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ABSTRACT Smart cities aim to improve the quality of urban services and their energy efficiency by utilizing
information and communication technologies. In such context, drones can be utilized to support various
services, such as traffic monitoring, search/rescue, and surveillance, by communicating with many different
smart objects like sensors. Securing such communications is crucial to making correct decisions and requires
efficient cryptographic protocols. However, the design of such protocols must consider: 1) the mobility
and the limited battery of drones and 2) the constrained resources of smart objects. In this paper, a suite
of cryptographic protocols is presented to deal with three different communication scenarios: one-to-one,
one-to-many, and many-to-one. For one-to-one, we propose an efficient Certificateless Signcryp-
tion Tag Key Encapsulation Mechanism (eCLSC-TKEM) that supports authenticated key agreement,
non-repudiation, and user revocation. eCLSC-TKEM reduces the time required to establish a shared key
between a drone and a smart object by minimizing the computational overhead at the smart object. For
one-to-many, we propose a Certificateless Multi-Recipient Encryption Scheme (CL-MRES) by which a
drone can efficiently send privacy-sensitive data to multiple smart objects. For many-to-one, we present
a Certificateless Data Aggregation (CLDA) protocol, which allows drones to efficiently collect data from
hundreds of smart objects. Also, for efficiency, we propose a dual channel strategy that allows many smart
objects to concurrently execute our protocols. We evaluate eCLSC-TKEM via a smart parking management
test-bed. Also, we have implemented CL-MRES and CLDA on a board with a graphics processing unit
(GPU) and show their GPU-accelerated performance.

INDEX TERMS Certificateless cryptography, certificateless signcryption, data collection, drone, smart city.

I. INTRODUCTION
With the advent of low-cost general-purpose computers and
the availability of inexpensive sensors, actuators and wire-
less transceivers, the interconnected physical objects, called
Internet-of-Things (IoT), is being promoted. IoT applications
that leverage cloud computing and analytics for big data are
enabling smart city initiatives all over the world. The main
goal of a smart city is to enhance the quality of urban life and
to provide a sustainable environment by monitoring and con-
trolling the city’s public infrastructure and services. In such
a context, drones represent a key technology for deploying
novel monitoring applications. For example, the Wisconsin

state police recently reported that drones would help with
search and rescue. The Ministry of Environment and Water
in Dubai has started using drones for monitoring the work of
crushers and quarries. Nokia [2] plans to use flying drones
as a public safety system for cities. PrecisionHawk [3] has
been offering remote sensing and data processing services
using drones for various applications such as infrastructure
monitoring and search/rescue.

Recent advances in sensor and embedded device tech-
nologies are also pushing the pervasive data acquisition and
processing capabilities in different city infrastructures such
as roads, traffic signals, sidewalks and bridges to monitor

VOLUME 5, 2017
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3721



J. Won et al.: Certificateless Cryptographic Protocols for Efficient Drone-Based Smart City Applications

FIGURE 1. Requirements and our solutions.

various city-related information, such as traffic conditions, air
quality and structural health. For example, in structural health
monitoring [4], sensors can be deployed on structural critical
points, such as boundaries or joints of a bridge. After a critical
event, such as an earthquake, a drone can fly over sensors
to collect data about structural conditions from the sensors.
Also, drones can be utilized to update sensor software or to
change sensor configuration settings such as sample rates.
Even cars may play a role as sensors in smart cities. Drones
can collect traffic information from cars to enhance travel
efficiency and physical safety. In such context, drones can be
used to periodically collect information from these sensors
and perform in-network processing of this information.

In the smart city applications based on drones, security
is an important requirement. Drones, like many network-
enabled mobile devices, are vulnerable to cyber/physical
attacks, such as eavesdropping, manipulation, imperson-
ation and physical capture. Furthermore, since drones car-
rying valuable data might fly over hostile urban areas, they
might become the targets of attacks. Therefore, it is criti-
cal to address security requirements, such as confidential-
ity, integrity, authentication, revocation, authenticated key
agreement, non-repudiation and privacy protection. However,
supporting all the security requirements in one protocol is not
desirable since each security functionality requires additional
computational costs. Thus, it is crucial to define essential
security requirements according to specific categories of
applications. In addition, efficiency in applications involving
both drones and sensors (referred to as smart objects in what
follows) is critical because of (1) the mobility and limited
battery life of drones and (2) the constrained resources of
smart objects. In particular, it is critical that security protocols

take into account the asymmetry in computational power of
the devices involved in the applications (e.g. smart objects
and drones). In this paper, we address all those requirements
by designing, implementing, and testing a suite of efficient
cryptographic protocols.

A. CONTRIBUTIONS AND PROTOCOL OVERVIEW
The contributions of this paper are three-fold: 1) a suite
of cryptographic protocols, 2) efficiency enhancement tech-
niques to these protocols, and 3) a test-bed implementation of
these protocols in different settings.

1) A SUITE OF CRYPTOGRAPHIC PROTOCOLS
As shown in Fig. 1, we consider three different communi-
cation types between a drone and smart objects, and their
corresponding applications: 1) a smart object → a drone
(secure monitoring), 2) a drone→many smart objects (user-
specific data transmission), and 3) many smart objects →
a drone (data collection). Fig. 1 also shows different secu-
rity/efficiency requirements for each application. To deal with
such requirements, we introduce three cryptographic proto-
cols: 1) an efficient Certificateless SignCryption Tag Key
Encapsulation Mechanism (eCLSC-TKEM), 2) a Certificate-
less Multi-Recipient Encryption Scheme (CL-MRES), and
3) a Certificateless Data Aggregation (CLDA).

1) eCLSC-TKEM: eCLSC-TKEM is best-suited when a
smart object sends privacy-sensitive messages to a
drone and the messages must not be repudiated. The
smart parking management presented in Sec. V-B is
an example application of eCLSC-TKEM. The main
feature of eCLSC-TKEM is to integrate one-way key
agreement with digital signature to create one efficient
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algorithm which can be used to support authenticated
key agreement and non-repudiation. Another advan-
tage of eCLSC-TKEM is that it is based on certificate-
less public key cryptography (CL-PKC). This means
that eCLSC-TKEM does not have the key escrow prob-
lem that affects identity-based public key cryptography
(ID-PKC) [5], nor does it have the certificate man-
agement overhead which exists in the certificate-based
public key cryptography.
eCLSC-TKEM adopts Boneh et al.’s revocation
scheme [5] to revoke users. That is, when a partial
private key is generated, the validity period of the key
is specified. After the period expires, the partial private
key is automatically revoked and a new partial private
key must be generated. Therefore, even if the partial
private key of a drone is stolen by an attacker, the
malicious use of the key is limited to the period.
Another design goal of eCLSC-TKEM is to increase
efficiency by minimizing the computational cost at
the smart object. In heterogeneous systems, devices
have different computing capabilities and thus the
overall execution time of cryptographic operations
is dominated by the execution time of low-end
devices. eCLSC-TKEM is best-suited to heteroge-
neous systems, like drone-based smart city applica-
tions, since drones are usually equipped with high-end
mobile processors, while smart objects have low-speed
processors.

2) CL-MRES: CL-MRES is a hybrid encryption for multi-
ple recipients and is designed for a drone to efficiently
and securely transmit user-specific data to a large num-
ber of smart objects. To build CL-MRES, we utilize
a random re-use technique and our eCLSC-TKEM
excluding the digital signature functionality. Since the
drone must deal with a large number of smart objects,
the computation overhead at the drone should be min-
imized. Although CL-MRES does not support non-
repudiation, it significantly reduces computational and
communication overhead on the drone compared to
when the drone uses eCLSC-TKEM for each smart
object.

3) CLDA: Based on the security of eCLSC-TKEM,
we also propose a Certificateless Data Aggrega-
tion (CLDA) protocol. For smart city monitoring ser-
vices, sensors can be embedded in city infrastructure
or even cars and smart phones may play the role of
sensors. A drone can be used to collect data from
hundreds of such sensors. Every collected value must
be authenticated to prevent data pollution attacks and
encrypted to assure data confidentiality and privacy.
CLDA allows drones to efficiently collect data from
hundreds of smart objects by utilizing the EC-ElGamal
homomorphic encryption and an optimized batch veri-
fication technique.

2) EFFICIENCY ENHANCEMENT TECHNIQUES
Along with these three cryptographic protocols, we introduce
three additional techniques to enhance the performance of our
protocols.

1) Dual channel strategy: A drone has a limited flight
time. The dual channel strategy helps drones conserve
their battery life by allowing them to concurrently exe-
cute the time-consuming crypto-algorithms.

2) GPU utilization: When a drone must deal with a large
number of smart objects in a short time period, it is criti-
cal tominimize the execution time of crypto-algorithms
at the drone so that the drone saves its flight time. If the
drone is equipped with a GPU, the execution time can
be significantly reduced.

3) Batch verification optimization: When a drone collects
data and signatures from a large number of smart
objects, the overall performance of CLDA relies on
the efficiency of signature verification at the drone.
We introduce a batch verification optimization tech-
nique to boost the speed of the verification procedure.

3) TEST-BED IMPLEMENTATION
We have implemented our secure communication protocols
for real drone applications, i.e., smart parking management
and traffic monitoring. For the implementations, we con-
sider two kinds of drones: a medium-capacity drone and a
high-capacity drone. A medium-capacity drone has a
moderate-speed CPU and is used as a patrol drone for smart
parking management. A high-capacity drone has a GPU as
well as a CPU and is used as a large-scale data collector.
The performance of eCLSC-TKEM has been evaluated in a
smart parking management test-bed consisting of a medium-
capacity drone, i.e., AR.Drone2.0 and several sensors, i.e.,
TelosBs.

To show the performance of CL-MRES and CLDA, we
have implemented them on Nvidia Tegra K1, which is a
GPU-enabled SoC used in many modern vehicles, such as
Audi and Tesla. GPUs, together with cameras, are essential
parts for high-capacity drones for image processing, e.g., for
obstacle recognition and collision avoidance. We show that
the performance of CL-MRES and CLDA can be signifi-
cantly boosted by a GPU and the batch verification optimiza-
tion technique.

B. ORGANIZATION OF THE PAPER
The remainder of this paper is organized as follows:
In Section II, we present related work. In Section III, we
provide relevant background. In Section IV, we introduce
our eCLSC-TKEM, CL-MRES, CLDA, and the dual channel
strategy. In Section V, we describe the design of our protocols
through example applications. Then, the performance of our
protocols is evaluated in Section VI. In Section VII, we
outline conclusions.
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TABLE 1. Comparison of protocols.

II. RELATED WORK
A. MOBILE DATA COLLECTORS IN WSN
Several studies [6]–[9] have shown that mobile agents that
collect data from static sensors can improve energy efficiency,
reliability, connectivity and cost. However, the use of mobile
collectors presents new security challenges. Once a mobile
collector has collected data and becomes a privileged node,
it may be subject to loss or capture, which would allow the
data to be viewed by unintended parties. Zhou et al. [6]
analyzed the impact of compromised mobile collectors on
reliability and introduced a key pre-distribution scheme that
is resilient against node capture attacks. Song et al. [7] intro-
duced a privilege-based pairwise key establishment protocol.
In this protocol, when a compromise of a mobile collector
is detected, the privileges of the mobile collector are imme-
diately revoked. Rasheed et al. [8] proposed a data collec-
tion scheme which uses hash chains that allow sensors to
authenticate the mobile data collector. This scheme works
only when the mobile collector traverses a deterministic path.
Rasheed et al. [9] proposed a three-tier security scheme for
authentication and pairwise key establishment. This scheme
requires two separate key pools, one for pairwise key estab-
lishment between sensors, and one for a mobile collector
to access the network. The two separate key pools enhance
network resistance to mobile collector replication attacks.
Although these schemes improve security against mobile
collector compromises, they are not scalable because they are
based on symmetric key pre-distribution. In this paper, we
address the scalability problem by designing our protocols
based on asymmetric key cryptography and minimizing the
computational overhead at low-end devices like sensors.

Previous schemes [10], [11] have made use of multiple
radios in order to reduce the sensor energy consumption or to
increase the contact time between a sensor and a mobile col-
lector. However, those schemes did not address the problem
of system performance degradation caused by slow asymmet-
ric cryptography executions at low-end sensors.

B. CLSC-TKEM AND CL-AKA
Authenticated Key Agreement (AKA) is a protocol that
allows users to share a secret key over an insecure network
only when they are authenticated. However, AKA based on
traditional certificates inherits the certificate management
overhead, whereas AKA based on ID-PKC has the key
escrow problem.

To address those issues, Al-Riyami et al. proposed certifi-
cateless public key cryptography (CL-PKC) [16]. Thereafter,
several AKA schemes based on CL-PKC were introduced.
These schemes were designed based on pairing-based cryp-
tography (PBC). However, since the time required to compute
a pairing operation is much greater than the time required
to compute other standard operations, e.g., EC point mul-
tiplication, these PBC-based protocols are not suitable for
systems with low-end devices like sensors. Despite the recent
advances in implementation techniques, one pairing compu-
tation is 2 times to 7 times slower than one EC point mul-
tiplication depending on the parameters and hardware [17].
Several pairing-free CL-AKA protocols [12], [13], [18], [19]
have thus been proposed. However, most of those protocols
were proved to be insecure and only two of them still remain
secure: Sun’s CL-AKA [13] and Yang’s CL-AKA [12].
Recently, Li et al. [20] proposed a certificateless signcryption
tag KEM (CLSC-TKEM) protocol. CLSC-TKEM supports
not only practical authenticated key agreement but also des-
ignated verifier signature. Later, Selvi et al. [14] showed a
security weakness in Li et al.’s CLSC-TKEM and presented
an improved CLSC-TKEM. Since both CLSC-TKEM proto-
cols [14], [20] rely on bilinear pairing operations, they are not
suitable for resource-constrained devices.

Seo et al. [15] first proposed a pairing-free CLSC-TKEM
protocol that does not use bilinear pairing operations. How-
ever, none of the existing CL-AKA and CLSC-TKEM proto-
cols address user revocation which means that if drones are
captured, the attacker will have full access not only to the
information already collected and recorded in the drone, but
also to future information to be collected by the drone.

In order to prevent permanent exploitation of a compro-
mised private key, eCLSC-KTEM adopts Boneh et al.’s revo-
cation scheme [5]. In eCLSC-TKEM, the key generation
center (KGC) inserts a time period as an input when it
generates a partial private key for a user. As a result, the
partial private key is only valid for the time period. If the
time period expires, a new private key must be generated.
By inserting this time period, we limit the malicious use
of the key even if it is leaked. To revoke a compromised
drone, the KGC stops generating a partial private key for the
drone. Our approach prevents unauthorized users from being
able to generate full private/public keys for future time peri-
ods. Although eCLSC-TKEM does not completely eliminate
the risk of information leakage in case of physical capture,
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it limits the amount of compromised information to the
information acquired during the last time period right before
the revocation took place. Table 1 summarizes the com-
parison between eCLSC-TKEM and existing CL-AKA and
CLSC-TKEM.

C. RANDOM RE-USE AND MULTI-RECIPIENT
MULTI-MESSAGE PUBLIC KEY ENCRYPTION
A multi-recipient multi-message public key encryp-
tion (MR-MM-PKE) scheme enables a sender to simulta-
neously encrypt multiple messages for multiple receivers
in a single operation. Kurosawa [21] first presented the
security model for an MR-MM-PKE scheme and proposed
random re-use constructions based on ElGamal and Cramer-
Shoup encryption. The random re-use MR-MM-PKE con-
structions use an ordinary encryption scheme to encrypt
messages by using the same random for their respective
receivers. Depending on the structure of the encryption
scheme, the random re-use technique can significantly reduce
the computational and communication overhead while the
used encryption scheme remains secure under random re-use.
Kurosawa claimed that both ElGamal and Cramer-Shoup
encryptions are secure in this setting, while reducing the
cost of computation by almost 50%, compared to encrypting
messages individually. However, the MR-MM-PKE secu-
rity model by Kurosawa does not consider inside attackers
such as malicious receivers. Bellare et al. [22] addressed
the weaknesses of Kurosawa’s security model and intro-
duced a strengthened security model for the MR-MM-PKE
scheme which considers insider attackers. Bellare et al. also
introduced the concept of reproducibility for an encryption
scheme and proved that all the schemes with reproducibility
are amenable to a generic conversion to an MR-MM-PKE
by employing random re-use. Smart [23] introduced the
concept of multi-recipient key encapsulation (MR-KEM) and
Barbosa et al. [24] introduced MR-KEM in the identity-
based public key cryptography setting. MR-KEM can be
constructed as an MR-PKE scheme by adding data encapsu-
lation mechanism (DEM); however, MR-KEM [23] supports
only a single-key MR-KEM that generates the same session
key for all the recipients. It is limited to the applications
where the same message is encrypted for all the receivers.
Recently, Pinto et al. [25] have revisited the security model
of the MR-MM-PKE scheme and presented the notion of
a multi-recipient multi-key key encapsulation mechanism
(MR-MK-KEM). They proposed the MR-MM-PKE scheme
by combining this KEM with an appropriate data encap-
sulation mechanism (DEM). In this paper, we propose the
CL-MRES (Certificateless Multi-Recipient Encyption
Scheme) as a hybrid encryption for multiple recipients.
To build CL-MRES, we utilize a random re-use technique
and our eCLSC-TKEM excluding the digital signature func-
tionality. Our CL-MRES efficiently supports multi-message
encryption for multiple recipients as a certificateless hybrid
approach.

D. HOMOMORPHIC ENCRYPTION IN WSN
In WSNs, the sensed data might be stored in the network and
processed in intermediate nodes to reduce communication
overhead and the required amount of storage. To minimize
information leakage when a sensor node is compromised,
in-network data aggregation schemes based on homomor-
phic encryption have been proposed [26], [27]. They mainly
focus on the optimized implementations of the Elliptic Curve-
based ElGamal (EC-ElGamal) homomorphic encryption on
resource-constrained devices. In this paper, we show how to
merge the EC-ElGamal homomorphic encryption with our
certificateless approach. Only authenticated smart objects
can send valid sensed values and only an authenticated col-
lector can obtain the aggregate sum of these values. The
encrypted sensed values from smart objects are homomor-
phically aggregated in a drone to save the drone’s storage,
computational overhead and communication overhead, and
to preserve the privacy of the smart objects.

E. COMPARISON WITH OUR PREVIOUS WORK
In our previous work [1], we introduced eCLSC-TKEM
and the dual channel strategy. Although these schemes can
handle security and efficiency issues in one-to-one commu-
nication scenarios, they are not suitable other communication
scenarios commonly used in smart city applications, such
as one-to-many and many-to-one. In the current paper,
we address security and efficiency issues in one(many)-
to-many(one) communication scenarios by introducing
CL-MRES and CLDA as cryptography protocols. Also, we
introduce aGPU utilization technique and a batch verification
optimization technique to enhance their performance.

III. BACKGROUND
A. GPU-UTILIZATION FOR ELLIPTIC
CURVE CRYPTOGRAPHY
Recent work has shown that elliptic curve cryptogra-
phy (ECC) can be accelerated by a GPU. There are two
approaches for the use of a GPU: multi-threads for one
EC point multiplication [28], [29] and single-thread for
one EC point multiplication [30]. The former focuses on
improving the computation time of one EC point mul-
tiplication. It divides one EC point multiplication pro-
cedure into independent subtasks that can be computed
by several threads in parallel. This approach aims at
keeping all threads busy so that no GPU resources are
wasted. However, evenly dividing an EC point multipli-
cation algorithm is difficult due to the sequential nature
of the EC point multiplication algorithm. On the other
hand, the latter aims at high throughput, i.e., increas-
ing the number of EC point multiplications per second.
This approach can achieve high GPU-utilization since one
thread computes one EC point multiplication. However,
it suffers from higher latency when the GPU must deal with a
few EC point multiplications. We adopted the latter approach
since the GPU is utilized in our protocol when a large number
of EC point multiplications need to be computed.
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FIGURE 2. Computation time per EC point multiplication on CPU.

B. SIMULTANEOUS MULTIPLE EC
POINT MULTIPLICATIONS
An optimization for simultaneous multiple EC point mul-
tiplications [31] was developed to speed up digital signa-
ture verification. If the optimization is utilized, the sum of
more than two EC point multiplications, i.e.,

∑n
i=1 ki · Pi,

(n ≥ 2, ki: a scalar and Pi: an EC point) is calculated
more quickly than when n EC point multiplications are inde-
pendently calculated and added. For example, to compute∑3

i=1 ki · Pi, the algorithm pre-computes all possible addi-
tions of points, i.e., (P1 + P2), (P1 + P3), (P2 + P3) and
(P1 + P2 + P3). Then, the algorithm sets the result point R
to infinity O. Finally, the bits of k1, k2 and k3 are scanned
from the most significant bit to the least significant bit. For
each bit, R is doubled and the pre-computed points are added
according to the bit value of ki (e.g. if the bit of k1 and the bit
of k3 are 1, then (P1+P3) is added to R). To measure the per-
formance of this optimization technique, we utilized the
MIRACL [32] ECC library and tested the technique on the
CPU of the Nvidia Jetson TK1 developer kit [33]. Fig. 2
shows the computation time per EC point multiplication for
calculating

∑n
i=1 ki · Pi, (n = 1, 2, . . . , 9) when secp160r1 is

utilized for EC curve parameters. As shown in Fig. 2, when
six EC points are simultaneously multiplied and added, the
computation time per EC point multiplication is minimized.
However, if more than six points are computed, the com-
putation time begins to increase since the pre-computation
overhead for all possible additions of points increases expo-
nentially. (2n − 1 − n) pre-computations are required for∑n

i=1 ki · Pi.
For this experiment, given a total number of EC point mul-

tiplications, we found the optimal combination of the num-
bers of simultaneous EC point multiplications. For instance,
assume that a drone is required to compute S =

∑9
i=1 ki · Pi.

If the drone computes ki · Pi individually and adds them, it
takes 35.7ms. If the drone runs the simultaneous multiple
EC point multiplications on S, it takes 20.3ms. However, the
time can be further reduced by properly dividing the num-
ber of simultaneous EC multiplications by dividing S into
S1 =

∑4
i=1 ki · Pi and S2 =

∑10
i=5 ki · Pi. Then, simultane-

ous multiple EC point multiplications are run on S1 and S2
separately, and then S1 + S2 is computed. The total compu-
tation time of such optimization technique is only 15.7ms.
We utilized this optimization technique for our batch verifi-
cation procedure.

IV. BUILDING BLOCKS
In this section, eCLSC-TKEM, CL-MRES, CLDA and the
dual channel strategy are presented as major building blocks
for our secure drone communication protocols. The formal
security model and the security proofs of eCLSC-TKEM,
CL-MRES and CLDA are provided in Appendices.

A. eCLSC-TKEM
eCLCS-TKEM meets all the security requirements,
i.e., authenticated key agreement (AKA), non-repudiation
and user revocation (see Table 1), while it minimizes the
computational overhead at smart objects. Note that the
CL-AKA protocols [12], [13] support only AKA. For non-
repudiation, they must be extended with a digital signature
scheme. Although the CLSC-TKEM protocols [14], [15]
support AKA and non-repudiation, they do not support user
revocation.

eCLSC-TKEM consists of 8 algorithms: (SetUp,
SetSecretValue, PartialPrivateKeyExtract, SetPrivateKey,
SetPublicKey, SymmetricKeyGen, Encapsulation Decap-
sulation). Each probabilistic polynomial time algorithm is as
follows.

1) SETUP
The KGC generates the system parameters params � and a
master private key msk, given a security parameter k ∈ Z+ as
input. Given k , the KGC executes the following operations:

• Determines a k-bit prime q and the tuple {Fq,E/Fq,
Gq,P}, where P is the generator of Gq.

• Chooses the master private key x ∈ Z∗q uniformly at
random and computes the system public keyPpub = x·P.

• Chooses cryptographic hash functions H0 : {0, 1}∗ ×
G2
q×{0, 1}

∗
→ Z∗q∗,H1 : G3

q×{0, 1}
∗
×Gq→ {0, 1}n,

H2 : Gq×{0, 1}∗×Gq×{0, 1}∗×Gq×{0, 1}∗×Gq→
Z∗q, andH3 : Gq×{0, 1}∗×Gq×{0, 1}∗×Gq×{0, 1}∗×
Gq → Z∗q. Here, n is the key length of a symmetric key
encryption algorithm.

• Publishes� = {Fq,E/Fq,Gq,P,Ppub,H0,H1,H2,H3}

as the system’s parameter and keeps the master key x
secret.

2) SETSECRETVALUE
This algorithm is executed by each user. A user generates a
secret value and the corresponding public value for oneself.
The user A with its identity IDA randomly chooses xA ∈ Z∗q
as its secret value and computes the corresponding public key
as PA = xA · P.

3) PARTIALPRIVATEKEYEXTRACT
The KGC generates a partial private key for a user. This
algorithm takes the KGC’s master secret key, the id of the
user IDA, the public key of the user PA and a permitted time
period tA as inputs. The user A sends (IDA,PA) to the KGC.
In turn, the KGC generates and returns the partial private key
of A as follows:
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• Chooses rA ∈ Z∗q and computes RA = rA · P.
• Computes dA = rA + xH0(IDA,RA,PA, tA) mod q.

The partial private key of A is represented as dA. The
user A can validate dA by determining if dA · P = RA +
H0(IDA,RA,PA, tA) · Ppub holds.

4) SETPRIVATEKEY
Each user generates a full private key. The user A takes the
pair (dA, xA) as its full private key skA.

5) SETPUBLICKEY
Each user generates a full public key. The user A takes the
pair (PA,RA) as its full public key pkA.

6) SYMMETRICKEYGEN
The sender A generates the symmetric key K and an internal
state information �, which is not known to the receiver B.
Given the sender (user A)’s identity IDA, the full public key
pkA, the full private key skA, the receiver (user B)’s identity
IDB, the permitted time period tB and the full public key pkB
as inputs, A performs the following steps to get the symmetric
key K :

• Choose sA ∈ Z∗q and compute V = sA · P.
• Compute Y = RB + H0(IDB,RB,PB, tB) · Ppub + PB,
T = sA ·Y

(
= sA ·(H0(IDB,RB,PB, tB)·Ppub+RB+PB)

)
and K = H1(Y ,V ,T , IDA,PA, IDB,PB).

• Output K and the internal state information � =

(sA,V ,T , IDA, pkA, skA, IDB, pkB, tB).

7) ENCAPSULATION
The sender A obtains the encapsulation ϕ by taking � cor-
responding to K and a message M as inputs. Given �, K
and M , the sender A executes the following two steps to
get ϕ:

• [Encryption step] Compute τ = ENCK (M ).
• [Sign step] Choose lA ∈ Z∗q and compute U = lA · P,
H = H2(U , τ,V , IDA,PA, IDB,PB),
H ′ = H3(U , τ,V , IDA,PA, IDB,PB) and
W = dA + lAH + xAH ′.

Output τ and ϕ = (U ,V ,W ).

8) DECAPSULATION
The receiver B decrypts τ using the key K encapsulated in ϕ.
Given ϕ, τ , the sender’s identity IDA, full public key pkA, the
permitted time period tA, the receiver’s identity IDB, the full
public key pkB and the full private key skB, B executes the
following two steps to get K :

• [Verification step] Compute
H = H2(U , τ,V , IDA,PA, IDB,PB) and
H ′ = H3(U , τ,V , IDA,PA, IDB,PB).
IfW ·P = RA+H0(IDA,RA,PA, tA) ·Ppub+H ·U+H ′ ·
PA, perform the Decryption step. Otherwise, outputs an
invalid encapsulation error. The correctness of the above

equation is as follows:

W · P

= (dA + lA · H + xA · H ′) · P

= dA · P+ lA · P · H + xA · P · H ′

= (rA+xH0(IDA,RA,PA, tA)) · P+ U · H + H ′ · PA
= RA+H0(IDA,RA,PA, tA) · Ppub + H · U + H ′ · PA

• [Decryption step] Compute

T = (dB + xB) · V
(
= (dB + xB)sA · P = sA · Y

)
,

Y = (dB + xB) · P
(
= (rB + xH0(IDB,RB,PB, tB)+ xB)

·P = RB + H0(IDB,RB,PB, tB) · Ppub + PB
)
,

K = H1(Y ,V ,T , IDA,PA, IDB,PB),

and DECK (τ ) to obtain M .

B. CERTIFICATELESS HYBRID ENCRYPTION
SCHEME (CLHES) FOR MULTI-RECEIVERS
If we remove the Sign operation from the Encapsulation
phase and the Verification operation from the Decapsu-
lation phase in the eCLSC-TKEM scheme, we can con-
struct a certificateless hybrid encryption scheme (CLHES).
Such CLHES consists of the following algorithms: (SetUp,
KeyGen, HybridEncryption, HybridDecryption). As Key-
Gen algorithm generates a pair of a certificateless full
public key and a full private key, it consists of the fol-
lowing algorithms: SetSecretValue, PartialPrivateKeyEx-
tract, SetPrivateKey and SetPublicKey. Except for the
HybridEncryption and HybridDecryption algorithms, all
the algorithms are the same as the algorithms of eCLSC-
TKEM. The HybridEncryption algorithm consists of the
SymmetricKeyGen algorithm and the Encryption opera-
tion of Encapsulation algorithm of eCLSC-TKEM. The
HybridDecryption algorithm consists of the Decryption
operation of Decapsulation algorithm of eCLSC-TKEM.
Moreover, CLHES can be extended into a certificateless
multi-recipient encryption scheme (CL-MRES) by applying
the random re-use (RR) technique, because CLHES is repro-
ducible (see Appendix B). This CL-MRES is more effective
than a naive method that individually encrypts messages
using CLHES for one-to-many applications for several rea-
sons. First, it results in bandwidth reduction, since the trans-
mission of ciphertexts only requires half of the normal bits
computed by the naive method, when ciphertexts are being
broadcast or multi-cast by a sender. Second, the suggested
scheme reduces about 50% of the the number of EC point
multiplications for HybridEncryption as compared to the
naive method. In CL-MRES, the hybrid decryption algorithm
is identical to ordinary CLHES. The only difference between
CLHES and CL-MRES is that the sender’s random number
sA gets re-used to generate each recipient’s symmetric key
Ki (1 ≤ i ≤ n). Thus, in this section we will describe only
the HybridEncryption and HybridDecryption algorithms
for multi-receivers.

VOLUME 5, 2017 3727



J. Won et al.: Certificateless Cryptographic Protocols for Efficient Drone-Based Smart City Applications

1) HYBRIDENCRYPTION
Given public parameters �, a list L = {IDB1 , . . . , IDBn} of
the receiver identities, the receivers’ time intervals tBi and
full public keys pkBi (1 ≤ i ≤ n) as inputs, the sender A
executes the following steps to obtain the symmetric keys
Ki(1 ≤ i ≤ n) and encrypt the messages Mi(1 ≤ i ≤ n) as
follows:
• Choose sA ∈ Z∗q uniformly at random and compute
V = sA · P.

• Repeat the following steps for all IDBi ∈ L,
i = 1, 2, . . . , n.
1) Parse pkBi as (RBi ,PBi ) and tBi .
2) Compute Yi = RBi + H0(IDBi ,RBi ,PBi , tBi ) ·

Ppub + PBi , Ti = sA · Yi and Ki =

H1(Yi,V ,Ti, IDA,PA, IDBi ,PBi ).
3) Perform the symmetric encryption scheme to

encrypt each messageMi for each receiver Bi. That
is τi = ENCKi (Mi).

• Output (V , τ1, τ2, . . . ., τn).

2) HYBRIDDECRYPTION
Given ciphertexts (V , τ1, τ2, . . . ., τn), a list L =

{IDB1 , . . . , IDBn} of the receiver identities, the receivers’ time
intervals tBi , the full public keys pkBi and the full private keys
skBi (1 ≤ i ≤ n) as inputs, each receiver Bi computes Ki and
decrypts τi as follows:
• Compute Ti = (dBi + xBi ) · V(
= (dBi + xBi )sA · P = sA · Yi

)
.

• Compute Yi = (dBi + xBi ) · P(
= (rBi + xH0(IDBi ,RBi ,PBi , tBi ) + xBi ) · P = RBi +

H0(IDBi ,RBi ,PBi , tBi ) · Ppub + PBi
)
.

• Compute Ki = H1(Yi,V ,Ti, IDA,PA, IDBi ,PBi ) and
DECKi (τi) to obtain Mi.

C. CERTIFICATELESS DATA AGGREGATION (CLDA)
In this section, we show an efficient aggregation protocol with
which a drone A collects sensor values from authenticated
smart objects and transfers their aggregate sum to an authenti-
cated base station B in an efficient way. This is accomplished
by combining EC-Elgamal additive homomorphic encryption
scheme [26] with our certificateless approach. Let the full
public and private key of B be (PB,RB) and (dB, xB), respec-
tively. The full public and private of each smart object i are
(Pi,Ri) and (di, xi), respectively, where 1 ≤ i ≤ n. Let Oi
denote the data of i where Oi ∈ Gq. We assume that mapping
actual sensor values into elliptic curve points Oi and vice-
versa is easy since the range of the sensed data values is
limited.

1) SENSOR DATA ENCRYPTION
This algorithm is executed by each smart object i. Given
the base station’s identity IDB, the full public key pkB and
the time interval tB as inputs, each smart object executes the
following steps:
• Chooses li, si ∈ Z∗q and computes Ui = li · P,
Vi = si · P.

• Computes Ti = si(RB+H0(IDB,RB,PB, tB) ·Ppub+PB)
and Ci = Ti + Oi.

• Computes Hi = H4(Ui,Ci,Vi, IDB,PB, IDi,Pi),
H ′i = H5(Ui,Ci,Vi, IDB,PB, IDi,Pi) and σi = di +
liHi + xiH ′i .

• Sends ψi = (Ui,Vi,Ci, σi, IDi,Pi,Ri, ti) to A.

2) BATCH VERIFIATION
This algorithm is executed by the drone A. Given the base
station’s identity IDB, the full public key pkB, the time interval
tB, and ψi as inputs, A executes the following steps:

• Computes Hi = H4(Ci,Ui, IDB,PB, IDi,Pi) and
H ′i = H5(Ci,Ui, IDB,PB, IDi,Pi).

• If (
∑n

i=1 σi) ·P =
∑n

i=1
(
Ri + H0(IDi,Ri,Pi, ti)Ppub

)
+∑n

i=1 Hi · Ui +
∑n

i=1 H
′
i · Pi, goes to the next step.

Otherwise, outputs a verification failure error and ver-
ifies them individually. The correctness of the above
equation is as follows:

(
n∑
i=1

σi) · P =
( n∑
i=1

(
di + liHi + xiH ′i

))
· P

=

n∑
i=1

di · P+
n∑
i=1

liHi · P+
n∑
i=1

xiH ′i · P

=

n∑
i=1

(
Ri + H0(IDi,Ri,Pi, ti) · Ppub

)
+

n∑
i=1

Hi · Ui +
n∑
i=1

H ′i · Pi

• After the verification, the drone A sends a success or
failure message to Ci.

Note that the privacy of each smart object is preserved since A
cannot decrypt Ci. However, A can confirm that Ci is sent by
an authenticated smart object i. The batch verification reduces
the number of time-consuming EC point multiplications from
4n to 3n+ 1.

3) DATA AGGREGATION
This algorithm is executed by A. A computes C =

∑n
i=1 Ci

and V =
∑n

i=1 Vi and deletes Ci and Vi (1 ≤ i ≤ n) Then, A
sends (C,V ) to the base station B.

4) AGGREGATE SUM DECRYPTION
This algorithm is executed by B. Given (C,V ) and the B’s
full private key skB, B can obtain the aggregate sum O by
computing O = C − (dB + xB) · V .

• The correctness of the equation is as follows:

O =
n∑
i=1

Ci − (dB + xB)
n∑
i=1

Vi

=

n∑
i=1

(Ti + Oi)
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si
n∑
i=1

(RB + H0(IDB,RB,PB, tB) · Ppub + PB)

=

n∑
i=1

(Ti + Oi)−
n∑
i=1

Ti

=

n∑
i=1

Oi

Since B only obtains the aggregate sum, the privacy of
each smart object is preserved.

D. DUAL CHANNEL STRATEGY FOR
CONCURRENCY USING LPL
Smart objects and dronesmust be operated in energy-efficient
ways because they are usually battery-powered. To save their
energy, we adopt low power listening (LPL) for smart objects
and dual channels for drones. LPL [34] is an asynchronous
duty cycling technique commonly used in WSNs and can
significantly save sensor energy by reducing idle listening
time.

A drone has two radios operated in different channels,
i.e., the wake-up channel and the data channel. Each smart
object has only one radio and switches between the two
channels according to the need. As shown in Fig. 3, a smart
object runs LPL, i.e., periodically turns its radio on (wake-
up) and off (sleep) in the wake-up channel. When a smart
object wakes up, it quickly checks the wake-up channel to
see if it is busy. If it is not, the smart object sleeps again
until the next wake-up time to save energy. A mobile drone
continuously broadcasts wake-up signals using the radio in
the wake-up channel. If the drone approaches the smart
object, the wake-up channel around the smart object becomes
busy due to wake-up signals broadcast by the drone. If the
smart object listens a portion of a wake-up signal, it stays
awake to receive a whole wake-up signal. For the drone to
efficiently run eCLSC-TKEM with a set of smart objects,
each smart object concurrently executes SymmetricKeyGen
and Encapsulation after receiving the wake-up signal. Then,
the smart object switches its radio channel from the wake-
up channel to the data channel. Each smart object sends the
Encapsulation output to the drone through the data channel.
These concurrent executions of eCLSC-TKEMusing the dual
channels can conserve the drone’s energy. If the drone had
only one radio, it would either have to make precise schedules
with the smart objects using a time synchronization proce-
dure, or it would have to perform all of the eCLSC-TKEM
steps with each smart object at a time. This would be a waste
of the drone’s flight time.

Obviously, operating two radio transceivers requires more
energy than operating one radio transceiver. However, the
energy consumed by a radio transceiver is negligible consid-
ering that the power to let a drone fly is five orders of magni-
tude greater than the power to operate a radio transceiver.1

1The power consumption of DJI S1000 (drone) during flight is from
1,500W to 4,000W, while the TX power of CC2420 is 52mW.

Therefore, the energy saved by running the dual channel
strategy using the two radios overwhelms the energy
increased by operating one more radio.

V. SMART TRAFFIC AND PARKING MANAGEMENT
PROTOCOL FOR SMART CITY
In this section, we present how our protocols are used for a
smart traffic and parking management application.

A. CAR REGISTRATION
We assume that a government or an institute provides each
car owner with a smart object that is a low-end embedded
device with a radio transceiver and a GPS. The smart object
(A) executes the SetSecretValue algorithm to generate its
own secret value (xA) and the public key (PA). The KGC runs
the PartialPrivateKeyExtract algorithm to generate a partial
private/public key pair (dA,RA) for A and transfers the pair
to A through a secure channel. Notice that the partial private
key expires after a permitted time period tA, e.g., one year.
Hence, a car owner must obtain a new partial private/public
pair before it expires. The smart object is attached to the car.

We assume that a drone stays in a secure place when it is
off duty. The drone (B) runs the SetSecretValue algorithm to
generate its secret value (xB) and the public key (PB). Before
the drone is dispatched for a mission, it obtains a partial
private/public key (dB,RB) from the KGC. The permitted
time period tB should be set to as short as possible, e.g., the
drone’s maximum flight time, so that even if the drone is
compromised, the malicious use of the compromised partial
private key is limited to this time period. The KGC can give
appropriate access rights to the drone as a part of IDB. For
instance, IDB can be {idB||read ||write||permitted_zones} so
that the drone can read data from smart objects and recon-
figure (write) the settings of smart objects which are located
within the permitted zones.

B. PARKING MANAGEMENT
Today’s parking management is labor-intensive and ineffi-
cient. Parking enforcement officers patrol on-street parking
zones by periods and check each car to see if it has vio-
lated the parking time limit. This process can be made more
efficient by automating it with the use of drones and smart
objects. For example, a university may provide each regis-
tered car owner with a smart object which include a radio
transceiver and a GPS, and a function as a parking permit
for campus parking management. In this case, a drone would
patrol the campus and collect data from every parked car. The
data would include the identity of a car, the parking permit
type, the current time and location. By gathering these data
at regular intervals, the drone would be able to determine if
cars are illegally parked. E.g., the drone could see if a car has
been parked at an on-street parking area for longer than the
time permitted.

In this scenario, since all the data collected by the drone
are privacy-sensitive, they must be encrypted and collected
by only authorized drones. More to the point, the data sent by
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FIGURE 3. Smart parking management. Solid-line rectangle: transmitted message, dash-line rectangle: received message. M1 = {IDB,PB, RB, tB},
M2 = {IDA,PA,RA, tA,U,V ,W , τ }, Decapsulation result transmissions are omitted.

the cars must not be modified and repudiated afterwards since
the data are used to fine the car owners who have illegally
parked their cars.

1) PROTOCOL DESCRIPTION
Fig. 3 shows how eCLSC-TKEM and the dual channel strat-
egy work for our smart parking management. Each smart
object has one radio transceiver, while a drone (B) has two
radio transceivers working in different channels, i.e., the
wake-up channel and the data channel. A smart object (A)
executes LPL in the wake-up channel. The drone’s radio oper-
ated in thewake-up channel continuously broadcasts wake-up
signals (M1) so that awake smart objects can detect M1 as
the drone approaches. M1 consists of the drone’s ID (IDB),
its public keys (PB,RB) and its permitted time period (tB).
After receiving M1, a smart object suspends LPL and

executes SymmetricKeyGen to generate a symmetric key K .
The smart object creates a message M containing its permit
type, its current location (loc) and its current time (ct), and
obtains its ciphertext τ (= ENCK (M)).
Then, the smart object (A) executes Encapsulation to

generate W . A changes its radio channel from the wake-up
channel to the data channel and sends M2 to B. M2 consists
of the smart object’s ID (IDA), the public keys (PA,RA), the
permitted time period (tA), the ephemeral public keys (U ,V ),
the Encapsulation output (W ), and τ . Since A digitally signs
τ in the Encapsulation algorithm, A cannot deny having
sent τ .

After receiving M2 using the radio operated in the data
channel, the drone B runs Decapsulation. If the validation
check is passed, B decrypts τ after generating K . Then,
B compares loc and ct with its own current location loc′

and current time ct ′, respectively. If the validation check
fails or the comparison outcome is abnormal, B takes addi-
tional actions. For instance, if |loc′ − loc| > 10m or
|ct ′ − ct| > 1 min, B can take a photo of the car or

send a message to a human manager. Finally, B sends an
acknowledgement stating the decapsulation result (success
or failure) to A. If all the decapsulation steps are success-
fully completed, K can be used to encrypt more messages
exchanged between A and B .

2) SECURITY ANALYSIS
The parking management based on eCLSC-TKEM meets all
the security requirements described in Fig. 1 as follows:

• Confidentiality and integrity: eCLSC-TKEM ensures
the confidentiality of messages, i.e., indistinguishabil-
ity against an adaptive chosen ciphertext and iden-
tity attacks (IND-CCA2) based on Theorem 1 in
Appendix A. Theorem 2 in Appendix A supports that
eCLSC-TKEM guarantees the integrity of the messages,
i.e., existential unforgeability against adaptive chosen
messages and identity attacks (EUF-CMA).

• Authenticated key agreement: The drone and the smart
object can be authenticated by each other. Only when
they have the valid full private/public keys, they can
correctly generate a shared symmetric key K , and thus
they can mutually be authenticated.

• User revocation: The KGC inserts a permitted time
period in ti when it generates the partial private key
di for each entity i. Therefore, after the time period,
di is automatically revoked. Each entity is responsible
to periodically renew its di and Ri to correctly run the
protocols. This property is applied to our other protocols
too, i.e., CL-MRES and CLDA.

• Non-repudiation: The smart object (A) cannot repudiate
a message τ since τ is digitally signed using A’s full
private key in the Encapsulation step.

C. TRAFFIC MONITORING AND MANAGEMENT
Modern city traffic monitoring systems utilize fixed sensors
such as cameras or inductive loops which are installed on
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roads at regular intervals or at important locations such as
intersections or interchanges. Due to the high installation
cost, they can observe traffic only at selected areas. Since the
locations of such sensors are fixed, the system cannot respond
to exceptional events such as holiday traffic or car accidents
that happen in areas where the sensors are not installed.

However, if every car has a sensor with a network interface,
we can make a system by which drones can collect traffic
information from cars. Such a system can provide more
flexible, accurate and find-grained traffic information than
traditional traffic monitoring systems. Imagine drone oper-
ating companies that collect data using drones and provision
city agencies with such data. In this scenario, since privacy-
sensitive data such as speed, acceleration and the number of
passengers can be collected, the data must be encrypted and
only an authorized base station is allowed to read the data.
Moreover, drones must collect the data from only authen-
ticated cars to prevent statistics from being tampered by
malicious parties. To assure the privacy of each car, the base
station is allowed to get only the aggregate sum of the values.
Since a drone very often collects data from large numbers
of cars, the collection procedure must be efficient in terms
of storage, communication and computation. To satisfy such
requirements in many-to-one communication scenarios, we
utilize CLDA.

In addition, a drone may need to send private messages
to hundreds of cars in a short time period. For example, the
drone may send the information about the traffic at each car’s
destination or provide subscription-based information service
for each car. To efficiently encrypt such messages and sign
them in one-to-many communication scenarios, we utilize
CL-MRES.

1) PROTOCOL DESCRIPTION
Fig. 4 shows the flow of the data collection procedure using
CLDA and the dual channel strategy in our traffic monitor-
ing and management. A drone (A) continuously broadcasts
wake-up signals (M1 = {IDB,PB,RB, tB}, i.e., the public
information of the base station B) in the wake-up channel
while it moves. Cars (smart objects) run LPL in the wake-
up channel and try to detect wake-up signals from a drone.
Once a car detects a wake-up signal, it executes the Sensor
data encryption protocol and sends M2 = {Ui,Vi,Ci, σi}
to the drone through the data channel. If the number of M2
messages received from cars becomes larger than a certain
threshold, the drone runs the Batch verification protocol
to check the authenticity and integrity of the data. If the
verification procedure is passed, the drone sends success
messages to cars. If not, the drone verifies eachM2 message
individually. Then, it runs the Data aggregation on the
collected data in order to reduce the required storage space
and the communication overhead for sending the collected
data to the base station. Also, the drone can save its compu-
tation resources since it does not need to decrypt the data.
Only computationally cheap EC point additions are required
by the Data aggregation protocol. The drone deletes

FIGURE 4. Traffic monitoring (CLDA). Solid-line rectangle: transmitted
message, dash-line rectangle: received message. M1 = {IDB,PB,RB, tB}.
M2 = {Ui ,Vi ,Ci , σi }.

all M2 messages after the completion of the aggregation
procedure.

After the drone finishes collecting data, it transfers the
C and V to the base station B runs the Aggregate sum
decryption algorithm to obtain the aggregate sum.
In a real application, it is crucial to keep the time for the

batch verification short since the verification time can be a
bottleneck of this protocol. The drone as a mobile data collec-
tor might have to collect data from hundreds of smart objects
in a very short time while it flies. If the arrival rate of theM2
messages is higher than the verification speed of the drone,
the storage of the drone might be flooded and new arriving
M2 messages might be dropped. IfM2 messages begin to be
dropped, the drone should stop and collect again the lostM2
messages, which consumes the drone’s battery. Therefore, the
number (θ ) of M2 messages that are verified together must
be large since the Batch verification algorithm reduces the
number of EC point multiplications to be computed, and thus
speeds up the verification procedure.

However, whenM2 messages sparsely arrive, if θ is set to
too large, the drone cannot execute the Batch verification
algorithm until the number of M2 messages becomes θ ,
which delays the verification procedure. In addition, smart
objects might consume their energy since they cannot sleep
until they receive the result of the Batch verification algo-
rithm. In this case, it would be better to verify each M2
message individually rather than to verify the messages in
batches. Therefore, θ must be set adaptively according to the
arrival rate of the M2 messages. When the drone needs to
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verifyM2 messages individually, two strategies are possible:
1) verifyingM2 messages one-by-one, and 2) launching new
threads whenever M2 messages are received for each verifi-
cation. We only consider the first strategy since the second
strategy increases the average response time for the smart
objects compared to the first strategy.

To send privacy-sensitive messages to hundreds of cars, a
drone must encrypt the messages with individual keys in an
efficient way. CL-MRES reduces the computation time on
the drone the random re-use (RR) technique. Thus, we uti-
lize CL-MRES to efficiently encrypt messages in the traffic
monitoring and management. The drone encrypts each mes-
sage using the HybridEncryption algorithm in CL-MRES.
and sends (V , τ1, τ2, . . . , τi, . . . , τn). Each car (i) decrypts
the encrypted message (τi) using the HybridDecryption
algorithm.

2) SECURITY ANALYSIS
The traffic monitoring and management based CLDA and
CL-MRES meet all the security requirements described
in Fig. 1.

• Confidentiality and integrity: CLDA is a vari-
ant signed ElGamal encryption [35] combining
EC-ElGamal encryption with the signing function of our
eCLSC-TKEM. The output message of the Sensor data
encryption step in CLDA is an EC-ElGamal ciphertext
together with the eCLSC-TKEM-based signature of that
ciphertext. So, the security of CLDA is based on the
unforgeability of eCLSC-TKEM and the confidentiality
of the EC-ElGamal encryption. Here, the confidentiality
is defined as indistinguishability under chosen plaintext
attacks (IND-CPA) while unforgeability is defined as
existential unforgeability against adaptive chosen mes-
sages and identity attacks (EUF- CMA). The confi-
dentiality and integrity of CL-MRES are supported by
Theorem 3 in Appendix B.

• Authentication: In CLDA, the drone can explicitly
authenticate cars by verifying the signatures in theBatch
verification step. The cars can implicitly authenticate
the base station by using the full public key of the base
station in the Sensor data encryption step. Only when
the base station has the valid full private key, it can
decrypt the encrypted data. In CL-MRES, only when the
drone and a car i have the valid full private/public keys,
they can correctly generate a shared symmetric key Ki
and thus, they can mutually be authenticated. That is,
CL-MRES supports authenticated key agreement.

• Privacy protection: In the CLDA protocol, each car
encrypts sensor values using the full public key of the
base station B and the drone does not carry the full
private key of B. Therefore, the collected values are
secure even if the drone is captured and the content of
its internal memory is analyzed by an attacker. Since the
drone homomorphically aggregates the encrypted data
and deletes allM2messages right after the completion of

the aggregation procedure, the base station can get only
the aggregate sum of the values. Therefore, the privacy
of each smart object is assured under the assumption that
the drone and the base station do not collude.

VI. EXPERIMENTS
In this section, we present the performance of the
eCLSM-TKEM, CL-MRES and CLDA protocols and how
our efficiency enhancement techniques improve the perfor-
mance.

A. EXPERIMENT SETUP OF THE PARKING MANAGEMENT
To evaluate the performance of eCLSC-TKEM, we imple-
mented our protocols on commercially available devices:
AR.Drone2.0 [36] (as a medium-capacity drone) and
TelosBs (as smart objects). To compare eCLSC-TKEM with
other certificateless-based schemes, we also implemented
CL-AKA [12], [13] and CLSC-TKEM [15].

1) DRONE
AR.Drone2.0 [36] is a quad-copter equipped with a
Wi-Fi radio, two (front/ground) cameras, an ARM cortex
A8 processor (1GHz/32-bit) and an 1Gbit RAM. The oper-
ating system of AR.Drone2.0 is the BusyBox-based Linux
(ver. 2.6.32). After booting up, the drone acts as a Wi-Fi
access point and can be controlled by a remote Wi-Fi client,
such as a laptop or a smartphone. We utilized the MIRACL
library [32] as a crypto-library.

FIGURE 5. Experiment setup. (a) Dual radios attached on the drone.
(b) Test-bed setup.

We utilized two TelosBs as the drone’s radio transceivers
as shown in Fig. 5(a). One radio working in the data channel
was plugged into the USB port next to the battery. The other
radio working in the wake-up channel was hooked up to a pin
connector on the main board. The radio transceiver of TelosB
works at the 2.4GHz public band, which is the same band at
which the Wi-Fi works. To avoid interference between them,
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FIGURE 6. Impact of key bit size.

we chose the channel 6 as the Wi-Fi control channel, and
the channel 11 and 26 as the wake-up channel and the data
channel, respectively.

2) SMART OBJECT
For smart objects, we utilized 17 TelosBs. TelosB is a sensor
platform equipped with an IEEE 802.15.4 radio transceiver,
a low-end micro-controller (8MHz MSP430) with a 10KB
RAM and a USB interface. We chose TelosBs as the smart
objects in order to show that even such low-end platforms
run our protocols well. The signal power of the smart objects
was set to -7dBm and the communication range was approx-
imately 30m. We installed TinyOS 2.0 for the operating
system and utilized its LPL functionality. We also used
TinyECC [37] as an elliptic curve cryptography library.

B. EXPERIMENTAL RESULTS OF THE
PARKING MANAGEMENT
1) NETWORK TOPOLOGY
Fig. 5(b) shows the test-bed setup of our parkingmanagement
system. We deployed the 17 smart objects in a line spacing
them 5m apart and the drone started from the start point that
was 30m apart from s1. The drone’s altitude was set to 10m.
In our test-bed, the drone’s mission is to collect data from
all the smart objects. The drone flies from the start point to
the last smart object s17. When the drone arrives at a smart
object sx, if the drone cannot complete the data collection task
with sx, the drone maintains its present position until the task
is completed. We measured the time to complete the mission.

2) IMPACT OF KEY BIT SIZE
Fig. 6 shows the time required to complete the mission when
the system used three different key bit sizes. We activated
LPL for the smart objects with the wake-up interval of 5 sec-
onds. When secp160r1 was used, the drone with our protocol
took 36.2 seconds to complete the mission and completed
the mission 1.3, 1.5 and 2.8 times faster than Seo’s CLSC-
TKEM, Sun’s CL-AKA and Yang’s CL-AKA, respectively.
All the protocols require more time to complete the mission if
the key bit size becomes larger. However, the time difference
between a 128-bit key and a 160-bit key is much smaller than
the difference between a 160-bit key and a 192-bit key, which
implies that a 160-bit key may be a reasonable choice since it

FIGURE 7. Experimental results. (a) Impact of interval between wake-ups.
(b) Impact of the dual channel strategy.

TABLE 2. Comparison of protocols (unit: second).

provides better security than a 128-bit key with a very small
time increase. Table 2 shows the computation time required
by a smart object when the four protocols with the three
different elliptic curves are used.When secp160r1 is used, the
smart object with our protocol can complete its task 1.4, 1.8
and 3.8 times faster than the smart object with Seo’s CLSC-
TKEM, Sun’s CL-AKA and Yang’s CL-AKA, respectively.
Considering that overall system performance highly depends
on the performance of low speed devices in a heterogenous
system, the results in Table 2 explainwhy our protocol outper-
formed the others. Note that a smart object using our protocol
needs to compute only two EC point multiplications after it
receives a wake-up signal from a drone, while a smart object
using the other protocols has to compute more than two EC
point multiplications.

3) IMPACT OF INTERVAL BETWEEN WAKE-UPS
Fig. 7(a) shows the time required to complete the mis-
sion when the smart objects adopt five different LPL wake-
up intervals. We used secp160r1. The wider the interval
between wake-ups is, the more energy the smart objects
can save. Seo’s CLSC-TKEM and Sun’s CL-AKA require a
narrow interval to achieve a mission completion time close
to the completion time achieved by our protocol. For exam-
ple, Sun’s CL-AKA achieved a mission completion time
of 46.2 seconds when the wake-up interval was set
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to 1 second, while our protocol achieved a close mission com-
pletion time (46.8 seconds) when the wake-up interval was set
to 9 seconds. Seo’s CLSC-TKEM achieved a close mission
completion time (46.7 seconds) when the wake-up interval
was set to 5 second. In other words, when our protocol was
used, the smart objects consumed 1.8 and 9 times less energy
than when Seo’s CLSC-TKEM or Sun’s CL-AKA was used,
respectively.

4) IMPACT OF DUAL CHANNEL STRATEGY
Finally, Fig. 7(b) shows the mission completion time when
the dual channel strategy is used and when it is not used..
We utilized eCLSC-TKEM and set the wake-up interval
to 5 seconds. When the system utilized the dual channel
strategy, the mission was completed approximately 6 times
faster than when only one channel was used. The dual chan-
nel strategy allows smart objects to concurrently execute
eCLSC-TKEM with a drone, and thus the drone’s flight time
can be significantly saved. When the dual channel strategy
was used, 3 or 4 smart objects within the communication
range of the drone were able to concurrently start executing
the eCLSC-TKEM protocol. However, if only one chan-
nel is used, the drone must execute eCLSC-TKEM with
smart objects one by one. In the one-channel system, the
drone broadcasts wake-up signals while moving. Once a
smart object receives a wake-up signal, it sends an acknowl-
edgement to the drone. Then, the drone must stop broad-
casting wake-up signals in order to listen and receive the
eCLSC-TKEM output (i.e., an encrypted message with its
signature) from the smart object. However, since the smart
object generates the eCLSC-TKEM output very slowly, the
dronemust wait, which wastes its limited flight time. After all
the procedures of eCLSC-TKEM are successfully completed
with the smart object, the drone can start broadcasting wake-
up signals again in order to wake up another smart object.
To sum up, the dual channel strategy is essential in order
to save the energy of a mobile drone when the drone runs
a cryptographic protocol with multiple low-end devices.

C. EXPERIMENT SETUP OF THE TRAFFIC
MONITORING AND MANAGEMENT
To evaluate the performance of CLDA and CL-MRES, we
implemented these schemes on the Nvidia Jetson TK1 devel-
oper kit [33] as a high-capacity drone. The kit is operated by
Ubuntu Linux and is equipped with the Tegra K1 SoC which
consists of a 2.3 GHz ARM Cortex-A15 CPU and 0.85 GHz
NVIDIA Kepler GPU with 192 CUDA Cores. We chose this
kit because the GPU in the Tegra K1 SoC is the only mobile
GPU to support NVIDIA CUDA. We ported the functions in
the MIRACL library [32] into CUDA-C functions in order
to run them on the GPU. We utilized secp160r1 as an ECC
parameters.

1) EXPERIMENTAL RESULTS OF CLDA
The overall performance of the CLDA protocol is dominated
by the performance of the Batch verification algorithm.

FIGURE 8. The computation time for the signature verification on the CPU
or GPU. (a) CPU. (b) GPU.

Therefore, we measured the execution time of the Batch
verification algorithm on the CPU and the GPU. The drone
collects a random value from virtual cars which run on a PC.
They execute the Sensor data encryption algorithm and
send ψi = (Ui,Vi,Ci, σi, IDi,Pi,Ri, ti) to the drone.
We assume all cars send valid signatures.

In the first experiment, the drone executes the Batch ver-
ification algorithm on the CPU after all data are collected
from n (1 ≤ n ≤ 18) cars. We implemented three versions of
the verification algorithm: 1) individual verification, 2) batch
verification without optimization, and 3) batch verification
with the optimization technique as described in Sec. III-B.
Fig. 8(a) shows the computation time of the three versions
of the protocol on the drone. When the number of cars is 18,
the drone running the optimized batch verification requires
only 85.5ms, while the drone running the individual verifi-
cation and the drone running the batch verification without
optimization require 285.8ms and 218.4ms, respectively. This
result confirms that the batch verification with the optimiza-
tion technique significantly reduces the computation time
for the signature verifications. If the arrival rate of ψis is
very high, the CPU is not appropriate to handle the ψis.
In the second experiment, the Batch verification algorithm
is run on the GPU after all data are collected from n
(1 ≤ n ≤ 1, 320) cars. Two versions of the verification
algorithm were implemented: 1) batch verification without
optimization: each GPU thread computes one EC point mul-
tiplication, and 2) batch verification with the optimization
technique: each GPU thread computes multiple EC point
multiplications. We limit the maximum number of GPU
threads that can be launched in parallel to 441 due to the
limited GPU memory space. Therefore, in the first version,
147(=441/3) signatures are simultaneously verified using

3734 VOLUME 5, 2017



J. Won et al.: Certificateless Cryptographic Protocols for Efficient Drone-Based Smart City Applications

441 threads in each cycle. However, in the second version,
the number of EC point multiplications that are executed
by each thread is selected according to the total number of
EC point multiplications. For instance, if the total number of
EC point multiplications is 441, each thread computes one EC
point multiplication. However, if the total number of EC point
multiplications is 882, each thread computes two EC point
multiplications. As shown in Fig. 8(b), when the number
of cars is 1,320, the optimized batch verification takes only
81.2ms, while the batch verification without optimization
takes 233.9ms. This result shows that the time required by
the batch signature verification is significantly reduced due
to the optimization technique.

AVERAGE ELAPSED TIME OBSERVED BY CARS
As discussed in Sec. V-C, the drone has to adaptively set
θ , i.e., the number of signatures that are verified together,
according to the arrival rate of the signature verification
requests. To measure the average elapsed time observed by
cars, we developed a discrete-event simulator specialized for
our protocol. Parameters for the simulations, such as the
communication delay and the batch verification times on the
CPU and the GPU, are based on the real measurements.

FIGURE 9. The average elapsed time observed by cars when the drone
uses the CPU or GPU. (a) CPU. (b) GPU.

Fig. 9(a) shows the average elapsed time observed by cars
when the drone uses the CPU. When θ is 1, the drone verifies
signatures separately and cannot take advantage of the batch
verification. Thus, if the inter-arrival time is small, the drone’s
CPU cannot handle signatures in a short time. However, as
the mean inter-arrival time (T ) becomes large, the average
elapsed time decreases since the time required for a single
verification is smaller than T . Thus, signatures are verified
right after they arrive. When θ is n (≥ 2), the drone executes

the batch verification once the drone receives n signature
verification requests. Therefore, the drone can take advantage
of the batch verification when T is small. However, as T
becomes large, the average elapsed time increases since the
drone cannot execute the Batch verification algorithm until
n signature verification requests are collected.
Fig. 9(b) shows the average elapsed time when the GPU is

utilized. Since the clock speed of the GPU is slower than the
clock speed of the CPU, when T is large, verifying signatures
using the CPU is faster than verifying signatures using the
GPU. For example, when T is 50ms, the CPU can verify
signatures in 9.1ms on average, while the GPU verifies them
in 28.8ms. However, when T is small, the drone can utilize
the parallel processing of the GPU. For instance, when T is
1ms, the CPU verifies signatures in 1,882ms, while the GPU
can verify them in 51.5ms by setting θ to 30. Although we
did not present all the results with different values of θs due
to the page limit, if the drone can change θ in the optimal way,
the average elapsed time is always kept lower than 47ms.

FIGURE 10. The performance comparison between eCLSC-TKEM and
CL-MRES on the CPU and GPU.

2) EXPERIMENTAL RESULTS FOR CL-MRES
Since the overall performance of the CL-MRES protocol
is dominated by the performance of the HybridEncryption
algorithm, we measured the execution time of the Hybri-
dEncryption algorithm at the drone when it utilizes the
CPU or the GPU. We also implemented eCLSC-TKEM and
measured the execution time of the SymmetricKeyGen and
Encapsulation algorithms without the signature generation
step for fair comparisons. Fig. 10 shows the execution times
of CL-MRES and eCLSC-TKEM at the drone when the
number of cars (n) ranged from 1 to 2,000. When n is 1,
the performance of CL-MRES is equal to the performance
of eCLSC-TKEM. However, as n increases, CL-MRES is
approximately 1.5 times faster than eCLSC-TKEM since
CL-MRES re-uses randomness.

When n is 1, the CPU executes the CL-MRES protocol
more quickly than the GPU since the clock speed of the CPU
is higher than the clock speed of the GPU. However, as n
increases, the GPU can execute the CL-MRES protocol much
faster than the GPU since the GPU can compute EC point
multiplications in parallel. For example, when n is 2,000, the
CPU takes 15.87 seconds, while the GPU takes only 125 ms.
These results confirm that the GPU utilization for CL-MRES
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is imperative when the drone has to communicate with a large
number of cars.

VII. CONCLUSIONS
In this paper, a suite of secure communication protocols for
smart city monitoring applications is presented. As build-
ing blocks, we propose eCLSC-TKEM, CL-MRES, CLDA
and a dual communication channel strategy. eCLSC-TKEM
efficiently supports four security functions: key agreement,
user authentication, non-repudiation, and user revocation.
CL-MRES is a hybrid encryption for multiple recipients and
is designed for a drone to transmit user-specific data to a large
number of smart objects. CLDA allows the data collection
party, such a drone, to collect privacy-sensitive data from
smart objects in an efficient and secure way by combining the
optimized batch verification scheme and the ElGamal homo-
morphic encryption schemewith our certificateless approach.
The dual channel strategy helps drones and cars save their
battery life by allowing them to concurrently execute the
time-consuming crypto-algorithms. Our protocols are appli-
cable to data applications, other than smart cities, that involve
different types of fixed and mobile devices with different
capacities.

APPENDIX A
SECURITY PROOF OF eCLSC-TKEM
A. SECURITY MODEL OF eCLSC-TKEM
An efficient certificateless signcryption tag KEM must con-
sider three types of adversaries: AI , AII and AIII . AI
represents a dishonest user who can replace other user’s
public keys but has no knowledge about the master secret
key of the KGC.AII represents a malicious KGC which has
knowledge of the KGC’s master secret key. However,AII is
unable to replace the users’ public keys. AIII represents a
previously functional user, whose partial private/public keys
have been revoked by the KGC. AIII cannot replace other
users’ public keys. Except for the consideration ofAIII , the
security model of eCLSC-TKEM is similar to that of
CLSC-TKEM [14], [20]. eCLSC-TKEM must satisfy con-
fidentiality, that is, indistinguishability against an adap-
tive chosen ciphertext and identity attacks (IND-CCA2),
and unforgeability, that is, existential unforgeability against
adaptive chosen messages and identity attacks (EUF-CMA).
In order to describe the security model of eCLSC-TKEM, we
consider the two formal games IND-eCLSC-TKEM-CCA2
game and EUF-eCLSC-TKEM-CMA game.

1) IND-eCLSC-TKEM-CCA2 GAME
The adversary A can be either AI , AII or AIII . The
challenger C should keep a history of query-answers while
interacting with adversaries. C runs the SetUp() algorithm
to generate the public parameters params and the master
private key msk respectively. If A is either AI or AIII ,
C gives params to A while keeping msk secret. If A is
AII , C gives both params and msk to A.

Phase I: A may perform a polynomially bounded number
of the following queries in an adaptive fashion.
• Extract-Secret-Value queries: C runs SetSecretValue
to get xU with identity IDU , and then returns it to AI .
In the case of AIII , C runs SetSecretValue before
the challenge time period and returns xU to AIII . The
adversary AI or AIII cannot query any identity for
which the corresponding public key has been replaced.
AII is excluded in this query.

• Extract-Partial-Private-Key queries: In the case of
A ∈ {AI ,AII}, these can be made for all identities
except for the target identity. IfA isAIII , these can be
made for any identity before the challenge time period.
C runs PartialPrivateKeyExtract to obtain the partial
private key dU and the permitted time period tU . Then C
sends dU and tU to A.

• Request-Public-Key queries: In the case of A ∈

{AI ,AII}, C runs SetPublicKey to get the full public
key pkU and then returns it to AI . If A is AIII , C runs
SetPublicKey to get the full public key pkU and returns
it to AIII before the challenge time period.

• Public-Key-Replacement queries:AI may replace the
public key pkU corresponding to the user identity IDU
with any value pk ′U of AI ’s choice. AII and AIII are
excluded in this query.

• Symmetric Key Generation queries: In the case of
A ∈ {AI ,AII}, A chooses a sender’s identity IDA and
a receiver’s identity IDB. C obtains the private key of
the sender, skA and tB from the corresponding ‘‘query-
answer’’ list. Then, C runs SymmetricKeyGen to obtain
the ric keyK and an internal state informationω by using
IDA, IDB, skA, pkB and tB. It stores ω while keeping the
ω secret from the view of A. Finally, C sends K to A.
C may not obtain the sender’s secret value if the asso-
ciated public value of the sender A is replaced. In this
case, A is required to provide the secret value of A to C.
We do not allow queries where IDA = IDB. If A is
AIII , C runs the above operations for any time instant
before the challenge time period.

• Key Encapsulation queries: In the case of A ∈

{AI ,AII}, A produces an arbitrary tag τ for sender
A. C checks whether there exists a corresponding ω
value. If ω has been previously stored, then C computes
(ϕ)← Encapsulation(ω, τ ), deletes ω and returns ϕ to
A. Otherwise, C returns⊥ and terminates. In case thatA
isAIII , C runs the above operations for any time instant
before the challenge time period.

• Key Decapsulation queries: In the case of A ∈

{AI ,AII},A produces an encapsulation ϕ, a tag τ , the
sender’s identity IDA, the public key pkA, the receiver’s
identity IDB and the public key pkB. C obtains the
receiver’s private key skB and tA from the corresponding
‘‘query-answer’’ list. C runs Decapsulation by using
IDA, IDB, pkA, skB, tA, ϕ and τ . C may not be aware of
the corresponding secret value if the associated public
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value of IDB is replaced. In this caseAmust provide the
secret value of B to C. We do not allow the queries where
IDA = IDB. If A is AIII , C runs the above operations
for any time instant before the challenge time period.

Challenge: At the end of Phase I decided by A ∈

{AI ,AII},A generates a sender identity IDA∗ and a receiver
identity IDB∗ onwhichAwishes to be challenged. Here, IDB∗
must not be queried to extract a skB∗ in Phase I. Also, in
case that A is AI , IDB∗ may not be equal to an identity for
which both the public key has been replaced and the partial
private key has been extracted. At the end of Phase I which
is decided byA ∈ {AIII},AIII generates a sender identity
IDA∗ and a receiver identity IDB∗ on which AIII wishes
to be challenged for some instant t ′A∗ such that t ′A∗ > tA∗
(after he has been revoked). In the revoked period,AIII has
access to no new information. Now, C computes (K1, ω

∗)←
SymmetricKeyGen(params, IDA∗ , pkA∗ , skA∗ , IDB∗ , pkB∗
, tB∗ ) and chooses K0 ∈R K, where K is the key space of the
eCLSC-TKEM. The C chooses a bit δ ∈R {0, 1} and sends
Kδ to A. A generates an arbitrary tag τ ∗ and sends it to C. C
computes (ϕ∗)← Encapsulation(ω∗, τ ∗) and sends ϕ∗ toA
as a challenge encapsulation.
Phase II: In the case that A is AI or AII , A can perform

a polynomially bounded number of queries adaptively as in
Phase I. However, when A is AIII , the notable difference
is that A can perform a polynomially bounded number of
queries adaptively, before the beginning of the challenge
period as in Phase I. A may not make Extract-full-Private-
Key queries on IDB∗ . In AI , if the public key of IDB∗ has
been replaced before the challenge phase,AI may not extract
the partial private key for IDB∗ . Moreover, A may not make
a key decapsulation query on (Kδ, ϕ∗) under IDA∗ and IDB∗ ,
unless the public key pkIDA∗ or pkIDB∗ has been replaced after
the challenge phase.
Guess: A outputs a bit δ′ and wins the game if δ′ = δ.
The advantage of A is defined as AdvIND−CCA2(A) =
|2Pr[δ′ = δ] − 1|, where Pr[δ′ = δ] denotes the proba-
bility that δ′ = δ. A eCLSC-TKEM is IND-CCA2 secure
if there is no probabilistic polynomial-time adversary in the
above games with non-negligible advantage in the security
parameter k . The security of eCLSC-TKEM is based on the
assumed intractability of the one-sided gap Diffie-Hellman
problem (OGDH) [38].

2) EUF-eCLSC-TKEM-CMA GAME
The ForgerF can be eitherFI ,FII orFIII . The challenger
C should keep a history of the query-answers while interact-
ingwith adversaries. C runs the SetUp() algorithm to generate
the public parameters params and the master private key
msk respectively. IfF is eitherFI orFIII , C gives params
to F while keeping msk secret. If F is FII , C gives both
params and msk to F .
Training Phase: F may make a polynomially bounded

number of queries to random oracles Hi(0 ≤ i ≤ 3) at any
time and C responds as follows:

All the oracles and queries needed in the training phase
are identical to the queries allowed in Phase I of the
IND-eCLSC-TKEM-CCA2 game.
Forgery: At the end of the Training Phase which is

decided by F ∈ {FI ,FII}, F produces an encapsulation
〈τ ∗, ϕ∗, IDA∗ , IDB∗〉 on a arbitrary tag τ ∗, where IDA∗ is
the sender identity and IDB∗ is the receiver identity. At the
end of the Training Phase decided by F = FIII , FIII
generates a sender identity IDA∗ and a receiver identity IDB∗
on which FIII wishes to be challenged for some instant
t ′A∗ such that t ′A∗ > tA∗ (after FIII has been revoked).
Then, F sends 〈τ ∗, ϕ∗, IDA∗ , IDB∗〉 to C. If F is FI , during
the Training Phase, the partial private key for IDA∗ must
not be queried and the public key for IDA∗ must not be
replaced simultaneously. If F is FII , the secret value xA∗
for IDA∗ must not be queried and the public key for IDA∗
must not be replaced, simultaneously. Moreover ϕ∗ must
not be returned by the key encapsulation oracle on the
input (τ ∗, ω∗, IDA∗ , IDB∗ ) during the Training Phase. If the
output of Decapsulation(params, IDA∗ , pkA∗ , tA∗ , IDB∗ ,
pkB∗ , skB∗ , ϕ∗, τ ∗) is valid, F ∈ {FI ,FII} wins the game.
If the output of Decapsulation(params, IDA∗ , pkA∗ ,
t ′A∗ , IDB∗ , pkB∗ , skB∗ , ϕ

∗, τ ∗) is valid, F = FIII wins the
game.

The advantage of F is defined as the probability
with which it wins the EUF-pCLSC-TKEM-CMA game.
A eCLSC-TKEM satisfies existential unforgeability against
an adaptively chosen message attack (EUF-eCLSC-TKEM-
CMA), if no polynomially bounded forger F has non-
negligible advantage in the above EUF-eCLSC-TKEM-CMA
game between C and F

B. FORMAL SECURITY PROOF OF eCLSC-TKEM
The security of our eCLSC-TKEM relies on the hardness of
the following problems.

1) DEFINITION OF OGDH
FOR A GROUP Gq with a generator P and a fixed point Q,
the one-sided gap Diffie-Hellman problem (OGDH) [38] is
defined as follows: for x, y ∈ Z∗q, given Q,R, compute xyP
by accessing an one-sided decision Diffie-Hellman (ODDH)
Oracle, where Q = xP and R = yP.

2) DEFINITION OF ODDH
For a group Gq with a generator P and a fixed point Q, the
one-sided decision Diffie-Hellman oracle (ODDH) [38] is an
oracle that for anyR′, S ′ ∈ Gq correctly answers the question:
Is z′ ≡ xy′ (mod p), where x, y′, z′ ∈ Z∗q are integers such that
Q = xP,R′ = y′P, S ′ = z′P?

3) DEFINITION OF ECDLP
The elliptic curve discrete log problem (ECDLP) is defined as
follows: given a random instance P,Q, find a number x ∈ Z∗q
such that Q = xP.
Theorem 1: In the random oracle model, the eCLSC-TKEM

is IND-CCA2 secure under the assumption that the one-sided
gap Diffie-Hellman (OGDH) problem is intractable.
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The Theorem 1 is proved based on Lemmas 1, 2 and 3.
We adopt the security proof techniques from [15].
Lemma 1: In the random oracle model, if there exists

an adversary AI against the IND-eCLSC-TKEM-CCA2-I
security of the eCLSC-TKEMwith advantage a non-negligible
δ, then an algorithm C exists that solves the OGDH problem
with the following advantage ε

ε ≥ δ · (1−
qppri

qC · qH0

) · (1−
qsv

qC · qH0

)

· (
1

qC · qH0 − qppri − qsv
) · (

1
qH1

)

Here, qH0 , qH1 , qC , qppri and qsv are the maximum number of
queries that the PPT adversary may ask random oracles H0
and H1, create (IDi), extract-partial-private-key queries and
extract-secret-value queries.

Proof: Suppose that there exists a Type I adversary
AI who can break the IND-eCLSC-TKEM-CCA2-I secu-
rity of the eCLSC-TKEM with a non-negligible probabil-
ity in polynomial time. A challenger C is challenged with
an instance of the OGDH (One-sided Gap Diffie-Hellman)
problem.

A challenger C is challengedwith an instance of the OGDH
(One-sided Gap Diffie-Hellman) problem. The OGDH for
a group Gq with a generator P and a fixed second point
Q(= aP) has as input R(= bP) ∈ Gq and computes for the
point S(= cP) ∈ G such that c = ab (mod q), by accessing
a ODDH (One-sided Decision Diffie-Hellman) oracle. Here,
the ODDH oracle solves the OGDH problem for a group
Gq with a generator P and a fixed second point Q as input
R′, S ′ ∈ Gq and decides whether c′ = ab′ mod q, where
a, b′, c′ ∈ Z∗q such that Q = aP,R′ = b′P, S ′ = c′P.
Let AI be an adversary who is able to break the IND-
eCLSC-TKEM-CCA2-I security of the eCLSC-TKEM. C
can utilize AI to compute the solution abP of the OGDH
instance by playing the following interactive game with AI .
To solve the OGDH problem, C sets the master private/public
key pair as (x,Ppub = xP), where P is the generator of the
group Gq and the hash functions Hi(0 ≤ i ≤ 3) are treated
as random oracles. C sends the system parameters � =
{Fq,E/Fq,Gq,P,Ppub,H0,H1,H2,H3} to AI . In order to
avoid the inconsistency between the responses to the hash
queries, C maintains lists Li(0 ≤ i ≤ 3). It alsomaintains a list
of issued private keys and public keys in Lk . C can simulate
the challenger’s execution of each phase of the formal Game.
Let C select a random index t , where 1 ≤ t ≤ qH0 and fix IDt
as the target identity for the challenge phase.
Phase I: AI may make a series of polynomially bounded

numbers of queries to random oracles Hi(0 ≤ i ≤ 3) at any
time and C responds as follows:

Create(IDi): When AI submits a Create(IDi) query to C,
C responds as follows:

• If IDi = IDt , C chooses et , xt ∈R Z∗q and sets
H0(IDt ,Rt ,Pt , tt ) = −et , Rt = etPpub − Pt + aP
and Pt = xtP. Here, C does not know a. C uses

the aP given in the instance of the OGDH problem.
C inserts 〈IDt ,Rt ,Pt , tt ,−et 〉 into the list L0 and
〈IDt ,⊥, xt ,Rt ,Pt , tt 〉 into the list Lk .

• If IDi 6= IDt , C picks ei, bi, xi ∈R Z∗q , then sets
H0(IDi,Ri,Pi, ti) = −ei, Ri = eiPpub + biP and
computes the public key as Pi = xiP. di = bi and it
satisfies the equation diP = Ri+H0(IDi,Ri,Pi, ti)Ppub.
C inserts 〈IDi,Ri,Pi, ti,−ei〉 into the list L0 and 〈IDi, di,
xi,Ri,Pi, ti〉 into the list Lk .

H0 queries: When AI submits a H0 query with IDi, C
searches the list L0. If there is a tuple 〈IDi,Ri,Pi, ti,−ei〉, C
responds with the previous value −ei. Otherwise, C chooses
ei ∈R Z∗q and returns −ei as the answer. Then, C inserts
〈IDi,Ri,Pi, ti,−ei〉 into the list L0.
H1 queries: When AI submits a H1 query with

(Yi,Vi,Ti, IDj,Pj, IDi,Pi), where i 6= j, C checks whether
the ODDH oracle returns 1 when queried with the tuple
(aP,Vi,Ti). If the ODDH oracle returns 1, C outputs Ti
and stop. Then C goes through the list L1 with entries
〈Yi,Vi, ∗, IDj,Pj, IDi,Pi, li〉, for different values of li, such
that the ODDH oracle returns 1 when queried on the tuple
(aP,Vi,Ti). Note that in this case IDi = IDt . If such a
tuple exists, it returns li and replaces the symbol ∗ with Ti.
Otherwise, C chooses l ∈R {0, 1}n and updates the list L1,
which is initially empty, with a tuple containing the input and
return values. C then returns l to AI .
H2 queries: C checks whether a tuple of the form
〈U , τ,T , IDA,PA, IDB,PB, hi〉 exists in the list L2. If it exists,
C returns H = hi to AI . Otherwise, C chooses hi ∈R Z∗q ,
adds the tuple 〈U , τ,T , IDA,PA, IDB,PB, hi〉 to the list L2
and returns H = hi to AI .
H3 queries: C checks whether a tuple of the form
〈U , τ,T , IDA,PA, IDB,PB, h′i〉 exists in the list L3. If it exists,
C returns H ′ = h′i to AI . Otherwise, C chooses h′i ∈R Z∗q ,

adds the tuple 〈U , τ,T , IDA,PA, IDB,PB, h′i〉 to the list L3
and returns H ′ = h′i to AI .
Extract-Partial-Private-Key queries: In order to respond

to the query for the partial private key of a user with IDi, C
performs the following steps:
• If IDi = IDt , C aborts the execution.
• If IDi 6= IDt , C retrieves the tuple 〈IDi, di, xi,Ri,Pi, ti〉
from Lk , returns (di,Ri) which satisfies the equation
diP = Ri + H0(IDi,Ri,Pi, ti)Ppub.

Extract-Secret-Value queries: AI produces IDi to C and
requests a secret value of the user with IDi. If the public key
of IDi has not been replaced and IDi 6= IDt , then C responds
with xi by retrieving from the list Lk . If AI has already
replaced the public key, C does not provide the corresponding
secret value to AI . If IDi = IDt , C aborts.
Request-Public-Key queries: AI produces IDi to C and

requests a public key of the user with IDi. C checks in the list
Lk for a tuple of the form 〈IDi, di, xi,Ri,Pi, ti〉. If it exists, C
returns the corresponding public key (Ri,Pi, ti). Otherwise,
C recalls Create(IDi) query to obtain (Ri,Pi, ti) and returns
(Ri,Pi, ti) as the answer.
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Public-Key-Replacement queries: AI chooses values
(R′i,P

′
i, t
′
i ) to replace the public key (Ri,Pi, ti) of a user

IDi. C updates the corresponding tuple in the list Lk as
〈IDi,−,−,R′i,P

′
i, t
′
i 〉. The current value of the user’s public

key is used by C for computations or responses to any queries
made by AI .
Symmetric Key Generation queries: AI produces a

sender’s identity IDA, public key (RA,PA, tA), the receiver’s
identity IDB and public key (RB,PB, tB) to C. For each query
(IDA, IDB), C proceeds as follows:
• If IDA 6= IDt , C computes the full private key skA
corresponding to IDA by executing the Extract-Partial-
Private-Key query and Extract-Secret-Value query algo-
rithm. Then, C gets the symmetric key K and an internal
state information ω by running the actual SymmetricK-
eyGen algorithm. C stores ω and overwrite any previous
value. C sends the symmetric key K to AI .

• If IDA = IDt (and hence IDB 6= IDt ), C chooses
r1, r2, ht , h′t ∈R Z

∗
q and computesU = r1P−ht−1·(aP+

Pt ), V = r2P, Y = RB+H0(IDB,RB,PB, tB)·Ppub+PB,
T = r2 ·Y mod q= r2 ·(H0(IDB,RB,PB, tB)Ppub+RB+
PB) mod q and K = H1(Y ,V ,T , IDA,PA, IDB,PB),
where RB and PB are obtained by calling the Request-
Public-Key query oracle on IDB. Note that ω =

(r1, r2, ht , h′t ,U ,V ,T , IDA, pkA, IDB, pkB).
• C goes through the list L1 looking for an entry
(Y ,V ,T , IDA,PA, IDB,PB, k) for some k such that
ODDH(Y ,V ,T )=1. If such an entry exists, it computes
K ← l. Otherwise it uses a random l and updates the
list L1 with (Y ,V , ∗, IDA,PA, IDB,PB, l). C storesω and
sends the symmetric key K to AI .

Key Encapsulation queries: AI produces an arbitrary tag
τ , the sender’s identity IDA, public key (RA,PA, tA), the
receiver’s identity IDB and public key (RB,PB, tB) and sends
them to C. The full private key of the sender skA = (dA, xA) is
obtained from the list Lk . C checks whether a corresponding
ω value has been stored previously.
• If ω does not exist, C returns an invalid reply.
• If a corresponding ω exists and IDA 6= IDt , then C com-
putes ϕ with ω and τ by using the actual Encapsulation
algorithm, and deletes ω.

• If a corresponding ω exists and IDA = IDt , then C
computes ϕ by performing the following steps. Note
thatω is (r1, r2, ht , h′t ,U ,V ,T , IDA, pkA, IDB, pkB) and
C does not know the private key corresponding to IDt .
So C should perform the encapsulation in a different
way:
1) Set H = ht and add the tuple 〈U , τ,T , IDA,PA,

IDB,PB, ht 〉 to the list L2.
2) Set H ′ = h′t and add the tuple 〈U , τ,T , IDA,PA,

IDB,PB, h′t 〉 to the list L3.
3) Compute W = ht · r1 + h′t · xA.
4) Output ϕ = (U ,V ,W ) as the encapsulation.

We show that AI can pass the verification of ϕ =
(U ,V ,W ) to validate the encapsulation, because the

equality W · P = RA + H0(IDA,RA,PA, tA) · Ppub +
H · U + H ′ · PA holds as follows:

W · P = RA + H0(IDA,RA,PA, tA) · Ppub
+H · U + H ′ · PA

= aP+ etPpub − Pt + (−et ) · Ppub
+ht · (r1P− ht−1 · (aP+ Pt ))+ h′t · PA

= ht · r1P+ h′t · PA
= W · P

Key Decapsulation queries:AI produces an encapsulation
ϕ = (U ,V ,W ), a tag τ , the sender’s identity IDA, the public
key (RA,PA, tA), the receiver’s identity IDB and the public
key (RB,PB, tB) to C. The full private key of the receiver
skB = (dB, xB) is obtained from the list Lk .
• If IDB 6= IDt , then C computes the decapsulation of ϕ
by using the actual Decapsulation algorithm.

• If IDB = IDt , then C computes K from ϕ as follows:
1) Searches in the list L2 and L3 for entries

of the type 〈U , τ,T , IDA,PA, IDB,PB, ht 〉 and
〈U , τ,T , IDA,PA, IDB,PB, h′t 〉 respectively.

2) If entries H = ht and H ′ = h′t exist then
C checks whether the equality W · P = RA +
H0(IDA,RA,PA, tA) ·Ppub+H ·U +H ′ ·PA holds.

3) If the above equality holds, the corresponding
value of T is retrieved from the lists L2 and L3.
Both the T values should be equal.

4) C goes through L1 and looks for a tuple of the
form 〈Y ,V ,T , IDA,PA, IDB,PB, l〉 such that the
ODDH oracle returns 1 when queried on the
(aP,V ,T ). If such entry exists, the corresponding
K ← l value is returned as the decapsulation of ϕ.

5) If C reaches this point of execution, it put the entry
〈Y ,V , ∗, IDA,PA, IDB,PB, l〉 for a random l on the
list L1 and returnsK ← l. The symbol ∗ denotes an
unknown value. Note that the identity component
of all entries with a ∗ is a receiver identity IDB.

Challenge: At the end of Phase I, AI sends a sender’s
identity IDA∗ and a receiver’s identity IDB∗ on which AI
wishes to be challenged to C. Here, the partial private key
of the receiver IDB∗ was not queried in Phase I. C aborts the
game if IDB∗ 6= IDt . Otherwise, C performs the following
steps to compute the challenge encapsulation ϕ∗.
1) Choose r ∈R Z∗q and compute U∗ = rP.
2) Set V ∗ = bP and choose T ∗ ∈R Gq. Here, C does

not know b. C uses the bP given in the instance of the
OGDH problem.

3) Choose K0 ∈R K, where K is the key space of the
eCLSC-TKEM.

4) Choose a random hash value l∗ and set K1 = l∗.
5) C chooses a bit δ ∈R {0, 1} and sends Kδ to AI .
6) AI generates τ ∗ and sends it to C.
7) Choose hi, h′i ∈R Z∗q, store 〈U∗, τ ∗,T ∗, IDA∗,

PA∗, IDB∗,PB∗, hi〉 to the L2 and 〈U∗, τ ∗,T ∗, IDA∗,
PA∗, IDB∗,PB∗, h′i〉 to the L3.
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8) Since C knows the sender’s private key, C computes
W ∗ = dA∗ + r · hi + xA∗ · h′i.

9) C returns ϕ∗ = 〈U∗,V ∗,W ∗〉 to AI .
Phase II: AI adaptively queries the oracles as in Phase I.

Besides it cannot query decapsulation on ϕ∗.
Guess: Since AI can break the IND-eCLSC-TKEM-

CCA2-I security (which is assumed at the beginning of
the proof), AI should have asked a H1 query with
(Y ∗,V ∗,T ∗, IDA∗,PA∗, IDB∗ ,PB∗ ) as inputs. It is to be noted
that T ∗ = b·Y ∗ = b·(−et ·Ppub+et ·Ppub−Pt+aP+PB∗ ) =
ab · P, where Pt = PB∗ because of IDt = IDB∗. Therefore, if
the L1 has qH1 queries corresponding to the sender IDA∗ and
receiver IDB∗ , one of the T ∗’s among qH1 values stored in
the list L1 is the solution for the OGDH problem instance.
C chooses one T value uniformly at random from the qH1

values from the L1 and outputs it as the solution for theOGDH
instance.
Analysis: C lets E1, E2 and E3 be the events in which C

aborts the IND-eCLSC-TKEM-CCA2-I game.
• E1 is an event in which AI queries the partial private
key of the target identity IDt . The probability of E1 is
Pr[E1] =

qppri
qC ·qH0

.
• E2 is an event in which AI asks to query the set secret
value of the target identity IDt . The probability of E2 is
Pr[E2] =

qsv
qC ·qH0

.

• E3 is an event in which AI does not choose
the target identity IDt as the receiver during the
challenge. The probability of E3 is Pr[E3] =

1− 1
qC ·qH0−qppri−qsv

.

Thus, the probability that C does not abort the
IND-eCLSC-TKEM-CCA2-I game is

Pr[¬E1 ∧ ¬E2 ∧ ¬E3]

= (1−
qppri

qC · qH0

) · (1−
qsv

qC · qH0

) · (
1

qC · qH0 − qppri − qsv
)

The probability that C randomly chooses the T from L1 and T
is the solution of OGDH problem is 1

qH1
. So, the probability

that C finds the OGDH instance is as follows:

Pr[C(P, aP, bP) = abP] = δ · (1−
qppri

qC · qH0

)

· (1−
qsv

qC · qH0

) · (
1

qC · qH0 − qppri − qsv
) · (

1
qH1

)

Therefore, the Pr[C(P, aP, bP) = abP] is non-negligible,
because δ is non-negligible. This contradicts the OGDH
assumption.
Lemma 2: In the random oracle model, if there exists

an adversary AII against the IND-eCLSC-TKEM-CCA2-II
security of the eCLSC-TKEMwith advantage a non-negligible
δ, then there exist an algorithm C that solves the OGDH
problem with the following advantage ε

ε ≥ δ · (1−
qsv

qC · qH0

) · (1−
qpkR

qC · qH0

)

· (
1

qC · qH0 − qsv − qpkR
) · (

1
qH1

)

Here, qH0 , qH1 , qC , qpkR and qsv are the maximum number
of queries that the PPT adversary may ask random oracles
H0 and H1, create (IDi), public-key-replacement queries and
extract-secret-value queries.

Proof: A challenger C is challenged with an instance of
the OGDH problem. Let AII be an adversary who is able
to break the IND-eCLSC-TKEM-CCA2-II security of the
eCLSC-TKEM. C can utilize AII to compute the solution
abP of the OGDH instance by playing the following interac-
tive game withAII . To solve the OGDH, C chooses s ∈R Z∗q,
sets themaster public keyPpub = sP, whereP is the generator
of the group Gq and the hash functions Hi(0 ≤ i ≤ 3)
are treated as random oracles. C sends the system parameter
� = {Fq,E/Fq,Gq,P,Ppub = sP,H0,H1,H2,H3} and the
master private key s to AII . In order to avoid the inconsis-
tency between the responses to the hash queries, C maintains
lists Li(0 ≤ i ≤ 3). It also maintains a list Lk of the issued
private keys and public keys. C can simulate the challenger’s
execution of each phase of the formal Game. Let C select a
random index t , where 1 ≤ t ≤ qH0 and fixes IDt as the target
identity for the challenge phase.
Phase I:AII may make a series of polynomially bounded

number of queries to random oracles Hi(0 ≤ i ≤ 3) at any
time and C responds as follows:
Create(IDi) queries: When AII submits a Create(IDi)

query to C, C responds as follows:

• If IDi = IDt , C chooses lt ∈R Z∗q and sets
H0(IDt ,Rt ,Pt , tt ) = lt , computes Rt = −ltPpub, dt =
−lt · s and the public key as Pt = aP. Here, C does not
know a. C uses the aP given in the instance of the OGDH
problem. C inserts 〈IDt ,Rt ,Pt , tt , lt 〉 into the list L0 and
〈IDt , dt ,⊥,Rt ,Pt , tt 〉 into the list Lk .

• If IDi 6= IDt , C picks ai, xi, li ∈R Z∗q , then
sets H0(IDi,Ri,Pi, ti) = li, computes Ri = aiP,
di = ai + li · s and the public key as Pi =
xiP. C inserts 〈IDi,Ri,Pi, ti, li〉 into the list L0 and
〈IDi, di, xi,Ri,Pi, ti〉 into the list Lk .

H0 queries: When AII submits a H0 query with IDi, C
searches the list L0. If there is a tuple 〈IDi,Ri,Pi, ti, li〉, C
responds with the previous value li. Otherwise, C chooses
li ∈R Z∗q and returns li as the answer. Then, C inserts
〈IDi,Ri,Pi, ti, li〉 into the list L0.
H1 queries: When AII submits a H1 query with

(Yi,Vi,Ti, IDj,Pj, IDi,Pi), where i 6= j, C checks whether the
ODDH (One-sided Decision Diffie-Hellman) oracle returns 1
when queried with the tuple (aP,Vi,Ti). If the ODDH oracle
returns 1, C outputs Yi and stop. Then C goes through the list
L1 with entries 〈Yi,Vi, ∗, IDj,Pj, IDi,Pi, li〉, for different val-
ues of li, such that the ODDH oracle returns 1 when queried
on the tuple (aP,Vi,Ti). Note that in this case IDi = IDt .
If such a tuple exists, it returns li and replaces the sym-
bol ∗ with Ti. Otherwise, C chooses l ∈R {0, 1}n and
updates the list L1, which is initially empty, with a tuple
containing the input and return values. C then returns l
to AII .
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H2 queries: When AII submits a H2 query with IDi, C
checks whether a tuple of the form 〈U , τ,T , IDA,PA, IDB,
PB, hi〉 exists in the list L2. If it exists, C returns H =

hi to AII . Otherwise, C chooses hi ∈R Z∗q , adds
the tuple 〈U , τ,T , IDA,PA, IDB,PB, hi〉 to L2 and returns
H = hi to AII .
H3 queries: When AII submits a H3 query with IDi, C

checks whether a tuple of the form 〈U , τ,T , IDA,PA, IDB,
PB, h′i〉 exists in the list L3. If it exists, C returns H ′ =
h′i to AII . Otherwise, C chooses h′i ∈R Z∗q , adds
the tuple 〈U , τ,T , IDA,PA, IDB,PB, h′i〉 to L3 and returns
H ′ = h′i to AII .
Extract-Partial-Private-Key queries: When AII asks a

Extract-Partial-Private-Key query for IDi, C checks whether
the corresponding partial private key for IDi, di exists in the
list Lk . If it exists, C returns di to AII . Otherwise, C recalls
Create(IDi) query to obtain di and returns di as the answer.
Extract-Secret-Value queries: If AII asks a Extract-

Secret-Value query for IDi, C answers as follows:

• If IDi = IDt , C aborts.
• If IDi 6= IDt , C looks for the tuple 〈IDi, di, xi,Ri,Pi, ti〉
in the list Lk . If such tuple exists in Lk , C returns xi.
Otherwise, C recalls Create(IDi) query to obtain xi and
returns xi as the answer.

Set-Public-Key queries: When AII asks Set-Public-Key
query for IDi, C searches the list Lk . If the public key for
IDi, (Ri,Pi, ti) is found in Lk , C returns (Ri,Pi, ti) as the
answer. Otherwise, C executes a Create(IDi) query to obtain
(Ri,Pi, ti) and then returns (Ri,Pi, ti) as the answer.
Public-Key-Replacement queries:WhenAII asks Public-

Key-Replacement query for IDi, C checks whether IDi = IDt .
If IDi = IDt , C aborts. Otherwise, C updates the cor-
responding tuple in the list Lk as 〈IDi,−,−,R′i,P

′
i, t
′
i 〉,

where (R′i,P
′
i, t
′
i ) is chosen by AII . The current public key

(i.e. replaced public key) is used by C for computations or
responses to any queries made by AII .
Symmetric Key Generation queries: AII produces a

sender’s identity IDA, public key (RA,PA, tA), the receiver’s
identity IDB and public key (RB,PB, tB) to C. For each query
(IDA, IDB), C proceeds as follows:

• If IDA 6= IDt , C computes the full private key skA
corresponding to IDA by executing the Extract-Partial-
Private-Key query and Extract-Secret-Value query algo-
rithm. Then, C gets the symmetric key K and an internal
state information ω by running the actual SymmetricK-
eyGen algorithm. C stores ω and overwrite any previous
value. C sends the symmetric key K to AII .

• If IDA = IDt (and hence IDB 6= IDt ), C chooses
r1, r2, ht , h′t ∈R Z∗q and computes U = r1P − ht−1 ·
h′t · PA, where PA is obtained from the list Lk , V = r2P,
T = r2 ·Y , Y = RB+H0(IDB,RB,PB, tB)Ppub+PB mod
q and K = H1(Y ,V , r2 ·Y , IDA,PA, IDB,PB). Note that
ω = (r1, r2, ht , h′t ,U ,V ,T , IDA, pkA, IDB, pkB).

• C goes through the list L1 looking for an entry
(Y ,V ,T , IDA,PA, IDB,PB, k) for some k such that

ODDH(Y ,V ,T )=1. If such an entry exists, it computes
K ← l. Otherwise it uses a random l and updates the
list L1 with (Y ,V , ∗, IDA,PA, IDB,PB, l). C storesω and
sends the symmetric key K to AII .

Key Encapsulation queries: AII produces an arbitrary
tag τ , the sender’s identity IDA, public key (RA,PA, tA), the
receiver’s identity IDB and public key (RB,PB, tB) then sends
to C. C checks whether a corresponding ω value is stored
previously.
• If ω does not exist, C returns invalid.
• If a corresponding ω exists and IDA 6= IDt , then C com-
putes ϕ with ω and τ by using the actual Encapsulation
algorithm, and deletesω. Here, C gets the full private key
of the sender skA = (dA, xA) from the list Lk .

• If a corresponding ω exists and IDA = IDt , then C
computes ϕ by performing the following steps. Note that
ω is (r1, r2, ht , h′t ,U ,V ,T , IDA, dA, pkA, IDB, pkB) and
C does not know the secret value xA corresponding to
IDA. So C should perform the encapsulation in a different
way:
1) Set H = ht and add the tuple 〈U , τ,T , IDA,PA,

IDB,PB, ht 〉 to the list L2.
2) Set H ′ = h′t and add the tuple 〈U , τ,T , IDA,PA,

IDB,PB, h′t 〉 to the list L3.
3) Compute W = r1H .
4) Output ϕ = (U ,V ,W ) as the encapsulation.

We show that AII can pass the verification of ϕ =
(U ,V ,W ) to validate the encapsulation, because the
equality W · P = RA + H0(IDA,RA,PA, tA) · Ppub +
H · U + H ′ · PA holds as follows:
RA + H0(IDA,RA,PA, tA) · Ppub + H · U + H ′ · PA
= −lt ·Ppub+ lt ·Ppub+ht · (r1P−ht−1 ·h′t ·PA)+h

′
t ·PA

= ht · r1P− h′t · PA + h
′
t · PA

= ht · r1P
= W · P

Key Decapsulation queries: AII produces an encapsula-
tion ϕ, a tag τ , the sender’s IDA, public key (RA,PA, tA), the
receiver’s IDB and public key (RB,PB, tB) to C.
• If IDB 6= IDt , then C computes the decapsulation of ϕ
by using the actual Decapsulation algorithm. Here, the
full private key of the receiver (dB, xB) is obtained from
the list Lk .

• If IDB = IDt , then C computes K from ϕ as follows:
1) Searches lists L2 and L3 for entries of the type
〈U , τ,T , IDA, PA, IDB,PB, ht 〉 and 〈U , τ,T , IDA,
PA, IDB,PB, h′t 〉, respectively.

2) If entries H = ht and H ′ = h′t exist, then
C checks whether the equality W · P = RA +
H0(IDA,RA,PA, tA) ·Ppub+H ·U +H ′ ·PA holds.

3) If the above equality holds, then retrieves the cor-
responding value of T from lists L2 and L3. Both
the T values should be equal.

4) C goes through L1 and looks for a tuple
〈Y ,V ,T , IDA,PA, IDB,PB, l〉 such that ODDH
(Y ,V ,T ) = 1. If such an entry exists, then
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C found the correct value of T and outputs
K ← l.

5) If C reaches this point of execution, it places the
entry 〈Y ,V , ∗, IDA,PA, IDB,PB, l〉 for a random
l on list L1 and returns the corresponding K ← l
value as the decapsulation of ϕ. The symbol ∗
denotes an unknown value of Y .

Challenge: At the end of Phase I, AII sends a sender
identity IDA∗ and a receiver identity IDB∗ on which AII
wishes to be challenged to C. Here, the secret value of the
receiver IDB∗ was not queried in Phase 1. C aborts the game if
IDB∗ 6= IDt . Otherwise, C performs the following to compute
the challenge encapsulation ϕ∗.
1) Choose r ∈R Z∗q and compute U∗ = rP.
2) Set V ∗ = bP and choose T ∗ ∈R Gq. Here, C does

not know b. C uses the bP given in the instance of the
OGDH problem.

3) Choose K0 ∈R K, where K is the key space of the
eCLSC-TKEM.

4) Compute K1 by executing Symmetric Key Generation
queries.

5) Set ω∗ = 〈−,Y ∗,V ∗,T ∗, IDA∗,PA∗,RA∗, xA∗, dA∗,
IDB∗,PB∗,RB∗〉.

6) C chooses a bit δ ∈R {0, 1} and sends Kδ to AII .
7) AII generates an arbitrary tag τ ∗ and sends it to C.
8) Choose hi, h′i ∈R Z∗q, store the tuple 〈U

∗, τ ∗,T ∗, IDA∗,
PA∗, IDB∗,PB∗, hi〉 to the list L2 and 〈U , τ ∗,T ,
IDA∗,PA∗, IDB∗,PB∗, h′i〉 to the list L3.

9) Since C knows the private key of the sender IDA∗, C
computes W = dA∗ + r · hi + xA∗ · h′i.

10) C sends ϕ∗ = 〈U∗,V ∗,W ∗〉 to AII .
Phase II:AII adaptively queries the oracles as in Phase I,

consistent with the constraints for a Type-II adversary. Other
than this, it cannot query decapsulation on ϕ∗.
Guess: Since AII is able to break the IND-eCLSC-

TKEM-CCA2-II security of eCLSC-TKEM (which is
assumed at the beginning of the proof), AII should have
asked a H1 query with (Y ∗,V ∗,T ∗, IDA∗,PA∗, IDB∗,PB∗) as
inputs. Since IDB∗ is a target identity IDt , PB∗ = aP. Here,
aP was given as the instance of the OGDH problem and C
does not know a. Thus, computing T ∗ = b · (−ltPpub +
ltPpub + aP) = abP is to find abP when 〈aP(= PB∗),
bP(= V ),T 〉 ∈ Gq are given. Therefore, if the list L1 has
qH1 queries corresponding to the sender IDA∗ and receiver
IDB∗, one of the qH1 values of T ∗ stored in the list L1 is
the solution for the OGDH problem instance. C chooses one
T ∗ value uniformly at random from the qH1 values from
the list L1 and outputs it as the solution for the OGDH
instance.
Analysis: In order to assess the probability of success of

the challenger C, let E1, E2, and E3 be the events in which C
aborts the IND-eCLSC-TKEM-CCA2-II game.
• E1 is an event in which AII queries the secret value
of the target identity IDt . The probability of E1 is
Pr[E1] =

qsv
qC ·qH0

.

• E2 is an event in which AII asks to replace the public
key of the target identity IDt . The probability of E2 is
Pr[E2] =

qpkR
qC ·qH0

.
• E3 is an event in which AII does not choose the target
identity IDt as the receiver during the challenge. The
probability of E3 is Pr[E3] = 1− 1

qC ·qH0−qsv−qpkR
.

Thus, the probability that C does not abort the
IND-eCLSC-TKEM-CCA2-II game is Pr[¬E1 ∧ ¬E2 ∧
¬E3] = (1− qsv

qC ·qH0
) · (1− qpkR

qC ·qH0
) · ( 1

qC ·qH0−qsv−qpkR
)

The probability that C randomly chooses the Y ∗ from L1
and Y ∗ is the solution of OGDH problem is 1

qH1
. So, the

probability that C finds the OGDH instance is as follows:

Pr[C(P, aP, bP) = abP]

= ε · (1−
qsv

qC · qH0

) · (1−
qpkR

qC · qH0

)

· (
1

qC · qH0 − qsv − qpkR
) · (

1
qH1

)

Therefore, the Pr[C(P, aP, bP) = abP] is non-negligible,
because ε is non-negligible.
Lemma 3: In the random oracle model, if there exists an

adversary AIII against the IND-eCLSC-TKEM-CCA2-III
security of the eCLSC-TKEMwith advantage a non-negligible
δ, then an algorithm C exists that solves the OGDH problem
with the following advantage ε

ε ≥ δ · (1−
t?

t
) · (1−

1
q
) · (

1
qC · qH0 − qppri − qsv

) · (
1
qH1

).

Here, qH0 , qH1 , qC , qppri and qsv are the maximum number
of queries that the PPT adversary may ask random oracles
H0 and H1, create (IDi), extract-partial-private-key queries
and extract-secret-value queries. t denotes the total possible
time assuming that the time begins at 0. t? is a valid time
period of the target identity.

Proof: Suppose that there exists a Type III adversary
AIII who can break the IND-eCLSC-TKEM-CCA2-III
security of the eCLSC-TKEM with a non-negligible proba-
bility in polynomial time. A challenger C is challenged with
an instance of the OGDH (One-sided Gap Diffie-Hellman)
problem. C can utilize AIII to compute the solution of the
OGDH instance by accessing a ODDH (One-sided Deci-
sion Diffie-Hellman)oracle. C sets the master private/public
key pair as (x,Ppub = xP), where P is the generator of
the group Gq and the hash functions Hi(0 ≤ i ≤ 3)
are treated as random oracles. C sends the system parame-
ters � = {Fq,E/Fq,Gq,P,Ppub,H0,H1,H2,H3} to AIII .
To maintain the consistency, C maintains lists Li(0 ≤ i ≤ 3)).
It also maintains a list of issued private keys and public
keys including valid time period in Lk . C can simulate the
challenger’s execution of each phase of the formal Game. Let
C select a random index j, where 1 ≤ j ≤ qC and fix IDj as
the target identity for the challenge phase. Let’s that AIII
was revoked at the time interval beginning at t?.
Phase I: AIII may make use of all random oracles

Hi(0 ≤ i ≤ 3) at any time and C responds as follows:

3742 VOLUME 5, 2017



J. Won et al.: Certificateless Cryptographic Protocols for Efficient Drone-Based Smart City Applications

Create(IDi): When AIII submits a Create(IDi) query to
C, C responds as follows: (1) If case 1 (IDi 6= IDj) or
case 2 (IDi = IDj and tj < t?), C picks ei, bi, xi ∈R Z∗q ,
then sets H0(IDi,Ri,Pi, ti) = −ei, Ri = eiPpub + biP and
computes the public key as Pi = xiP. di = bi and it satisfies
the equation diP = Ri + H0(IDi,Ri,Pi, ti)Ppub. C inserts
〈IDi,Ri,Pi, ti,−ei〉 into the list L0 and 〈IDi, di, xi,Ri,Pi, ti〉
into the list Lk . (2) If IDi = IDj and tj > t?, C chooses
ej, xj ∈R Z∗q and sets H0(IDj,Rj,Pj, tj) = −ej, Pj = xjP,
and Rj = ejPpub − Pj + aP. Here, C does not know a. C uses
the aP given in the instance of the OGDH problem. C inserts
〈IDj,Rj,Pj, tj,−ej〉 into the list L0 and 〈IDj,⊥, xj,Rj,Pj, tj〉
into the list Lk .
H0 queries: When AIII submits a H0 query with IDi, C

searches the list L0. If there is a tuple 〈IDi,Ri,Pi, ti,−ei〉, C
responds with the previous value −ei. Otherwise, C chooses
ei ∈R Z∗q and returns −ei as the answer. Then, C inserts
〈IDi,Ri,Pi, ti,−ei〉 into the list L0.
H1 queries: When AIII submits a H1 query with

(Yi,Vi,Ti, IDj,Pj, IDi,Pi), where i 6= j, C checks whether
the ODDH oracle returns 1 when queried with (aP,Vi,Ti).
If the ODDH oracle returns 1, C outputs Ti and stop. Then C
goes through the L1 with entries 〈Yi,Vi, ∗, IDj,Pj, IDi,Pi, li〉,
for different values of li, such that the ODDH oracle returns
1 when queried on the tuple (aP,Vi,Ti). Note that in this
case IDi = IDj and tj > t?. If such a tuple exists, it returns
li and replaces the symbol ∗ with Ti. Otherwise, C chooses
l ∈R {0, 1}n and updates the L1, which is initially empty, with
a tuple containing the input and return values. C then returns
l to AIII .
H2 queries: C checks whether 〈U , τ,T , IDA,PA, IDB,

PB, hi〉 exists in the L2. If it exists, C returns H =

hi to AIII . Otherwise, C chooses hi ∈R Z∗q , adds
〈U , τ,T , IDA,PA, IDB,PB, hi〉 to the L2 and returns H = hi
to AIII .
H3 queries: C checks whether 〈U , τ,T , IDA,PA, IDB,

PB, h′i〉 exists in the L3. If it exists, C returns H ′ =
h′i to AIII . Otherwise, C chooses h′i ∈R Z∗q , adds
〈U , τ,T , IDA,PA, IDB,PB, h′i〉 to the L3 and returns H

′
= h′i

to AIII .
Extract-Partial-Private-Key queries: In order to respond

to the query for the partial private key of a user with IDi, C
performs the following steps: (1) If IDi = IDj and tj > t?,
C aborts the execution. (2) If case 1 (IDi 6= IDj) or case 2
(IDi = IDj and tj < t?), C retrieves 〈IDi, di, xi,Ri,Pi, ti〉
from Lk , returns (di,Ri) which satisfies the equation diP =
Ri + H0(IDi,Ri,Pi, ti)Ppub.
Extract-Secret-Value queries:AIII produces IDi to C and

requests a secret value of IDi. If case 1 (the public key of IDi
has not been replaced and IDi 6= IDj) or case 2 (the public
key of IDi has not been replaced, IDi = IDj and tj < t?),
then C responds with xi by retrieving from Lk . If AIII has
already replaced the public key of IDi, C does not provide the
corresponding secret value toAIII . If IDi = IDj and tj > t?,
C aborts.

Request-Public-Key queries: AIII produces IDi to C
and requests a public key of IDi. C checks in the Lk for
〈IDi, di, xi,Ri,Pi, ti〉. If it exists, C returns the corresponding
public key (Ri,Pi, ti). Otherwise, C recalls Create(IDi) query
to obtain (Ri,Pi, ti) and returns (Ri,Pi, ti).
Public-Key-Replacement queries: AIII chooses val-

ues (R′i,P
′
i, t
′
i ) to replace the public key (Ri,Pi, ti) of

IDi. C updates the corresponding tuple in the Lk as
〈IDi,−,−,R′i,P

′
i, t
′
i 〉. The current value of the user’s pub-

lic key is used by C for responses to any queries made
by AIII .
Symmetric Key Generation queries: AIII produces a

sender’s IDA, public key (RA,PA, tA), the receiver’s IDB and
public key (RB,PB, tB) to C. For each query (IDA, IDB), C
proceeds as follows: (1) If case 1 (IDA 6= IDj) or case 2
(IDA = IDj and tj < t?), C computes skA corresponding
to IDA by executing the Extract-Partial-Private-Key and
Extract-Secret-Value algorithm. Then, C gets K and ω by
running the actual SymmetricKeyGen algorithm. C stores
ω and overwrite any previous value. C sends K to AIII .
(2) If IDA = IDj and tj > t?, C chooses r1, r2, ht , h′t ∈R
Z∗q and computes U = r1P − ht−1 · aP + ht−1 · Pt ,
V = r2P, Y = RB + H0(IDB,RB,PB, tB) · Ppub +
PB, T = r2 · Y mod q=r2 · (H0(IDB,RB,PB, tB)Ppub +
RB + PB) mod q and K = H1(Y ,V ,T , IDA,PA, IDB,PB),
where RB and PB are obtained by calling the Request-
Public-Key query oracle on IDB. Note that ω is ω =

(r1, r2, ht , h′t ,U ,V ,T , IDA, pkA, IDB, pkB). (3) C goes
through the L1 looking for an entry (Y ,V ,T , IDA,PA, IDB,
PB, k) for some k such that ODDH(PB,V ,Y )=1. If such an
entry exists, it computes K ← l. Otherwise it uses a random
l and updates the L1 with (Y ,V , ∗, IDA,PA, IDB,PB, l). C
stores ω and sends K to AIII .
Key Encapsulation queries: AIII produces an arbitrary

tag τ , the sender’s IDA, public key (RA,PA, tA), the receiver’s
IDB and public key (RB,PB, tB) and sends them to C. The
full private key of the sender skA = (dA, xA) is obtained
from the Lk . C checks whether a corresponding ω value has
been stored previously. (1) If ω does not exist, C returns an
invalid reply. (2) If case 1 (a corresponding ω exists and
IDA 6= IDj) or case 2 (a corresponding ω exists, IDA = IDj
and tj < t?), then C computes ϕ with ω and τ by using
the actual Encapsulation algorithm, and deletes ω. (3) If
a corresponding ω exists, IDA = IDj and tj > t?, then
C computes ϕ by performing the following steps. Note that
ω is (r1, r2, hj, h′j,U ,V ,T , IDA, pkA, IDB, pkB) and C does
not know the private key corresponding to IDt . So C should
perform the encapsulation in a different way:
• H = hj and add 〈U , τ,T , IDA,PA, IDB,PB, hj〉 to L2.
• H ′ = h′j and add 〈U , τ,T , IDA,PA, IDB,PB, h′j〉 to L3.
• Compute W = hj · r1 + h′j · xA.
• Output ϕ = (U ,V ,W ) as the encapsulation.

We show that AIII can pass the verification of ϕ =
(U ,V ,W ) to validate the encapsulation, because the equality
W ·P = RA+H0(IDA,RA,PA, tA)·Ppub+H ·U+H ′ ·PA holds
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as follows: RA+H0(IDA,RA,PA, tA) ·Ppub+H ·U +H ′ ·PA
= aP+ ejPpub − Pj + (−ej) · Ppub + H · (r1P− hj−1 · aP+
hj−1 · Pj)+ H ′ · PA = hj · r1P+ h′j · PA = W · P
Key Decapsulation queries: AIII produces an encapsu-

lation ϕ = (U ,V ,W ), a tag τ , the sender’s IDA, the pub-
lic key (RA,PA, tA), the receiver’s IDB and the public key
(RB,PB, tB) to C. The full private key of the receiver skB =
(dB, xB) is obtained from the list Lk . (1) If case 1 (IDB 6=
IDj) or case 2 (IDB = IDj and tj < t?), then C computes
the decapsulation of ϕ by using the actual Decapsulation
algorithm. (2) If IDB = IDt and tj > t?, then the point
cannot be computed. In order to return a consistent answer, C
computes K from ϕ as follows:

• Searches in the L2 and L3 for entries 〈U , τ,T , IDA,PA,
IDB,PB, hj〉 and 〈U , τ,T , IDA,PA, IDB,PB, h′j〉,
respectively.

• If H = hj and H ′ = h′j exist then C checks whether the
equalityW · P = RA +H0(IDA,RA,PA, tA) · Ppub +H ·
U + H ′ · PA holds.

• If the above equality holds, the T is retrieved from the
L2 and L3. Both the T values should be equal.

• C goes through L1 and looks for 〈Y ,V ,T , IDB,PB, l〉
such that the ODDH oracle returns 1 when queried on
the (aP,V ,T ). If such entry exists, the corresponding
K ← l value is returned as the decapsulation of ϕ.

• If C reaches this point of execution, it puts the entry
〈Y ,V , ∗, IDA,PA, IDB,PB, l〉 for a random l on the L1
and returns K ← l. The ∗ denotes an unknown value.
The identity component with ∗ is a receiver IDB.

Challenge: At the end of Phase I, AIII sends a sender’s
IDA∗ and a receiver’s IDB∗ to C. Here, the partial private
key of the revoked receiver was not queried in Phase I. Let
the time t ′∗j ∈ (t∗j, t∗j + α). C aborts the game if case 1
(IDB∗ 6= IDj) or case 2 (IDB∗ = IDj and t ′∗j < t?).
Otherwise, C performs the following steps to compute the
challenge encapsulation ϕ∗:

• Choose r ∈R Z∗q and compute U∗ = rP.
• Set V ∗ = bP and choose T ∗ ∈R Gq. Here, C does not
know b. C uses the bP given in the instance of the OGDH
problem.

• Choose K0 ∈R K, where K is the key space of the
eCLSC-TKEM.

• Choose a random hash value l∗ and set K1 = l∗.
• C chooses a bit δ ∈R {0, 1} and sends Kδ to AIII .
• AIII generates τ ∗ and sends it to C.
• Choose hi, h′i ∈R Z∗q, store 〈U∗, τ ∗,T ∗, IDA∗,PA∗,
IDB∗,PB∗, hi〉 to the L2 and 〈U∗, τ ∗,T ∗, IDA∗,PA∗,
IDB∗,PB∗, h′i〉 to the L3.

• Since C knows the sender’s private key, C computes
W ∗ = dA∗ + r · hi + xA∗ · h′i.

• C returns ϕ∗ = 〈U∗,V ∗,W ∗〉.

Phase II:AIII adaptively queries the oracles as in Phase I.
Besides it cannot query decapsulation on ϕ∗.
Guess: Since AIII can break the IND-eCLSC-TKEM-

CCA2-III security (which is assumed at the beginning of

the proof), AIII should have asked a H1 query with
(Y ∗,V ∗,T ∗, IDA∗,PA∗, IDB∗ ,PB∗ ) as inputs. It is to be noted
that T ∗ = b ·Y ∗ = b ·(−ej ·Ppub+ej ·Ppub−Pj+aP+PB∗ ) =
ab · P, where Pj = PB∗ because of IDj = IDB∗. Therefore, if
the L1 has qH1 queries corresponding to the sender IDA∗ and
receiver IDB∗ , one of the T ∗’s among qH1 values stored in
the list L1 is the solution for the OGDH problem instance.
C chooses one T value uniformly at random from the qH1

values from the L1 and outputs it as the solution for theOGDH
instance.
Analysis: C lets E1, E2 and E3 be the events in which C

aborts the IND-eCLSC-TKEM-CCA2-III game.
(1) E1: TheAIII returns decapsulation for t ′∗j < t?). The

probability is Pr[E1] = t?
t . t denotes the total possible

time and assuming that the time begins at 0.
(2) E2: An invalid public key replacement by AIII was

not detected. The probability is Pr[E2] = 1
q .

(3) E3: AIII does not choose the target identity IDj dur-
ing the challenge. The probability is Pr[E3] = 1 −

1
qC ·qH0−qppri−qsv

.

Thus, the probability that C does not abort the
IND-eCLSC-TKEM-CCA2-III game is

Pr[¬E1 ∧ ¬E2 ∧ ¬E3]

= (1−
t?

t
) · (1−

1
q
) · (

1
qC · qH0 − qppri − qsv

)

The probability that C randomly chooses the T from L1 and T
is the solution of OGDH problem is 1

qH1
. So, the probability

that C finds the OGDH instance is as follows:

Pr[C] = δ · (1−
t?

t
) · (1−

1
q
)

· (
1

qC · qH0 − qppri − qsv
) · (

1
qH1

)

Therefore, the Pr[C] is non-negligible, because δ is non-
negligible. This contradicts the OGDH assumption.
Theorem 2: In the random oracle model, the eCLSC-TKEM

is EUF-CMA secure under the assumption that the elliptic
curve discrete logarithm problem (ECDLP) is intractable.

Theorem 2 is proved based on Lemmas 4, 5 and 6.
We adopt the security proof techniques from [15].
Lemma 4: In the random oracle model, if there exists a

forger FI against the EUF-eCLSC-TKEM-CMA-I security
of the eCLSC-TKEM with advantage a non-negligible δ, then
there exists an algorithm C that solves the ECDLP with the
following advantage ε

ε ≥ δ · qE · (1−
qH0 · qC

q
) · (1−

q2H2

q
) · (1−

q2H3

q
) · (1+

1
q
)

· (
1
qC

) · (1−
qppri
qH0

) · (1−
qsv
qH0

).

Here, qC , qE , qHi , qppri and qsv are the maximum num-
ber of queries that the forger may make create (IDi)
queries, key encapsulation queries, random oracle queries to
Hi (0 ≤ i ≤ 3), extract-partial-private-key queries and
extract-secret-value queries.
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Proof: A challenger C is challenged with an instance
of the ECDLP. To solve the ECDLP, given 〈P, bP〉 ∈ Gq,
C must find b. Let FI be a forger who is able to break the
EUF-eCLSC-TKEM-CMA-I security of the eCLSC-TKEM.
C can utilize FI to compute the solution b of the ECDLP
instance by playing the following interactive game with FI .
To solve the ECDLP, C sets the master private/public key pair
as (x,Ppub = xP), where P is the generator of the group
Gq and the hash functions Hi(0 ≤ i ≤ 3) are treated as
random oracles. The C sends the system parameter � =
{Fq,E/Fq,Gq,P,Ppub,H0,H1,H2,H3} to FI . In order to
avoid the inconsistency between the responses to the hash
queries, C maintains lists Li(0 ≤ i ≤ 3)). It also maintains a
list Lk to maintain the list of issued private keys and public
keys including the valid time period. C can simulate the
Challenger’s execution of each phase of the formal game.
Training Phase: FI may make a series of polyno-

mially bounded number of queries to random oracles
Hi(0 ≤ i ≤ 3) at any time and C responds as fol-
lows: All the oracles and queries needed in the training
phase are identical to those of the Create(IDi) queries,
H0 queries, H1 queries, H2 queries, H3 queries, Extract-
Partial-Private-Key queries, Extract-Secret-Value queries,
Public-Key-Replacement queries, Symmetric Key Genera-
tion queries, Key Encapsulation queries and Key Decapsu-
lation queries in IND-eCLSC-TKEM-CCA2-I game.
Forgery: Eventually, FI returns a valid encapsulation
〈τ, ϕ = (U ,V ,W ), IDA, IDB〉 on a arbitrary tag τ , where IDA
is the sender identity and IDB is the receiver identity, to C.
If IDA = IDj, C aborts the execution of this game. Otherwise,
C searches the list L2 and outputs another valid encapsulation
〈τ, ϕ∗ = (U ,V ,W ∗), IDA, IDB〉 with different h∗i such that
h∗i 6= hi on the same τ as done in forking lemma [39]. Thus,
we can get W · P = RA − ej · Ppub + hi · U + h′i · PA and
W ∗ ·P = RA− ej ·Ppub+ h∗i ·U + h

′
i ·PA. Let U = bP. Then

if we subtract these two equations, we get following value.

W ∗ · P−W · P = h∗i · U − hi · U
⇒ (W ∗ −W )P = (h∗i − hi) · U
⇒ (W ∗ −W )P = (h∗i − hi) · bP
⇒ (W ∗ −W ) · (h∗i − hi)

−1
= b

Therefore, FI solves the ECDLP as b = W ∗−W
h∗i −hi

using the
algorithm C for given a random instance 〈P, bP〉 ∈ Gq.
Analysis: In order to assess the probability of success of

the challenger C. We assume that FI can ask qC create
(IDi) queries, qE key-encapsulation queries and qHi random
oracle queries to Hi (0 ≤ i ≤ 3). We also assume that
FI never repeats Hi (0 ≤ i ≤ 3) a query with the same
input.
• The success probability of the Create(IDi) query execu-
tion is (1−

qH0
q )qC ≥ 1−

qH0 ·qC
q .

• The success probability of the H2 query execution is

(1−
qH2
q )qH2 ≥ 1−

q2H2
q .

• The success probability of the H3 query execution/ is

(1−
qH3
q )qH3 ≥ 1−

q2H3
q .

• The success probability of the key encapsulation query
execution is qE

(1− 1
q )
≥ qE · (1+ 1

q ).

• The probability of both IDi = IDj is 1
qC

• The probability thatFI queries the partial private key of
the target identity IDt is

qppri
qH0

.
• The probability thatFI asks to query the set secret value
of the IDt is

qsv
qH0

.
Thus, the success probability that C can win the
EUF-eCLSC-TKEM-CMA-I game is

ε ≥ δ · qE · (1−
qH0 · qC

q
) · (1−

q2H2

q
) · (1−

q2H3

q
)

· (1+
1
q
) · (

1
qC

) · (1−
qppri
qH0

) · (1−
qsv
qH0

)

Therefore, the probability that C computes the solution of
ECDLP is non-negligible, because δ is non-negligible.
Lemma 5: In the random oracle model, if there exists a

forger FII against the EUF-eCLSC-TKEM-CMA-II secu-
rity of the eCLSC-TKEM with advantage a non-negligible δ,
then there exists an algorithm C that solves the ECDLP with
the following advantage ε

ε ≥ δ · qE · (1−
qH0 · qC

q
) · (1−

q2H2

q
) · (1−

q2H3

q
) · (1+

1
q
)

· (
1
qC

) · (1−
qsv
qH0

) · (1−
qpkR
qH0

).

Here, qC , qE , qHi , qpkR and qsv are the maximum number
of queries that the forger may make create (IDi) queries,
key encapsulation queries, random oracle queries to Hi
(0 ≤ i ≤ 3), public key replacement queries and extract-
secret-value queries.

Proof: A challenger C is challenged with an instance of
the ECDLP. Given 〈P, aP〉 ∈ Gq, C must find a. Let FII
be a forger who is able to break the EUF-eCLSC-TKEM-
CMA-II security of the eCLSC-TKEM. C can utilize FII to
compute the solution a of the ECDLP instance by playing the
following interactive game withFII . To solve the ECDLP, C
chooses s ∈R Z∗q, sets the master public key Ppub = sP, where
P is the generator of the group Gq and the hash functions
Hi(0 ≤ i ≤ 3) are treated as random oracles. Then C
sends the system parameter � = {Fq,E/Fq,Gq,P,Ppub =
sP,H0,H1,H2,H3} and the master private key s to FII . In
order to avoid the inconsistency between the responses to the
hash queries, C maintains lists Li(0 ≤ i ≤ 3). It alsomaintains
a list Lk of issued private keys and public keys. C can simulate
the challenger’s execution of each phase of the formal Game.
Training Phase: FII may make a series of polynomially

bounded number of queries to random oracles Hi(0 ≤ i ≤ 3)
at any time and C responds as follows:
All the oracles and queries needed in the training phase are
identical to those of the Create(IDi) queries, H0 queries,
H1 queries, H2 queries, H3 queries, Extract-Partial-Private-
Key queries, Extract-Secret-Value queries, Public-Key-
Replacement queries, Symmetric Key Generation queries,
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Key Encapsulation queries and Key Decapsulation queries in
IND-eCLSC-TKEM-CCA2-II game.
Forgery: Eventually, FII returns a valid encapsulation
〈τ, ϕ = (U ,V ,W ), IDA, IDB〉 on an arbitrary tag τ to C,
where the target identity IDt is the sender identity IDA and
IDB is the receiver identity. The public key of the sender
IDt should not be replaced during the training phase. The
secret value of the target identity IDt should not be queried
during the training phase. C searches the list L3 and outputs
another valid encapsulation 〈τ, ϕ∗ = (U ,V ,W ∗), IDt , IDB〉
with different h

′
∗
i such that h

′
∗
i 6= h′i on the same τ as done in

the forking lemma [39]. Thus, we can get W · P = Rt − lt ·
Ppub+ht ·U+h′t ·Pt andW

∗
·P = Rt−lt ·Ppub+ht ·U+h

′
∗
t ·Pt .

Note that Pt = aP. Then if we subtract these two equations,
we obtain following value.

W ∗ · P−W · P = h
′
∗
i · Pt − h

′
i · Pt

⇒ (W ∗ −W )P = (h
′
∗
i − h

′
i) · aP

⇒ (W ∗ −W )P = (h∗i − h
′
i)] · aP

⇒ (W ∗ −W ) = (h∗i − h
′
i) · a

⇒ (W ∗ −W ) · (h∗i − h
′
i)
−1
= a

Therefore, FII solves the ECDLP as a = W ∗−W
h∗i −h

′
i
using the

algorithm C for a given random instance 〈P, aP〉 ∈ Gq.
Analysis: In order to assess the probability of success of the

challenger C. We assume that FII can ask qC , create (IDi)
queries, qE key encapsulation queries, qHi random oracle
queries to Hi (0 ≤ i ≤ 3), qsv set-secret-value queries, and
qpkR public key replacement queries. We also assume that
FII never repeats Hi (0 ≤ i ≤ 3) query with the same
input.
• The success probability of the Create(IDi) query execu-

tion is (1−
qH0
q )qC ≥ 1−

qH0 ·qC
q .

• The success probability of the H2 query execution

is (1−
qH2
q )qH2 ≥ 1−

q2H2
q .

• The success probability of the H3 query execution

is (1−
qH3
q )qH3 ≥ 1−

q2H3
q .

• The success probability of the key encapsulation query
execution is qE

(1− 1
q )
≥ qE · (1+ 1

q ).

• The probability that IDi = IDt is 1
qC

.
• The probability that FII queries the secret value of the
target identity IDt is

qsv
qH0

.

• The probability that FII asks to replace the public key
of the IDt is

qpkR
qH0

.

So, the success probability that C can win the
EUF-eCLSC-TKEM-CMA-II game is

ε ≥ δ · qE · (1−
qH0 · qC

q
) · (1−

q2H2

q
) · (1−

q2H3

q
) · (1+

1
q
)

· (
1
qC

) · (1−
qsv
qH0

) · (1−
qpkR
qH0

)

Therefore, the probability that C computes the solution of
ECDLP is non-negligible, because ε is non-negligible.
Lemma 6: In the random oracle model, if there exists a

forgerFIII against the EUF-eCLSC-TKEM-CMA-III secu-
rity of the eCLSC-TKEM with advantage a non-negligible δ,
then there exists an algorithm C that solves the ECDLP with
the following advantage ε

ε ≥ δ · qE · (1−
qH0 · qC

q
) · (1−

q2H2

q
) · (1−

q2H3

q
) · (1+

1
q
)

· (
1
qC

) · (1−
t?

t
).

Here, qC , qE and qHi are the maximum number of queries
that the forger may make create (IDi) queries, key encapsu-
lation queries, random oracle queries to Hi (0 ≤ i ≤ 3).
t denotes the total possible time and assuming that the
time begins at 0. t? is a valid time period of target
identity

Proof: A challenger C is challenged with an instance of
the ECDLP. To solve the ECDLP, given 〈P, bP〉 ∈ Gq, C must
find b. Let FIII be a forger who is able to break the EUF-
eCLSC-TKEM-CMA-III security of the eCLSC-TKEM. C
can utilize FIII to compute the solution b of the ECDLP
instance by playing the following interactive game with
FIII . To solve the ECDLP, C sets the master private/public
key pair as (x,Ppub = xP), where P is the generator of
the group Gq and the hash functions Hi(0 ≤ i ≤ 3) are
treated as random oracles. The C sends the system parame-
ter � = {Fq,E/Fq,Gq,P,Ppub,H0,H1,H2,H3} to FIII .
In order to avoid the inconsistency between the responses to
the hash queries, C maintains lists Li(0 ≤ i ≤ 3)). It also
maintains a list Lk to maintain the list of issued private keys
and public keys including the valid time period. C can sim-
ulate the Challenger’s execution of each phase of the formal
game.
Training Phase: FIII may make a series of poly-

nomially bounded number of queries to random oracles
Hi(0 ≤ i ≤ 3) at any time and C responds as fol-
lows: All the oracles and queries needed in the training
phase are identical to those of the Create(IDi) queries,
H0 queries, H1 queries, H2 queries, H3 queries, Extract-
Partial-Private-Key queries, Extract-Secret-Value queries,
Public-Key-Replacement queries, Symmetric Key Genera-
tion queries, Key Encapsulation queries and Key Decapsu-
lation queries in IND-eCLSC-TKEM-CCA2-III game.
Forgery: Eventually, FIII returns a valid encapsulation
〈τ, ϕ = (U ,V ,W ), IDA, IDB〉 on a arbitrary tag τ , where
IDA is the sender identity and IDB is the receiver identity,
to C. If IDA = IDj and t ′∗j > t?, C aborts the execution
of this game. Otherwise, C searches the list L2 and outputs
another valid encapsulation 〈τ, ϕ∗ = (U ,V ,W ∗), IDA, IDB〉
with different h∗i such that h∗i 6= hi on the same τ as done in
forking lemma [39]. Thus, we can getW ·P = RA−ej ·Ppub+
hi ·U + h′i ·PA andW

∗
·P = RA− ej ·Ppub+ h∗i ·U + h

′
i ·PA.

Let U = bP. Then if we subtract these two equations, we get
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following value.

W ∗ · P−W · P = h∗i · U − hi · U

⇒ (W ∗ −W )P = (h∗i − hi) · U

⇒ (W ∗ −W )P = (h∗i − hi) · bP

⇒ (W ∗ −W ) · (h∗i − hi)
−1
= b

Therefore, FIII solves the ECDLP as b = W ∗−W
h∗i −hi

using the
algorithm C for given a random instance 〈P, bP〉 ∈ Gq.
Analysis: In order to assess the probability of success of the

challenger C. We assume that FIII can ask qC create (IDi)
queries, qE key-encapsulation queries and qHi random oracle
queries to Hi (0 ≤ i ≤ 3). We also assume that FIII / never
repeats Hi (0 ≤ i ≤ 3) a query with the same input.
• The success probability of the Create(IDi) query execu-

tion is (1−
qH0
q )qC ≥ 1−

qH0 ·qC
q .

• The success probability of the H2 query execution

is (1−
qH2
q )qH2 ≥ 1−

q2H2
q .

• The success probability of the H3 query execution

is (1−
qH3
q )qH3 ≥ 1−

q2H3
q .

• The success probability of the key encapsulation query
execution is qE

(1− 1
q )
≥ qE · (1+ 1

q ).

• The probability of both IDi = IDj and t ′∗j > t? is 1
qC
·

(1− t?
t ). t denotes the total possible time and assuming

that the time begins at 0.
Thus, the success probability that C can win the
EUF-eCLSC-TKEM-CMA-III game is

ε ≥ δ · qE · (1−
qH0 · qC

q
) · (1−

q2H2

q
) · (1−

q2H3

q
) · (1+

1
q
)

· (
1
qC

) · (1−
t?

t
)

Therefore, the probability that C computes the solution of
ECDLP is non-negligible, because δ is non-negligible.

APPENDIX B
SECURITY PROOF OF CL-MRES
If we remove the functionality of the digital signature from
eCLSC-TKEM, the well-known hybrid encryption scheme
with certificateless approach, called certificateless hybrid
encryption scheme (CLHES) can be constructed. A certifi-
cateless hybrid encryption scheme for multi-receivers called
CL-MRES is constructed by applying the random re-use
technique to CLHES.

A DEFINITION OF REPRODUCIBLE CERTIFICATELESS
HYBRID ENCRYPTION
Fix a certificateless hybrid encryption scheme
CLHES=(SetUp, KeyGen, HybridEncryption, HybridDe-
cryption). Let R be an algorithm that takes as input common
public parameters, a full public key, and a ciphertext of a
random message, another random message together with a
full public-private key pair, and returns a ciphertext. Consider
the following experiment.

Experiment ExpCLHES,R(k)
�← SetUp(1k ); (pk, sk)← KeyGen(�)
M ← {0, 1}∗; s← Z∗q
C ← HybridEncryption(�, s,M , pk)
(pk ′, sk ′)← KeyGen(�); M ′← {0, 1}∗
If HybridEncryption(�, s,M ′, ID′, pk ′) = R(�, ID, pk,C,
M ′, ID′, pk ′, sk ′) then return 1.
Else return 0.
EndIf

We say that CLHES is reproducible if for any k there exists
a random polynomial time algorithm R, called a reproduction
algorithm, such thatExpCLHES,R(k) outputs 1 with probability
equal to 1.
Lemma 7: Our certificateless hybrid encryption scheme

CLHES=(SetUp, KeyGen, HybridEncryption, Hybrid-
Decryption) is reproducible.

Proof: On input (�, pk, (s · P,C),M ′, ID′, t ′, pk ′, sk ′),
where � = (Fq,E/Fq,Gq,P,Ppub,H0,H1,H2,H3), pk =
(x · P, r · P), pk ′ = (x ′ · P, r ′ · P), sk ′ = (x ′, d ′), we can
construct a reproduction algorithm R returns as follows:
R(�, pk, (s · P, τ ),M ′, ID′, t ′, pk ′, sk ′)

Parse � as (Fq,E/Fq,Gq,P,Ppub,H0,H1,H2,H3)
Y ′← R′+H0(ID′,R′,P′, t ′)·Ppub+P′, T ′← (d ′+x ′)·(s·P)
K ′← H1(Y ′, s · P,T ′, ID′,P′)
τ ′← ENCK ′ (M ′)
Return (s · P, τ ′)
R first computes a secret key K ′ for a symmetric encryption
algorithm ENC by using given s · P.
We can know the output of HybridEncryption on input

(�, s,M ′, ID′, pk ′) is (s · P, τ ′) as follows:
HybridEncryption(�, s, M’, ID’, pk’)

Parse � as (Fq,E/Fq,Gq,P,Ppub,H0,H1,H2,H3)
Given s, V ← s · P
Parse pk ′ as (R′,P′, t ′)
Y ′← R′ + H0(ID′,R′,P′, t ′) · Ppub + P′

T ′← s · Y ′; K ′ = H1(Y ′,V ,T ′, ID′,P′)
τ ′← ENCK ′ (M ′)
Return (V (= s · P), τ ′)
Therefore, it is easy to see that the experiment ExpCLHES,R(k)
always outputs 1.

According to Bellare et al.’s reproducibility theorem [22],
we have the following theorem.
Theorem 3: Fix a certificateless hybrid encryption scheme

CLHES=(SetUp, KeyGen, HybridEncryption, Hybrid-
Decryption). Let CL-MRES be the associated certificate-
less multi-recipient encryption scheme obtained by apply-
ing the random re-use technique. If CLHES is repro-
ducible and provides IND-CCA2 security against an adaptive
chosen-ciphertext and identity attack, then the corresponding
CL-MRES is IND-CCA2 secure under the same assumption
that the one-sided gap Diffie-Hellman (OGDH) problem is
intractable.

Proof: We know that CLHES is IND-CCA2 secure in
a single-receiver setting due to the IND-CCA2 security of
eCLSC-TKEM (see the Theorem 1 in Appendix A). Thus,
the Theorem 3 is proved based on Theorem 1 and Lemma 7.
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APPENDIX C
SECURITY PROOF OF CLDA
Our CLDA is a variant signed ElGamal encryption [35] com-
bining EC-ElGamal encryption with the signing function of
our eCLSC-TKEM. The output message of the Sensor data
encryption step of the CLDA scheme is an EC-ElGamal
ciphertext together with the eCLSC-TKEM based signature
of that ciphertext. So, the security of CLDA is based on
the unforgeability of eCLSC-TKEM and the confidential-
ity of the EC-ElGamal encryption. Here, the confidential-
ity is defined as indistinguishability under chosen plaintext
attacks (IND-CPA) while unforgeability is defined as exis-
tential unforgeability against adaptive chosen messages and
identity attacks (EUF-CMA). eCLSC-TKEM is EUF-CMA
secure under the assumption that the elliptic curve discrete
logarithm problem (ECDLP) is intractable (See the Theorem
2 in Appendix A). Moreover, it is not possible to forge or
expose the full private key of an entity based on the difficulty
of ECDLP without the knowledge of both KGC’s master
private key and an entity’s secret value. EC-ElGamal encryp-
tion is IND-CPA (indistinguishability under chosen plaintext
attack) secure under the decisional ECDH (elliptic curve
Diffie-Hellman) assumption: given a pair (xP, yP) of uni-
formly random and independent group elements it is hard to
tell xyP from another independent, uniformly random group
element zP [40].
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