
Received February 17, 2017, accepted March 15, 2017, date of publication March 20, 2017, date of current version April 24, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2684465

Direction Finding in MIMO Radar With
Unknown Mutual Coupling
CE ZHANG, HUIPING HUANG, (Student Member, IEEE), and BIN LIAO, (Senior Member, IEEE)
College of Information Engineering, Shenzhen University, Shenzhen 518060, China

Corresponding author: B. Liao (binliao@szu.edu.cn)

This work was supported by the Natural Science Foundation of China under Grant 61401284 and Grant 61471365.

ABSTRACT Multiple-input multiple-output (MIMO) radar has received much attention due to its potentials
in offering improved performance for target detection and parameter estimation. It has been shown that
the performance of direction finding techniques can be considerably enhanced in MIMO radar, since an
extended virtual array can be employed. In general, the performance gain is achieved by assuming that
both the transmitter and receiver are well calibrated without uncertainties. However, in practice, both the
transmitter and receiver may suffer from various array imperfections such as mutual coupling. Hence, the
problem of direction finding in MIMO radar with unknown mutual coupling is investigated in this paper.
Computationally efficient algorithms are developed to estimate the directions-of-arrival by exploiting the
structure of mutual coupling matrix of the transmitter and receiver equipped with uniform linear arrays.
Moreover, it is shown that the proposed methods can be applied to scenarios in which the transmitter or
receiver has other imperfections, for example, sensor position perturbations or gain/phase mismatches.
Simulation results demonstrate that the proposed methods are able to effectively eliminate the negative
influence of unknownmutual coupling on direction finding and offer improved performance over the existing
methods.

INDEX TERMS Multiple-input multiple-output (MIMO) radar, direction finding, direction-of-arrival
(DOA) estimation, mutual coupling.

I. INTRODUCTION
In the last decade, multiple-input multiple-output (MIMO)
radar has been attracting significant attention. Comparedwith
traditional phased array radar, MIMO radar possesses a num-
ber of advantages such as resolution enhancement, fading
mitigation and barrage jamming [1]–[7].MIMO radar utilizes
multiple antennas to transmit independent waveforms as well
as multiple antennas to receive the reflected signals such that
the performance of parameter estimation can be improved
with signal diversity. In general, MIMO radar can be classi-
fied into two categories according to the configuration of the
transmit and receive antennas [8], [9]. More specifically, one
is MIMO radar with widely separated antennas and the other
is MIMO radar with colocated antennas. In this paper, we are
concerned with the latter, and hence, the angle of target with
respect to the transmit and receive antennas are the same.

It is known that angle estimation is an important aspect
of parameter estimation in MIMO radar and a number
of estimation algorithms have been presented [10]–[15].
For instance, the Capon method has been applied to

estimate the direction of departure (DOD) and the direction
of arrival (DOA) of targets in bistatic MIMO radar in [10].
However, this method needs two-dimensional (2-D) angular
searching, which demands high computational complexity.
In order to avoid the 2-D search, in [11], the ESPRIT method
is employed by exploiting the shift invariant property of
the transmit and receive arrays. Since an extra procedure of
angle paring is required after the DOD and DOA have been
obtained, another algorithm which also makes use of the shift
invariant concept but is free of angle paring was developed
in [12]. Compared with the approach in [11], this method
can offer similar performance of angle estimation with less
computational complexity.

The above methods provide good performance in the
case of both transmit and receive array are well calibrated.
However, in practical applications, due to the presence of
mutual coupling, the performance of these algorithms will
be degraded greatly [16]–[20]. Therefore, various methods
have been developed to deal with this problem. For exam-
ple, in [16], a MUSIC-like algorithm is introduced to tackle
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the unknown mutual coupling by taking advantage of the
Toeplitz structure of the mutual coupling matrix (MCM).
A decoupling-complex matrix (DCCM) method was pro-
posed by using auxiliary sensors to eliminate the influence
of mutual coupling in [17]. The property of shift invariance
is extracted in the new data for the angle estimation. This
method exploits the subarrays of the transmit and the receive
arrays, which would lead to certain performance loss. In [18],
a root-MUSIC based method is proposed by selecting output
data of partial sensors.

To further investigate the problem of direction in MIMO
radar with mutual coupling, a MUSIC-like algorithm based
on rank reduction of a matrix related to the noise subspace
is first introduced in this paper. To reduce the computa-
tional complexity, a new ESPRIT-like method is devised.
The mutual coupling is tackled by a new parameterziation
of the steering vectors of the transmitter and receiver. Unlike
existing approaches, the proposed one is able to make a better
use of the array aperture. Furthermore, the proposed ESPRIT-
like method allows the transmitter or receiver has other
uncertainties, such as gain and phase uncertainties [21]–[23]
and sensor position perturbations, rather than mutual cou-
pling, provided that either the receiver or transmitter (but not
both) has unknown mutual coupling only.

The remainder of the paper is organized as follows.
In Section II, the colocated MIMO radar signal model is
introduced. The mutual coupling and associated data mod-
els are given in Section III. Direction finding methods with
unknown mutual coupling are presented in Section IV and
the consideration of other array imperfections is discussed in
Section V. Simulation results are given in Section VI. Finally,
conclusions are drawn in Section VII.

II. MIMO RADAR SYSTEM MODEL
Consider a MIMO radar system with the transmitter hav-
ing M antennas and the receiver having N antennas. It is
assumed that the transmitter and receiver are collocated
and the transmitter transmit M orthogonal waveforms sm(t),
m = 1, 2, ...,M , where t is the fast time index, i.e., the time
index within one radar pulse. In other words, we have∫

Tp
si(t)s∗j (t)dt =

{
1, if i = j
0, otherwise

(1)

where ∗ denotes the conjugate transpose and Tp represents
the pulsewidth.

Assume that L targets with distinct DOAs {θ1, θ2, · · · , θL}
are present, then the radar return of the lth target is given by

rl(t, τ ) = αl(τ )aTT (θl)s(t) (2)

where τ is the index of the pulse and is also known as slow
time index, αl(τ ) denotes the reflection coefficient of the lth
target, which is assumed to be a constant during each pulse
but time-varying over the slow time index, aT (θl) ∈ CM×1

denotes the steering vector of the transmitter corresponding

to the lth target and s(t) ∈ CM×1 is the waveform vector

s(t) = [s1(t), s2(t), · · · , sM (t)]T . (3)

Let aR(θl) ∈ CN×1 be the steering vector of the
receiver corresponding to the lth target, the observation
vector x(t, τ ) ∈ CN×1 at the receiver can be written as

x(t, τ ) =
L∑
l=1

aR(θl)rl(t, τ )+ v(t, τ )

=

L∑
l=1

αl(τ )aR(θl)aTT (θl)s(t)+ v(t, τ ) (4)

where v(t, τ ) is a vector of zero-mean additive white
Gaussian noise (AWGN) which is independent of the
signals. Matching the receiver observation with sm(t), we
have ym(τ ) ∈ CN×1 as follows

ym(τ ) =
∫
Tp
x(t, τ )s∗m(t)dt

=

L∑
l=1

αl(τ )aR(θl)aTT (θl)
∫
Tp
s(t)s∗m(t)dt + ṽ(t, τ )

=

L∑
l=1

αl(τ )aR(θl)aT ,m(θl)+ ṽm(t, τ ) (5)

where aT ,m(θl) is the mth entry of aT (θl) and ṽ(t, τ ) =∫
Tp
v(t, τ )s∗m(t)dt ∈ CN×1. Stacking the outputs of all

matched filters, one gets y(τ ) ∈ CMN×1 as

y(τ ) = [yT1 (τ ), y
T
2 (τ ), · · · , y

T
M (τ )]T

=

L∑
l=1

(aT (θl)⊗ aR(θl)) αl(τ )+ v(τ ) (6)

where ⊗ denotes the Kronecker product and v(τ ) =
[ṽT1 (τ ), ṽ

T
2 (τ ), · · · , ṽ

T
M (τ )]T ∈ CMN×1 is the noise term with

covariance matrix of σ 2
n I , where I denotes an identity matrix

with appropriate dimension.
It is worth mentioning that the outputs of the matched

filters can be also stacked as follows

z(τ ) = vec{[y1(τ ), y2(τ ), · · · , yM (τ )]T }

=

L∑
l=1

(aR(θl)⊗ aT (θl)) αl(τ )+ n(τ ) (7)

where z(τ ) ∈ CMN×1, n(τ ) ∈ CMN×1, and vec{·} denotes
the vectorization operator. It has been well studied that when
the steering vectors of the transmitter and receiver, i.e., aT (θ ),
aR(θ ), are exactly known, conventional high-resolution algo-
rithms such as MUSIC and ESPRIT can be used to determine
the unknown DOAs. However, in this paper we are interested
in the cases in which the transmitter and receivers suffer from
imperfections. In particular, the unknown mutual coupling of
the transmitter and receiver are considered.
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III. ARRAY MUTUAL COUPLING
In practice, both the transmitter and receiver would suf-
fer from mutual coupling. Typically, mutual coupling is
undesirable because energy that should be radiated away is
absorbed by a nearby antenna. Similarly, energy that could
have been captured by one antenna is instead absorbed by a
nearby antenna. Hence, mutual coupling reduces the antenna
efficiency and performance of antennas. According to the
principle of reciprocity (i.e., the receive and transmit prop-
erties of an antenna are identical), antennas have the same
properties in the transmit and receive mode. Let us take the
receiver for example, the mutual coupling matrix (MCM)
C ∈ CN×N can be expressed as [24], [25]

C = (ZA + ZL)(Z+ ZLI)−1 (8)

where ZA and ZL are the antenna impedance and terminating
load, respectively. Z denotes the mutual impedance matrix.
In the absence of mutual coupling, the off-diagonal entries of
Z are zero and hence, C is an identity matrix, i.e., C = I .

In general, mutual coupling has no specific property except
that it is inversely proportional to the distance between two
antenna elements. However, in uniform linear arrays (ULAs),
the MCM has a symmetric Toeplitz structure owing to the
symmetric geometry of the array. Thus, a simplified param-
eterization of the MCM can be expressed as (see [26] and
related references therein)

Cij = c|i−j|, with c0 = 1 (9)

where Cij denotes the (i, j)-th entry of C . Furthermore, it
is known that the magnitude of the coupling parameter
decreases quite fast, therefore, the mutual coupling can be
sufficiently approximated as zero when two antennas are
separated by few inter-element spacings. Thus, it is possible
to further simplify the MCM as

Cij =


1, i = j
ck , k = |i− j| ≤ P− 1, i 6= j
0, otherwise

(10)

which shows that the mutual coupling is ignorable when two
elements are separated by at least P inter-element spacings.
Thus, the mutual coupling coefficient vector composed of the
nonzero entries as c = [1, c1, c2, · · · , cP−1]T ∈ CP×1. It can
be seen that theMCM in ULAs is a banded complex symmet-
ric Toeplitz matrix given by C = Toeplitz{[cT , 01×(N−P)]},
where Toeplitz{·} returns a symmetric Toeplitz matrix having
the bracketed vector as its first row.

To avoid confusions, we now utilize CT and CR to
denote the MCM of the transmitter and receiver, respectively.
Accordingly, let cT ∈ CPT×1 and cR ∈ CPR×1 denote
the mutual coupling coefficient vectors, PT and PR are the
parameters of P defined in (10). Hence, in the presence of
mutual coupling, the steering vectors of the transmitter and
receiver should be respectively written as

aT = CT ăT (θ ) and aR = CRăR(θ ) (11)

where ăT (θ ) and ăR(θ ) are the nominal steering vectors. As a
result, the output vector of the matched filters should be
written as

y(τ ) =
L∑
l=1

(
(CT ăT (θl))⊗ (CRăR(θl))

)
αl(τ )+ v(τ ) (12)

or in the other form which stems from (7) as

z(τ ) =
L∑
l=1

(
(CRăT (θl))⊗ (CT ăR(θl))

)
αl(τ )+ n(τ ) (13)

In the following section, the unknown mutual coupling is
taken into account in the problem of direction finding in
MIMO radar deployed ULAs in the transmitter and receiver.

IV. DIRECTION FINDING WITH MUTUAL COUPLING
A. MUSIC-LIKE METHOD
In order to determine the DOAs in the presence of unknown
mutual coupling, a MUSIC-like approach has been devel-
oped based on the rank reduction of a matrix related to
the subspace. Basically, the following transformation is
exploited [16]

Că(θ ) = T(θ )c (14)

where T(θ ) = T1(θ ) + T2(θ ) ∈ CN×P, the (i, j)-th entry of
T1(θ ) and T2(θ ) are respectively given by

[T1(θ )]ij =

ăi+j−1(θ ), i+ j ≤ N + 1

0, otherwise
(15)

and

[T2(θ )]ij =

ăi−j+1(θ ), i ≥ j ≥ 2

0, otherwise.
(16)

Using the above identities, one gets

b(θl) , (CT ăT (θl))⊗ (CRăR(θl)

= (TT (θ )cT )⊗ (TR(θ )cR)

= (TT (θ )⊗ TR(θ )) (cT ⊗ cR)

= TTR(θ )cTR (17)

where TTR(θ ) , TT (θ ) ⊗ TR(θ ) ∈ CMN×PTPR and cTR ,
cT ⊗ cR ∈ CPTPR×1. Recalling the subspace principle, it
is known that the matrix B = [b(θ1),b(θ2), · · · ,b(θL)] ∈
CMN×L spans the same space as the matrix US ∈ C

MN×L ,
which is composed of the L principal eigenvectors of the
output covariance matrix Ry = E{y(t)yH (t)}. This implies
that we have span{B} = span{US} and hence

B = USW (18)

where W ∈ CL×L is a nonsingular matrix. Moreover, the
matrix B (and vectors b(θl), l = 1, 2, · · · ,L) is orthogo-
nal to the matrix UN ∈ C

MN×(MN−L), which is composed
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of the eigenvectors associated with the MN − L smallest
eigenvalues. As a result, we have

bH (θl)UNUH
N b(θl) = (cT ⊗ cR)HQ(θl)(cT ⊗ cR)

= cHTRQ(θl)cTR = 0 (19)

where cTR , cT ⊗ cR and Q(θl) is given by

Q(θl) = THTR(θl)
HUNUH

NT
H
TR(θl). (20)

In general,Q(θ ) has full rank, however, it has reduced rank
if θ coincides with the true DOAs {θ1, θ2, · · · , θL}. There-
fore, the following MUSIC-like spectrum can be utilized to
find the DOAs

G(θ ) =
1

det{Q̂(θ )}
(21)

where det{·} denotes the determinant of the bracketed matrix,
Q̂(θl) = THTR(θl)

H ÛN ÛH
NT

H
TR(θl), and ÛN is typically

obtained from the eigendecomposition of the covariance
matrix estimate

R̂ =
1
J

J∑
τ=1

y(τ )yH (τ ) (22)

where J denotes the number of pulse. The positions of
the L highest peaks indicate the DOAs. However, the
MUSIC-like method is computationally expensive due to
the exhaustive spectral grid search. Moreover, it is sen-
sitive to other array imperfections (other than mutual
coupling) as discussed later in the next section. To this
end, a computationally more efficient algorithm is presented
below.

B. ESPRIT-LIKE METHOD
For notational simplicity, let us denote the nominal steering
vector of ULA as ă(θ ) = [1, β(θ ), · · · , β(θ )N−1]T ∈ CN×1,
where β(θ ) = exp(j2πλ−1d sin θ ), λ represents the signal
carrier wavelength, and d is the inter-element spacing. Then,
as shown in [26], the true steering vector can be reparameter-
ized as follows

Că(θ ) = γ (θ )0(θ )ă(θ ) (23)

where γ (θ ) is given by

γ (θ ) = 1+
P−1∑
i=1

ci
(
β(θ )i + β(θ )−i

)
. (24)

It should be mentioned that γ (θ ) is assumed to be nonzero,
otherwise, the transmitter/receiver cannot transmit/receive
signal at the angle θ . In (23), 0(θ ) ∈ CN×N is a diagonal
matrix defined as

0(θ ) = diag{[µ1, · · · , µP−1, 1, · · · , 1, α1, · · · , αP−1]}

(25)

where diag{·} constructs a diagonal matrix from the bracketed
vector, µk and αk , k = 1, 2, · · · ,P, are respectively given by

µk =
1+

∑P−1
i=1 ciβ(θ )

i
+
∑k−1

i=1 ciβ(θ )
−i

γ (θ )
(26a)

αk =
1+

∑P−1
i=1 ciβ(θ )

−i
+
∑P−1−k

i=1 ciβ(θ )i

γ (θ )
(26b)

Note that there are Ñ = N − 2P+ 2 ones between µP−1 and
α1 in (25). To avoid confusions, in the sequel, we shall use
Ñ = N − 2PR + 2, and M̃ = M − 2PT + 2 for the receiver
and transmitter of the MIMO radar, respectively. According
to (23), we have

b(θ ) = aT (θ )⊗ aR(θ )
= aT (θ )⊗ (γR(θ )0R(θ )ăR(θ ))
= γR(θ )aT (θ )⊗ (0R(θ )ăR(θ )). (27)

Let us define a matrix J̄1 = IM×M ⊗ J1 ∈ CM (Ñ−1)×MN ,
where J1 = [0(Ñ−1)×(PR−1), I(Ñ−1)×(Ñ−1), 0(Ñ−1)×PR ] ∈
C(Ñ−1)×N . Similarly, let J̄2 = IM×M ⊗ J2 ∈ CM (Ñ−1)×MN

with J2 = [0(Ñ−1)×PR , I(Ñ−1)×(Ñ−1), 0(Ñ−1)×(PR−1)] ∈
C(Ñ−1)×N . Therefore, we have

b1(θ ) = J̄1b(θ )
= γR(θ )(IM×M ⊗ J1)(aT (θ )⊗ (0R(θ )ăR(θ )))
= γR(θ )aT (θ )⊗ (J10R(θ )ăR(θ ))
= γR(θ )aT (θ )⊗ (J1ăR(θ ))
= γR(θ )aT (θ )⊗ ăR1(θ ) (28)

where ăR1(θ ) = [ăR(θ )]P:(N−P) is a subvector composed of
the P-th to (N − P)-th entries of ăR(θ ). Similarly, one gets

b2(θ ) = J̄2b(θ ) = γR(θ )aT (θ )⊗ ăR2(θ ) (29)

where ăR2(θ ) = [ăR(θ )](P+1):(N−P+1). Careful examination
shows that ăR2(θ ) = β(θ )ăR1(θ ), which yields

b2(θ ) = β(θ )γR(θ )aT (θ )⊗ ăR1(θ ) = β(θ )b1(θ ) (30)

and hence, B2 = J̄2B = B18 ∈ C
M (Ñ−1)×L , where 8 is an

L × L diagonal matrix as

8 = diag[β(θ1), β(θ2), · · · , β(θL)]. (31)

Following the above procedure, it can be obtained that

US1 = J̄1US = J̄1BW = B1W ∈ CM (Ñ−1)×L (32a)

US2 = J̄2US = J̄2BW = B2W ∈ CM (Ñ−1)×L . (32b)

Using the identity B2 = B18 and after some manipulations,
we can further get

US2 = US1W−18W = US1� (33)

where � = W−18W ∈ CL×L . It is readily known that 8
corresponds to the eigenvalues of �, i.e.,

β(θl) = ωl, l = 1, 2, · · · ,L (34)

where ωl denote the l-th eigenvalue of �.
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The above analysis shows that the DOAs can be estimated
from the estimate of �. According to (33), it is known that,
once the estimates of US1 and US2 are available, � can
be estimated from the following total least squares (TLS)
problem

minimize
11,12,�

‖[11,12]‖F

subject to (ÛS1 +11)� = ÛS2 +12 (35)

where 11 and 12 are the estimation errors of US1 and US2,
respectively, and ‖·‖F denotes the Frobenius norm. In order to
solve the above problem, let the singular value decomposition
of [US1 US2] as

[ÛS1 ÛS2] = [Û1 Û2]
[
6̂1 0
0 6̂2

][
V̂11 V̂12

V̂21 V̂22

]H
(36)

where Ûi ∈ CM (Ñ−1)×L , 6̂i ∈ CL×L , V̂ij ∈ CL×L , and
i, j ∈ {1, 2}. Therefore, the solution to the TLS problem (35)
is given by

�̂ = −V̂12V̂−122 . (37)

Finally, assume ω̂l is the lth eigenvalue of �̂ and recalling that
ωl = β(θl) = exp(j2πλ−1d sin θl), then the lth DOA can be
estimated as follows

θ̂l = arcsin
(
λ 6 ω̂l

2πd

)
(38)

where 6 returns the angle of the complex argument.
Remark: It is worth mentioning that the above derivations

are based on the data model in (6), and accordingly, the
reparameterization (23) is applied to the receiver steering
vector only. In fact, it is straightforward to apply the proposed
approach to the data model in (7) by reparameterizing the
transmitter steering vector in the same manner.
Complexities: In order to obtain the estimates of the signal

and noise subspaces, i.e., ÛS and ÛN , both the MUSIC-like
and ESPRIT-like algorithms require an eigendecomposi-
tion of R̂ with a complexity of O(M3N 3). In addition, the
MUSIC-like algorithm requires a spectral search with a com-
plexity of O(κP3TP

3
R), where κ is the number of sampling

points in the search domain, and the ESPRIT-like algorithm
needs to carry out the singular value decomposition (36) with
a complexity of O(M3(Ñ − 1)3). Since N > Ñ − 1 and κ
is usually large, in summary the complexity of the MUSIC-
like algorithm is O(κP3TP

3
R) and the complexity of the

MUSIC-like algorithm is O(M3N 3).

V. CONSIDERATION OF OTHER ARRAY IMPERFECTIONS
It is well known that apart from mutual coupling, antenna
arrays may also suffer from other imperfections such
as gain/phase uncertainties and sensor position perturba-
tions [27]–[29]. Therefore, in a general form, the steering
vector should be written as

a(θ ) = P(θ )ă(θ ) (39)

FIGURE 1. Comparison of the spatial spectra of MUSIC algorithm and
MUSIC-like method (Case-I).

where P(θ ) denotes the uncertainty matrix and can be mod-
eled according to different types of uncertainties as follows:
• In the case of mutual coupling, we have P(θ ) = C.
• In the case of angularly independent gain/phase,P(θ ) is a
diagonal matrix with its diagonal entries being unknown
angularly independent sensor gains/phases.

• In the case of sensor position perturbations, P(θ ) is also
a diagonal matrix, but its diagonal entries are angularly
dependent.

• In the case of mixed uncertainties, P(θ ) is general matrix
without specific structure.

It should be noted that mutual coupling can be also regarded
as angularly dependent gain/phase. As shown in (23), we have
P(θ ) = γ (θ )0(θ ).
An interesting question may be raised is how to esti-

mate the DOA when other array imperfections exist or when
there is no specific structure of P(θ )? From the analysis in
Section IV, it is noticed that the MUSIC-like method can
only handle the case where both the transmitter and receiver
have mutual coupling only. On the contrary, the ESPRIT-
like method has no specific requirement of the steering
vector of the transmitter if we use the data model (6). This
implies that the transmitter can theoretically have any kinds
of uncertainties. On the other hand, when the model (7) is
employed, the ESPRIT-like method is applicable to cases
where the transmitter has mutual coupling only whereas the
receiver has any other uncertainties. Unfortunately, if both
the transmitter and reviver have arbitrary uncertainties other
than mutual coupling, the proposed method is not applicable.
Since this direction is out the scope of this work, it is not
further considered herein.

VI. SIMULATION RESULTS
In this section, various simulations are performed to demon-
strate the performance of the proposed methods. It is assumed
that both transmitter and receiver are equipped with ULAs
with half-wavelength inter-element spacing. Three targets are
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FIGURE 2. DOA estimation results of 50 experiments of the proposed
ESPRIT-like algorithm, SNR = 0 dB (Case-I).

FIGURE 3. RMSE of DOA estimation of the proposed ESPRIT-like
algorithm versus SNR for different N (Case-I).

located at −15◦, 15◦ and 30◦. In our examples, it is assumed
that M = N = 7, unless otherwise specified in Example 2.
The performance is measure in terms of the root mean square
error (RMSE) calculated from 1000 Monte Carlo trials.

A. CASE I-MUTUAL COUPLING ONLY
First, we assume that the transmitter and receiver are not
calibrated with unknown mutual coupling. Moreover, it is
assumed that PT = PR = 3 and the mutual coupling
coefficient vectors for the transmitter and receiver arrays are
cT = cR = [1, 0.1174+ 0.0577j,−0.0121− 0.1029j]T . The
snapshot number is 500 and SNR=0dB.

Fig. 1 shows the resultant normalized spectra of the
MUSIC and MUSIC-like methods. It can be noticed that
if we perform MUSIC algorithm without properly taking
the unknown mutual coupling into account, the accuracy
as well as the resolution of this method are significantly
degraded. However, all DOAs can be correctly estimated by
the MUSIC-like method.

FIGURE 4. RMSE of DOA estimation of the proposed ESPRIT-like
algorithm versus SNR for different M (Case-I).

FIGURE 5. Comparison of the RMSEs of DOA estimation of different
methods versus SNR (Case-I).

Fig. 2 depicts the DOA estimation results of 50 inde-
pendent experiments by using the ESPRIT-like algorithm.
Obviously, it is observed that this method performs stably and
the DOAs can be accurately estimated. Comparing with the
MUSIC-like algorithm, the ESPRIT-like method is computa-
tionally more efficient.

To further examine the performance of ESPRIT-like algo-
rithm in the cases of different numbers of antennas deployed.
Fig. 3 (Fig. 4) displays the curves of RMSE versus SNR
in the case of same number of antennas in the transmitter
(receiver) but different numbers of antennas in the receiver
(transmitter). As expected, the DOA estimation performance
improves along with the increase of SNR as well as number
of antennas either in the transmitter or receiver.

We now compare the ESPRIT-like algorithm with existing
methods including the DCCM [17], root-MUSIC [18], and
the MUSIC with exactly known mutual coupling. The SNR
is varied from −10 dB to 10 dB. Fig. 5 shows the resulting
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FIGURE 6. RMSE of DOA estimation of different methods versus the
number of snapshots (Case-I).

FIGURE 7. DOA estimation results of 50 experiments of the proposed
ESPRIT-like algorithm, SNR = 0 dB (Case-II).

RMSEs versus the SNR. It is seen that root-MUSIC method
perform slightly better than the DCCM algorithm. However,
both of these two algorithms are outperformed by the pro-
posed ESPRIT-like method. The main reason is that both the
DCCM and root-MUSIC only exploit partial array elements
of the transmitter and receiver, whereas the proposed one is
able to make better use of all array elements.

Following the above setting, we further evaluate the the
proposed ESPRIT-like method by varying the SNR from
−10dB to 10dB when M = N = 7. The RMSE of DOA
estimation at each tested SNR is calculated, In this simula-
tion, RMSEs are obtain 1000 independent realization. Fig. 5
shows the resultant RMSEs versus the SNR. The proposed
method is compared with the DCCM [17], root-MUSIC [18],
and MUSIC with exactly known mutual coupling. It can be
noticed that the root-MUSIC method [18] is better than the
ESPRIT-like method [17], but the angle estimation perfor-
mance of our method is better than both of them. Because the

FIGURE 8. RMSE of DOA estimation of proposed ESPRIT-like algorithm
versus SNR (Case-II).

FIGURE 9. RMSE of DOA estimation of the proposed ESPRIT-like
algorithm versus SNR for different numbers of snapshots J (Case-II).

DCCM and root-MUSIC only exploit partial array elements
of the transmit and receive. So our method can achieve the
better angle estimation performance.

We vary the number of snapshots from 100 to 800. The
RMSE of DOA estimation is calculated for each tested num-
ber of snapshots. The resultant RMSEs versus the number of
snapshots are shown in Fig. 6. It can be observed that the pro-
posed method performs a good performance which is better
than ESPRIT-like algorithm and root-MUSIC algorithm.

B. CASE II-WITH GAIN/PHASE ERRORS
Now, the second case of transmit or receive with gain/phase
errors is considered. The gains and phases are generated from
uniform distributions U [1 − ρ, 1 + ρ] and U [−φ, φ], and
assume that ρ = 0.5, φ = π , the snapshot number is
500, Fig. 7 shows the results of 50 Monte Carlo tests with
SNR = 0dB for all three targets. From the result, it can be
concluded that the proposed ESPRIT-like method have good
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FIGURE 10. Comparison of the RMSEs of DOA estimation versus ρ
with φ ∈ [π/10, π] (Case-II).

FIGURE 11. Comparison of the RMSEs of DOA estimation versus φ
with ρ ∈ [0.2,0.9] (Case-II).

performance when the transmit has gain/phase and receive
has mutual coupling. Furthermore, the proposed method can
not only suffer from the mutual coupling but also deal with
the other imperfections of the transmit or receive.

We vary the SNR from −10dB to 10dB. The resultant
RMSEs versus the SNR are shown in Fig. 8. As the simu-
lation results are described, the DCCM and the root-MUSIC
algorithms are completely ineffective when the transmit or
receive have gain/phase error. However, the proposed method
still has good performance.

Fig. 9 presents the angle estimation performance of our
scheme with M = N = 7, and different values of J . The
SNR from −10dB to 20dB. It has been shown that the angle
estimation error will be reduced when J increases. Fig. 10
and Fig. 11 shows the RMSEs of DOA estimation verse ρ
and φ when the transmitter has mutual coupling and receiver
has gain/phase, respectively. Note that, we vary φ from
π/10 to π with a step size of 0.2 in Fig. 10 and vary ρ from
0.2 to 0.9 with a step size of 0.05. From the results, it can

be concluded that the proposed methods are insensitive to
the values of the gains and phases, though the performance
may slightly perturb due to different values of the gains and
phases.

VII. CONCLUSION
Since the ignorance of unknown mutual coupling in MIMO
radar may lead to significant performance of direction
finding, a new ESPRIT-like algorithm is developed by
exploiting the structure of the MCM of transmitter and
receiver equipped with ULAs. Unlike the existing MUSIC-
like algorithm, the proposed method is more computationally
efficient. Moreover, compared the DCCM algorithm which
also uses a shift invariance concept, the proposed method
can make better use of the array aperture, and hence, better
DOA estimation performance. Additionally, extensions of the
proposed method can be made to handle other uncertainties
such as gain/phase errors. Simulation results demonstrate
the improved performance of the proposed method and its
extended version.
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