/), as well
as two additional flags for the left and right constellation
margins (Im and rm respectively). Note that to replace the
node which has been selected and is currently being visited
and in order to save area/power, the current state of the tree-
search process also involves storage of the d(s‘t1) and §-ry;,
both of which have already been computed by the MCU. In
our implementations, we organize storage units as register
banks.

1) STORAGE UNIT CONTENTS (PAM-BASED ETH)

Each unit requires storage of +/[€] elements of: a)
log, /]0| bits for the partial vectors, b) parameterized
width for the PDs, c) single valid bits, d) single bits
for the top margin rm(s?), e) single bits for the bot-
tom margin bm(s?), f) M bits for the vertical
label vi(s).

2) STORAGE UNIT CONTENTS (GEOSPHERE)

Geosphere’s storage units have exactly the same depth
as in the PAM-based architecture [11]. Additionally, these
units require +/]0]: a) single-bit registers for the left
margin Im(s?), b) sil}/gle—bit registers for the right mar-

gin rm(s(l)), c) w-bit registers for the horizontal
label hi(s).
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3) STORAGE UNIT ORGANIZATION

Before deciding on the organization of each register bank, we
have to take into account the requirements of each specific
algorithm as well as our design goals which involve low
energy consumption, competitive performance and tractable
scaling behavior without compromising the exact ML solu-
tion or the one node per-cycle behavior.

Both schemes require a PD-sorted priority queue due to the
SE enumeration rule. In the literature, an efficient insertion-
sorted queue with a relatively good scaling behavior was
first presented in [42]. Ref [43] conduct a comparison among
several priority queue implementations where the aforemen-
tioned shift register queue proved to be the most prevalent
in single cycle enqueue/dequeue cases of small to medium
storage capacity. Both of these characteristics apply to our
case as storage capacity scales with 4/[£] and single-cycle
operations are required. On the other hand, both SD archi-
tectures require parallel writing to multiple locations: the
PAM-based during forward movement, Geosphere during its
backtracking. In order to achieve insertion-based sorting,
all registers in the shift register queue [42] activate during
insertion. The latter is not ideal for the low energy goal of
this work, particularly since all stored node attributes have to
be shifted even though only the PDs would be employed as
sorting keys.

node attributes

write
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bits ¥ storage
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lwrite | Binary |, unit

Decoder

I storage
lreplace R Binary |, i
/ 2C replace level enable
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Ol elements
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FIGURE 7. Architecture of the storage units, their clock-enabling and their
node attribute storage logic.

Our proposed solution, depicted in Fig. 7, combines instead
a parallel load/store register file approach followed by a
MinTree unit per storage unit, which ensures selection of
the node with the minimum PD (Fig. 3). Note that a sin-
gle MinTree unit preceded by a /[0 x larger multiplexer
could possibly decrease area requirements at the expense of
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significantly increased latency. To reduce switching activ-
ity and therefore power consumption, both of the proposed
implementations employ fine-grained clock gating on all reg-
isters inside the SD (Fig. 7). While on one hand this can
increase the fanout of signals and the control logic required
to implement the detectors’ functionality, on the other hand
it also allows for greater control over the detector as a whole
entity (e.g., for stalling) or specific parts of it when required.

4) NODE STORAGE (PAM-BASED)

In the forward movement phase, the PAM-based MCU out-
puts +/[0] nodes along with their corresponding attributes.
It forwards these to all buffers and the SD control unit ensures
through a level write (/,,i0) signal that only a single storage
unit will be active for storing the node. Within each storage
unit, all registers are active since all nodes need to be stored at
this point in time. Therefore, the write index binary decoder
in Fig. 7 is unnecessary.

5) NODE STORAGE (GEOSPHERE)

During Geosphere’s forward movement, its MCU outputs
only a single node to be stored into one active storage unit.
Additionally, by decoding the detected node’s real index, a
write index signal activates a single position in the register
file to store the node’s attributes, thus saving power.

6) NODE REPLACEMENT (PAM-BASED)

In the PAM-based ETH SD, only a single sibling §) needs
to be computed and therefore only a single location is
updated in the storage unit. The Vertical Node Replacement
Unit (VNRU ) computes the node residing in the same vertical
subconstellation as the currently visited node s) and which
will replace the latter in the next clock cycle at the same regis-
ter file location. The VNRU consists of the Replacement Com-
putation Unit (RCU) which computes the attributes of §)
and forwards these attributes to the Vertical Computer (VC:
essentially a partial distance calculator). Figure 8 depicts the
architecture of the VNRU. Implementing the proposed enu-
meration technique, the RCU consists of a multiple constant
multiplier (MCM) which multiplies the constellation value
by ry. The scaled result is compared against the y ry and,
combined with the sign of ry; and the values of the fm(s;) and
bm(s;) signals, defines the corresponding offset to be added
directly to the s index. Notice that the replacement node’s
label vi(§;) is always produced by incrementing vi(s;) by one.
The RCU also outputs the visited all nodes signal indicating
that the currently selected and visited node is the last in the
PAM subconstellation. In this case the SD does not store the
VNRU ’s result, invalidates the corresponding buffer entry and
bypasses the VC. Following the computation of §;, the VC can
now calculate d (§(l)) based on the depicted PD calculator.

7) NODE REPLACEMENT (GEOSPHERE)

During Geosphere’s replacement phase, the current node
stored in the NNU needs to be replaced by up to two sib-
lings. These have to be both available in the immediate clock
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FIGURE 8. Architecture of the Vertical Node Replacement Unit (VNRU):
realizing node labeling enumeration, partial distance calculation and
partial vector generation.
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cycle and stored in the buffer for subsequent enumerations.
Therefore we have to employ an additional node replacement
unit, to which we will hereafter refer as Horizontal Node
Replacement Unit (HNRU). Due to the proposed enumera-
tor’s design the HNRU is almost identical to the VNRU with
the exception that now, the HNRU has to generate an extra
signal indicating the presence of a stored node in the buffer’s
position corresponding to the same PAM subconstellation.
To that end, the HNRU requires input from the corresponding
buffer which will store the replacement. Aiming at minimal
additional logic which scales well with the constellation size,
our proposed solution is depicted in Figure 9: first, a binary
decoder decodes the real index of the replacement node §)
to a /[ [-bit output. Then, each of the decoder’s output bits
are employed as a mask which is applied at the valid bit array
originating from the storage buffer. The masked outcome is
finally compressed to a single bit using an OR operation
to produce the same subconstellation signal. Through this
signal, the SD bypasses the PD calculation.

S; = 8 JIOT bits OR
/| Binary __compressor
(5-1,) P -

U VNRU
hi(s(¥ sanje
(S(l))# " subconstgllation
Im(s !) :
rm(s,(l)):k ' HNRU

* * * *valid bits

hl(éﬂ)) Sﬂ) d(§ (U) from buffer

FIGURE 9. Architecture of the Horizontal Node Replacement Unit (HNRU):
retaining basic VNRU functionality and additionally realizing Geosphere’s
same subconstellation rule.

Notice that now two sets of node attributes can be possibly
generated, one originating from the VNRU and one from the
HNRU. In this case, we want to ascertain that both nodes can
be written to the storage unit’s register file without conflict or
overwriting the results already stored therein. Conflict-free
access is established by the fact that the real indices of the
nodes generated by the HNRU and the VNRU are by defini-
tion different. As these indices will enable the corresponding
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register file locations, the node attribute vectors generated by
each NRU are de-multiplexed into a specific location of the
/|0)-element register file and the two de-multiplexed vec-
tors are then merged into one by an OR operation (Fig. 7). The
merged vector is subsequently employed for storage as in the
PAM-based case. Finally, Geosphere’s same subconstellation
rule establishes that no attributes will overwrite those already
stored: if the HNRU result’s index is the same as that of a
currently stored node, then the same subconstellation signal
disables decoding of the index and thus nothing is written to
the storage.

VI. GEOSPHERE's ALGORITHMIC EVALUATION

In this section we measure Geosphere’s performance gains
and computational complexity requirements in real indoor
office conditions. We gather channel traces by employing
Rice WARP v3 radio hardware and perform trace-based
simulations via OFDM modulation and demodulation using
4-, 16-, 64- and 256-QAM constellations. All clients send
data using 1/2-rate convolutional coding (similar to recent
802.11 standards). We compare Geosphere with zero-forcing
and MMSE systems that attempt to intelligently adapt to
poorly-conditioned MIMO channels by varying the number
of antennas and spatial streams they use. Finally, we evaluate
Geosphere’s computational complexity, comparing it with the
well established PAM-based-ETH depth-first sphere decoder
which, as we disussed in Section I, is the combination of
of the architecture in [7] with the PAM-based enumeration
of [31].

Our testbed consists of single-antenna clients and four-
antenna APs, communicating over a 20 MHz wireless chan-
nel in the 5 GHz ISM band. The distance between consecutive
AP antennas is about 20 cm (approximately 3.2, where A is
the wireless wavelength) so that the wireless channels from
each AP antenna to a client are uncorrelated with each other,
and thus representative of antenna spacings above A indoors
at 5 GHz [44]. We first evaluate Geosphere in an indoor envi-
ronment, measuring the MIMO channels which correspond
to several concurrently transmitted streams across all sub-
carriers and for many different client and access point (AP)
positions. Our goal is to assess how well-conditioned are
indoor channels, since, in that case, zero-forcing can be very
efficient in demultiplexing the interfering streams. For a more
detailed description of our testbed environment and our chan-
nel characterization methods, please refer to [11].

A. SYSTEM PERFORMANCE

In this section, we compare the uplink performance of ZF
and MMSE serving a network of clients, against Geosphere.
We consider four SNR ranges, 15 dB 45 dB, 20 dB + 5 dB,
25 dB £5 dB and 30 dB +£5 dB, where the quoted SNR
is the average SNR over all transmitted streams. Selecting
users in a small SNR range around a specific value is a
practical user selection method to keep the condition number
small. Larger gains are expected for Geosphere if the users
are selected randomly. In addition, in lieu of implementing a
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FIGURE 10. Trace-based simulations performance comparison for zero-forcing, MMSE MIMO and Geosphere: spectral
efficiency for a varying number of clients, AP antennas and SNRs.

rate adaptation algorithm, we show spectral efficiency results
for the constellation that achieves the best average number of
effective bits per sample for the corresponding range, taking
into account the average achieved packet error rate and the
code rate; this emulates ideal bit rate adaptation and makes the
results independent of the rate adaptation method employed.

As can be seen in Fig. 10 regarding the effective average
number of information bits per sample for different num-
bers of clients and receive antennas, Geosphere consistently
outperforms both zero-forcing and MMSE. Moreover, as
expected, Geosphere’s performance gains increase with the
condition number and A. In particular, for the 2 x 2 case
using 256-QAM modulation at 30 dB SNR, Geosphere’s
performance can be 14% higher than MMSE and 22% higher
than ZF. In the case of 4 x 4 transmissions, Geosphere’s
performance is 1.7x higher than that of MMSE and up to
2.4x higher than that of ZF. Even in the most challenging
case of two or three clients and an AP with four receive
antennas (where channels are most often well-conditioned),
Geosphere can achieve increased spectral efficiency against
ZF and MMSE. Please note that the error-rate performance of
the PAM-based-ETH decoder and therefore, its spectral effi-
ciency, is identical to that of Geosphere and it is thus omitted
from Fig. 10. Since the condition number of a matrix becomes
smaller with decreasing numbers of concurrently transmitting
clients, another question we may ask is whether zero-forcing
or MMSE combined with an appropriate scheduling strategy
could match Geosphere’s performance, with fewer clients
per transmission. Our simulation results in Fig. 10 reveal
that Geosphere with four clients and four receive antennas
achieves higher performance than both the zero-forcing and
the MMSE schemes for three transmitting clients. In particu-
lar, Geosphere’s spectral efficiency is 34.7% higher than that
of MMSE and can be up to 37.5% higher than that of ZF at
30 dB SNR using 256-QAM modulation.
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B. COMPUTATIONAL COMPLEXITY

We now quantify the computational requirements of
Geosphere. To this end, we compare Geosphere against
the PAM-based-ETH SD. One frequently-used measure of
computational complexity in the literature is the number
of visited nodes in the sphere decoder tree. However, we
also require a metric that captures Geosphere’s additional
computation i.e., the one which avoids visiting nodes. Since
the dominant part of the additional computation is partial
Euclidean distance calculations, this metric tracks overall
complexity accurately, and so we primarily use this metric
in our evaluation, as is also common in the literature [45].
For completeness and additional insight into why Geosphere
improves performance, we also report the number of visited
nodes. Since in an OFDM system, MIMO processing takes
place on a per subcarrier basis, we report the preceding met-
rics as needed per subcarrier, averaged across all subcarriers.

Since the WARP platform’s analog front end limits it to
a maximum SNR of approximately 30 dB over the links in
our testbed, which is not adequate for transmitting 256 or
1024 QAM constellations, for the following computational
complexity experiments we perform simulations. We present
both (a) trace-based simulations, driven by empirical MIMO
channel measurements collected from our WARP testbed,
and (b) simulation over a MIMO Rayleigh fading channel
with independent, identically-distributed channel realizations
sampled on a per-frame basis.

In Fig. 11 we show complexity for an SNR such that
each constellation reaches a packet error rate of approxi-
mately 1% (e.g., approximately 12, 18, 24 and 31 dB for the
2 x 4 measured channels and 16-, 64-, 256- and 1024-QAM
constellations, respectively). We examine two MIMO cases:
In the rightmost part of Fig. 11 we show complexity for
two clients and four AP antennas. In this case, complexity is
relatively low, due to favorable MIMO channel conditioning,
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FIGURE 11. Simulation-based complexity comparison: PAM-based-ETH vs Geosphere SDs in 4 x 4 and 2 x 4 MIMO (PER=10"2).

but at the cost of reduced throughput, since only two users
transmit. We note that the complexity of PAM-based-ETH
SD increases with constellation size, while the complexity
of Geosphere is substantially smaller, independent of the
constellation size, and comparable to the complexity of zero-
forcing.? For the Rayleigh channel, Geosphere is 93% less
complex than the PAM-based-ETH SD for the 1024-QAM
case. We note that Geosphere’s complexity remains almost
constant among constellation sizes as evaluation is performed
at different signal-to-noise ratios, (i.e., to maintain a packet
error rate of 1072).

The leftmost part of Fig. 11 shows the complexity for
four clients and four AP antennas, where we need to cope
with more challenging MIMO channel conditions. For the
4 x 4 case we see that the complexity of PAM-based-ETH
SD (but not Geosphere) greatly increases with constellation
size. As aresult Geosphere is up to 93% less complex than the
PAM-based-ETH SD for the Rayleigh channel. In addition we
see that the zigzag algorithm is the main source of complexity
improvement for large constellations.

As noted above, the throughput gains of Geosphere are
modest for well-conditioned channels (e.g., for two users and
four AP antennas). One might therefore be tempted to argue
in favor of a system that switches back to zero-forcing when
faced with a well-conditioned wireless channel. However, the
above results show that Geosphere actually adjusts its com-
putational complexity to the current SNR, and so complexity
at high SNR is actually very small, obviating the need for a
hybrid system. In the 2 x 4 case, Geosphere requires 87 up to
95% fewer partial distance calculations compared to the 4 x 4
case. We finally note that this work focuses on addressing

2Zero-forcing requires n; x ny = 8 complex multiplications, whereas
Geosphere requires at most 10 complex multiplications (assuming that each
partial distance calculation requires n; + 1 multiplications).
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the problem of dense and very dense constellations and to
assess the corresponding performance aspects. In a different
perspective, performance can also be enhanced by increasing
the number of antennas. This is though an entirely different
problem which is beyond the scope of this work.

VII. VLSI ARCHITECTURE EVALUATION

To jointly evaluate the resource cost, performance, energy
and scalability of the proposed SD architectures in very
dense constellations we instantiate the designs in & €
{16, 64, 256, 1024}-QAM modulation schemes for n. = 4.
Our aim to compare Geosphere with the PAM-based imple-
mentation results, i.e. the best known hard output depth-
first sphere detector which attains ML performance and
whose enumeration scheme allows good scalability in dense
constellations.

The proposed designs were implemented using parametric
Verilog RTL code. The code was designed to allow the instan-
tiation of all sub-modules for arbitrary modulation schemes
with square constellations. We note here that only the MCMs
and the slicing units have to be redesigned among the dif-
ferent modulation schemes. The RTL code was synthesized
using the Synopsys Design Compiler and TSMC 45nm stan-
dard cell libraries under typical operating conditions (25°C
and 0.9V). The RTL and post-synthesis netlists were com-
pared with the MATLAB model to check exact ML detection
performance. For purposes of comparison, we implement all
detectors employing a word width of 24-bits for d(s”’) and
16-bits for R to assess a worst-case resource cost. Note that
word width further increases internally in order to enhance
arithmetic precision (Fig. 4).

A. AREA-DELAY-ENERGY-THROUGHPUT-SCALABILITY
We first measure the area requirements, the maximum
achievable frequency, the consumed energy and the attained
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throughput of both Geosphere and the PAM-based-ETH SDs.
Our goal is to illustrate Geosphere’s advantages when both
designs are implemented using the same design principles.

-10°
4 T T T T T
O1/0 storage [ control+MinTree
[l MEU MCU
3
PAM-based-ETH U Geosphere ‘
D [~ PAM-based ETH
‘52 —a—  Geosphere
<
1
0 | 4 |
16-QAM  64-QAM  256-QAM  1024-QAM

Constellation Size

FIGURE 12. Sphere decoder architectures’ resource cost and scalability:
area (GE) breakdown at the maximum achievable frequency (fmax)-

Post-synthesis area results in GE are displayed in
Fig. 12 for both architecture implementations. Results show
that Geosphere displays a significantly decreased cost com-
pared to the PAM-based architecture. Between consecutive
constellation sizes, Geosphere’s area increases by an average
factor of 1.63x while the PAM-based architecture approxi-
mately doubles its cost. This behavior can be attributed to the
much larger area cost of the MCU, as between consecutive
constellation sizes its cost in the PAM-based architecture
increases by an average factor of 1.96x. Geosphere’s MCU
on the other hand increases its corresponding cost by 1.22x
on average, which is attributed to the larger internal word
width and the increased number of the slicer comparators.
As expected, the largest contributor to Geosphere’s resource
cost is its MEU. While between consecutive constellation
sizes the cost factor is on average 1.9 x for both architectures,
the 2D zigzag, the requirement of a second replacement
node and their imposed complexity, incur a 33.7% addi-
tional cost to Geosphere’s MEU for 16-QAM modulation.
As |O)| increases, the MEU’s resource cost is dominated
by the registers required to store the PDs and the partial
vectors. Hence, Geosphere’s extra replacement unit and the
extra storage unit complexity have much less impact: in the
1024-QAM case, Geosphere’s MEU is 19.9% larger than
the one in the PAM-based architecture. To obtain a more
comprehensive view of the actual resource cost, we calculate
the Area-Delay Product (ADP) for each architecture. The
maximum achievable frequency f;,, and thus the minimum
delay per architecture and constellation size for the specified
bit widths is displayed in Table 2. Results illustrate that
on average Geosphere achieves a 11.8% higher frequency
than the proposed PAM-based implementation. Notice also
that Geosphere exhibits the same f;,,,x as the PAM-based
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FIGURE 13. SDs joint area/delay/modulation assessment.

TABLE 2. Post-synthesis area, delay and scalability SD evaluation:
PAM-based-ETH vs Geosphere.

4 x4 SDs @ 24-bit d(s?)), 16-bit R
Modulation Scheme 16-QAM 64-QAM 256-QAM 1024-QAM

Jnax (MHz)
PAM-based-ETH 400 345 303 263
Geosphere 435 400 345 303
Area (GE)
PAM-based-ETH 54240 94542 188382 358458
Geosphere 51187 79437 127955 222090
Area-Delay Product (GE-ns)
PAM-based-ETH 135600 274172 621660 1362140
Geosphere 117730 198592 371069 732897

architecture, albeit at the immediately higher constella-
tion density. Moreover, combining the delay results with
Geosphere’s much lower resource cost results in an ADP that
is 14% better than that of the PAM-based architecture in 16-
QAM while in very dense constellations, Geosphere is almost
twice as area efficient. Figure 13 presents a joint area-delay-
constellation size graphical assessment for both architec-
tures based on synthesis results. Notice that alternate routing
paths and buffer insertion tend to increase the area to meet
timing requirements, hence the distance between the curves
recedes at the left side of the plots and the results reported in
Table 2. When timing requirements are less strict, the plots
show that the actual resource ratio between the two solutions
starts at 0.8 x for 16-QAM Geosphere and can reach 0.54 x
in 1024-QAM.

To estimate the power consumed by each synthesized
design, we employ the same test vectors used in the MAT-
LAB simulations (for both the Rayleigh and the Empirically
Measured Channels at PERe {10~!, 1072}). Using these
vectors, the gate level netlist was simulated to generate the
corresponding switching activity files for both detectors at
O € {16, 64, 256, 1024}. Power consumption was estimated
using Synopsys Power Compiler and the Energy-Delay-
Product (EDP) figure of merit was calculated to assess the
implementations’ energy efficiency.

Total power results are aggregated in Tables 3 and 4 in
the Rayleigh- and trace-based cases respectively. Results
show that Geosphere consistently outperforms the PAM-
based architecture. Even at a PER of 10~! where 28-46%
more nodes are being visited, the proposed design ensures
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TABLE 3. Post-synthesis energy, throughput and scalability
Rayleigh-based SD evaluation: PAM-based-ETH
vs Geosphere.

4 x4 SDs @ 24-bit d(s7), 16-bit R
Modulation Scheme 16-QAM 64-QAM 256-QAM 1024-QAM
Rayleigh Channel Evaluation

@avg
SNR (dB) @ PER=10" 12 19 26 32
25.23 29.61 71.16 94.76
SNR (dB) @ PER=10"" 15 22 28 35
17.50 24.22 50.47 49.90
Power @ PER=10"T (mW)
PAM-based-ETH 113486 17.9848  30.6633 53.1954
Geosphere 9.5609 123900 153246  20.5234
Power @ PER=10"2 (mW)
PAM-based-ETH 112177 179233 30.6567  52.9070
Geosphere 93671 122315 15.2762  20.6007
EDP @ PER=10"" (mWns?)
PAM-based-ETH 70.9287 151.2521 333.9233  768.1415
Geosphere 50.5771 774375 128.8798  223.4998
EDP @ PER=10"2 (mW-ns?)
PAM-based-ETH 70.1106 150.7349 333.8514  763.9771
Geosphere 49.5519 76.4468 128.4728  224.3416
Throughput @ PER=10"T (Mbps)
PAM-based-ETH 253.666 279.635 136.256 111.017
Geosphere 275.862 324214  155.143 127.902
Throughput @ PER=10"2 (Mbps)
PAM-based-ETH 365.714 341.866 192.114  210.821
Geosphere 397714 396367 218.744  242.886

that circuit activity is being held at a minimum during back-
tracking and replacement. In particular, the PAM-based archi-
tecture consumes over 16% more power in the 16-QAM
case, 31% in the 64-QAM case while in very dense constel-
lations, Geosphere reduces consumed power by more than
60% (e.g., in 1024-QAM). Furthermore, taking into account
the higher achieved frequency Geosphere shows an improved
energy efficiency of 29% in 16-QAM that can reach 61% in
256-QAM and surpass 70% in 1024-QAM.

We also present the throughput evaluation of both SDs
based on the average number of visited nodes Dy, for each
modulation scheme and SNR (Tables 3 and 4). Based on
the results, Geosphere displays a 8.7% higher throughput in
16-QAM, that can reach 16% in denser constellations.

B. COMPARISON AGAINST OTHER WORKS

IN THE LITERATURE

In this section, we compare the proposed detectors with
other hard-output ASIC implementations in the literature.
Results are displayed in Table 5, scaled to 45nm at an oper-
ating voltage Vpp = 0.9 V. Both the PAM-based and the
Geosphere architectures have been re-synthesized using a
16-bit word width (a common performance/complexity trade-
off in the literature [40], [41]). Note that the presented results
involve modulation schemes up to 64-QAM which up until
now has been the upper margin for hard-output depth-first
SD implementations. Comparison is conducted against both
similar, exact-ML detectors as well as against approximate
depth-first and breadth-first detectors.
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TABLE 4. Post-synthesis energy, throughput and scalability Trace-based
SD evaluation: PAM-based-ETH vs Geosphere.

4 x4 SDs @ 24-bit d(s7), 16-bit R
Modulation Scheme 16-QAM 64-QAM 256-QAM 1024-QAM
Trace-based Channel Evaluation

—@ﬂvg
SNR (dB) @ PER=10"! 14 21 28 34
33.29 57.43 81.12 139.42
SNR (dB) @ PER=10"2 16 23 30 37
26.65 4254 58.53 84.31
Power @ PER=10"T (mW)
PAM-based-ETH 113440 17.8158  30.1985 51.4689
Geosphere 9.5638  12.1718  15.0050 19.6881
Power @ PER=10"2 (mW)
PAM-based-ETH 112067 17.8158 299579  51.2213
Geosphere 9.3973  12.1718  14.8876 19.6232
EDP @ PER=10"T (mW-ns?)
PAM-based-ETH 70.9000 149.8308 328.8616  743.2109
Geosphere 50.5925 76.9287 126.1920  214.4034
EDP @ PER=10"7 (mW-ns?)
PAM-based-ETH 70.0418 148.8031 3262415 739.6355
Geosphere 497117  76.0737 125.2047  213.6966
Throughput @ PER=10"T (Mbps)
PAM-based-ETH 192249 144103 119.538 75.501
Geosphere 208.967 167.160  136.027 86.940
Throughput @ PER=10"2 (Mbps)
PAM-based-ETH 240.150 194.543  165.675 124.852
Geosphere 261.033 225.669  188.526 143.769

Against exact-ML detectors, Geosphere achieves higher
area efficiency. In particular, against the best-known hard-
output exact ML detector in [16] Geosphere achieves a 13%
higher area efficiency and a 15% average higher through-
put. Also note that compared to the PSK-based /> norm
architecture in [16] the proposed PAM-based implementation
achieves a similar area efficiency which in denser constella-
tions is expected to improve due to the latter’s better scaling
behavior (Section V). As expected, the low complexity design
of the proposed implementations results in a 67 to 70%
lower area cost than that of the exhaustive SE architecture
(PAM-based and Geosphere respectively against the ASIC-I
in [7]). In fact, even the proposed 64-QAM Geosphere imple-
mentations are 56 to 67% more area efficient compared
to the 16-QAM exhaustive scheme. EDP results illustrate
a similar behavior, as Geosphere displays a 77% higher
energy efficiency than the exhaustive scheme (65% for the
PAM-based architecture).

To emphasize on the advantages of Geosphere and its
proposed realization, we also compare against implemen-
tations which sacrifice the exact ML solution for the sake
of complexity reduction. Against the PSK-based SD in [7]
utilizing the /> norm, both Geosphere and the PAM-based
implementation respectively display a 41 and 34% higher
area efficiency. Note that compared with the throughput and
energy optimized /' norm-based solution in [40], the pro-
posed VLSI architectures are 56 to 61% more area effi-
cient even though they achieve approximately 50% lower
throughput. Moreover, Geosphere’s implementation attains a
slightly higher energy efficiency, despite the /! norm’s lower
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TABLE 5. Area, energy and performance comparison of the PAM-based-ETH and Geosphere SD implementations employing a 16-bit datapath against the

state-of-the-art.

Detector: PAM-based-ETH? Geosphere® [71° [16]* [71° [401° [46]° [41]°
ASIC-1 ASIC-II
Nne X NAp 4x4
|0 16 64 16 64 ] 16 64
Type Folded DF ‘ Pipelined DF BF (K-Best)
Performance ML Approximate
Norm 2 s I 2
Technology (nm)° 45 250 @ 45 | 1B0@45 | 130 @ 45
Area (GE) 37689 65395 35028 54377 117000 34400 50000 175000 491000 340000
Fnax®(MHz) 454 357 476 400 278 406 394 920 397 1205
ADP (GE-ns) 82015 183106 73558 135942 420030 84830 126750 190207 1236829 282200
Power®(mW) 9.2 12.6 6.2 8.4 9.9 - - 25.4 24.8 331
EDP (mW-ns?) 445 98.8 29.1 52.5 128.1 - - 30.0 157.1 228.0
Mbps'@ PER=10""  288/218  289/149  302/229  324/167 176/134  257/195  250/189 583/442 3177 2850
Mbps @ PER=10"2  415/273  354/201  435/286  393/226  254/167  371/243  360/236 841/552

2 Post-Synthesis results.  ° Silicon Implementation.
results scaled at 45nm.
(ﬂ )2 .45
Vpp T (nm) "
Davg results from Tables III and IV.

complexity. Finally, breadth-first K-best solutions focus on
throughput optimization based on a highly pipelined design.
Apart from sacrificing detection optimality, these solutions
require a much steeper area and power consumption pre-
mium. Against throughput-oriented efficient solutions which
up until recently were restricted to the real domain (such
as [46]), Geosphere is 89% more area efficient and exhibits
3x lower EDP. Compared to the K-best breadth-first SD in
the complex domain, [41] displays an approximately three-
fold increase in resources and tenfold increase in power
consumption compared with the authors’ real-domain imple-
mentation. Compared against [41] representing the state-
of-the-art in K-best complex-domain SD, Geosphere offers
exact-ML detection at twice the area efficiency and 4 x better
energy efficiency, as respectively assessed through the ADP
and EDP figures of merit (Table 5).

VIil. CONCLUSIONS
We have described Geosphere, a wireless multi-user
MIMO system that, by employing sphere decoding-based

f Throughput of Depth-First implementations computed as

¢ We employ the notation “.7 @ 45” to signify the original lithographic technology
4 Frequency scaling by multiplying f,,. at .7 nm with %.

¢ Power scaling by multiplying power at .7 nm with
ne-logy | O]

< - is the minimum delay in seconds,
Davg tmin

1
, where tin = Fnar

MIMO capacity. Geosphere can be directly used with soft-
output (non-iterative) receivers that perform a common tree
search and with “list sphere-decoders™ approximately cal-
culating the soft information in iterative, soft-input, soft-
output systems. Future work will involve extension in an
iterative framework by employing already proposed strate-
gies that extend ‘“‘hard” decision to soft input, soft output
detectors [45], [47], [48].
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