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ABSTRACT In this paper, we investigate secure simultaneous wireless information and power
transfer (SWIPT) in a two-tier downlink heterogeneous network (HetNet), wherein the ambient interference
signals are exploited for both secure communications and wireless energy harvesting. We assume one
macrocell base station (MBS) and several femtocell base stations (FBSs) simultaneously send information
to their macrocell users (MUs) and femtocell users, respectively. Meanwhile, the FBSs also transfer energy
to some energy receivers, who act as the potential eavesdroppers and are able to wiretap the confidential
messages to one MU via the cross-tier interference links. Exploiting interference in the considered HetNet,
we jointly optimize the beamforming vectors and artificial noise of the MBS and the FBSs to maximize the
secrecy rate of the eavesdropped MU under the quality-of-service, energy harvesting, and transmit power
constraints at relevant receivers/transmitters. In particular, we first investigate the ideal case with perfect
eavesdropper’s channel state information (ECSI) and the optimization problem turns out to be nonconvex.
By using the tools of semidefinite relaxation (SDR) and one-dimensional line search, we successfully transfer
the original problem into a more tractable two-stage problem to obtain the optimal solution. Furthermore, we
extend our study to the imperfect ECSI case, where the worst-case based solution is obtained with the aid of
SDR and successive convex approximation. Simulation results demonstrate the effectiveness of the proposed
algorithms and also bring useful insights into the design of secure SWIPT in the presence of interference.

INDEX TERMS Beamforming, heterogeneous network, interference, simultaneous wireless information
and power transfer (SWIPT), semidefinite programming (SDP).

I. INTRODUCTION
Due to the dramatic increase of the smart phones along with
the emerging future applications, the fifth generation (5G)
wireless systems will require extremely high data rate,
ubiquitous coverage and reliable secrecy performance [1].
The deployment of low cost and plug-and-play devices,
such as the femtocell base stations (FBSs) underlaid in the
conventional macrocell, can provide better coverage and
higher throughput for indoor users [2]. Therefore, heteroge-
neous networks (HetNets) have been regarded as one of the
most promising techniques in the next generation wireless
systems [3], [4]. As the densification of various types of
heterogeneous transmission nodes and/or antennas, the inter-
ference might become severe. Traditional wisdom treats
interference as harmful or useless from communications’

perspective. Recently, as the emerging of wireless pow-
ered communications and the quick development of wireless
energy harvesting (EH) devices, interference as a special form
of ambient radio-frequency (RF) signal, can be the energy
source of low-power energy receivers (ERs) for self-sustained
wireless communications [5], [6]. To this regard, densely
deployed HetNets bear potentials to enable more efficient
wireless power transfer and usage.

By integrating RF power transfer with traditional wire-
less information transmission, simultaneous wireless infor-
mation and power transfer (SWIPT) has been considered
as one of the major candidate technologies towards green
communications [7], [8]. Recently, there are some interesting
works integrating SWIPT with HetNet [9], [10]. More specif-
ically, [9] presents a tractable analytical model for K -tier
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HetNets with SWIPT, and the outage probability and the
average ergodic rate are derived with several typical cell
association strategies. In [10], two kinds of beamformers,
namely, zero-forcing and mixed beamforming, are proposed
to maximize the information transmission efficiency (ITE)
and the energy harvesting efficiency (EHE), which reveals
the fundamental tradeoff between ITE and EHE. However,
in HetNets with SWIPT, the messages intended to the infor-
mation receivers (IRs) may be at risk of being eavesdropped
by the ERs, which brings great challenges to secure SWIPT
in HetNets.

Recently, physical-layer security (PLS) [11]–[13] has
emerged as a complementary solution to the conventional
higher-layer cryptographic methods, and can guarantee
the perfect secrecy communication from the information-
theoretic perspective. Exploiting the characteristics of wire-
less channels, such as fading, noise, and interference, PLS can
achieve secure transmission to the intended receiver, while
defending against the eavesdroppers [14]. Various PLS tech-
niques have been investigated in relay networks [15], [16],
interference alignment based networks [17], [18] and
HetNets [19], [20], and the developments and applications for
SWIPT are more recent works [21].

A. RELATED WORK AND CONTRIBUTIONS
The majority of the secrecy transmission schemes with
SWIPT are designed for the broadcasting channel
(BC) [22]–[26], where the perfect eavesdropper’s channel
state information (ECSI) is assumed. However, the trans-
mitter may not obtain the perfect ECSI due to the practical
limitations, such as the quantization error, the delay error
and the limited capacity of the feedback channel. Assuming
imperfect ECSI at the transmitter, there are some valuable
works on the robust secrecy beamforming design for the
SWIPT BC [27]–[33]. To be more specific, [28] investigates
the system with one IR, one ER and one eavesdropper,
and the suboptimal Gaussian randomization solutions are
proposed based on the semidefinite relaxation (SDR) upper
and lower bounds. In [29], multiple ERs act as the potential
eavesdroppers, and the information and energy beamform-
ing are jointly designed to maximize the minimum of the
harvested energy of the ERs for both perfect and imperfect
channel state information (CSI) cases, while guaranteeing the
signal-to-interference-plus-noise ratio (SINR) constraints of
the IR and the ERs. In [30], taking the power splitting IR
into consideration, the authors study the max-min fair EH
among multiple multi-antenna ERs with ECSI. In [31], the
secure beamforming with and without artificial noise (AN)
are designed for the SWIPT system with multiple ERs and
eavesdroppers considering both perfect and imperfect CSI at
the transmitter, and a novel bisection search based reforma-
tion is proposed to transform the secrecy rate maximization
problem into a sequence of the associated power minimiza-
tion problems. In [32], the transmit power minimization prob-
lem is studied subject to the outage probability constraints
for IRs and ERs, and a low-complexity second-order cone

program based iterative algorithm is proposed by applying
successive convex approximation (SCA) approach. Recently,
with the aid of large-dimensional random matrix theory, [33]
designs the optimal transmit covariance matrix to maximize
the ergodic secrecy rate for the MIMO SWIPT BC with sta-
tistical CSI at the transmitter. Moreover, secrecy SWIPT has
also been studied in relay networks [34] and cognitive radio
systems [35], respectively.

In summary, the existing research on secure SWIPTmainly
focuses on the traditional network architectures, and the
research on secrecy communication in HetNet with SWIPT is
still largely open. There are various types of co-channel inter-
ference (CCI) in the HetNet, which restricts the extension
of previous researches to secure SWIPT in HetNets straight-
forwardly. By properly designing the transmission scheme,
the various types of CCI in the HetNet can be utilized to
facilitate efficient power transfer and secure communications.
Moreover, under the practical consideration of the imperfect
ECSI at the transmitters, the problem becomes more compli-
cated and challenging, which motivates this work.

B. CONTRIBUTIONS
In this paper, we consider a two-tier downlink HetNet with
SWIPT, in which the macrocell base station (MBS) and
the FBSs conduct co-channel information transmission to
the corresponding macrocell users (MUs) and femtocell
users (FUs), respectively. At the same time, the FBSs transmit
energy beams to the ERs for wireless power transfer. Because
of the ambient useful and interference signals, the ERs can not
only harvest wireless energy but also wiretap the confidential
messages of a legitimate MU. Exploiting the interference,
an AN-aided secure transmission strategy is applied at the
MBS and the FBSs.Moreover, we investigate the joint collab-
orative information/energy transmit beamforming (TB) and
AN design to maximize the secrecy rate of the wiretapped
MU subject to the quality-of-service (QoS) constraints of the
unclassified MUs and FUs, the EH requirements at ERs and
the transmit power constraints at the MBS and the FBSs.
To begin with, the scenario of perfect ECSI at the MBS and
the FBSs are addressed to serve as the baseline. However, in
practice, the channel links connected with the eavesdroppers
exist channel uncertainties. Then, to tackle the imperfect
ECSI case, we consider the worst-case based robust joint
TB and AN design. More explicitly, our contributions are
summarized as follows:

1) Assuming perfect ECSI at the MBS and the FBSs, the
secrecy rate maximization problem in HetNet with SWIPT
is formulated. The problem is nonconvex and difficult to
solve. To this end, a two-stage optimization framework is
applied to transform the original problem. In particular, with
the help of rank relaxation, the inner stage is transformed into
a semidefinite programming (SDP) problem. The outer stage
turns to be a common one-dimensional line search problem.
Therefore, the original secrecy rate maximization problem
can be efficiently solved by dealing with a sequence of SDPs.
Moreover, we also prove that the relaxed problem always
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yields a rank-one solution, which indicates that the relaxation
is indeed tight.

2) With only imperfect ECSI at the MBS and the FBSs,
we consider a worst-case based optimization framework for
secrecy communications in HetNet with SWIPT. Particularly,
the TB and AN are jointly designed to maximize the worst-
case secrecy rate of the wiretapped MU under the QoS con-
straints of the unclassified MUs and the FUs, the worst-case
EH constraints at the ERs, and the transmit power constraints
at the MBS and the FBSs. We first characterize the imperfect
ECSI as an ellipsoidal uncertainty model. Then, our design
goal is reformulated into solving a nonconvex optimization
problem, which can be further transformed into a convex
problemwith the aid of rank relaxation and SCA. The approx-
imation can be refined at each iteration, which indicates that
a local optimum of the original optimization problem can be
obtained.

The rest of the paper is organized as follows: Section II
describes the two-tier downlink HetNet with SWIPT.
In Section III, a joint TB and AN design is proposed with
the perfect ECSI at the MBS and the FBSs. In Section IV,
the channel uncertainty model is characterized and the robust
joint TB and AN design is proposed. In Section V, numer-
ical results are provided to validate the effectiveness of the
proposed schemes. Finally, Section VI concludes the paper.
Notations: Vectors and matrices are denoted by bold lower

and upper case letters, respectively.E {·} denotes expectation.
(·)H represents the conjugate transpose. CN (m, 6) repre-
sents a complex Gaussian random vector with mean m and
covariance matrix 6. | · | and ‖ · ‖ represent the mode of
a complex number and the Euclidean norm, respectively.
CN×M and Im denote anN×M complex matrix and anm×m
identity matrix, respectively. Tr (·) and rank (·) represent the
trace operator and the rank of a matrix. X � 0 and X � 0
denote that X is Hermitian positive semidefinite and Hermi-
tian positive definite, respectively. [a, b] denotes the integer
set {a, a+ 1, ..., b}. [x]+ denotes max{0, x}.

II. SYSTEM MODEL
A two-tier downlink HetNet with SWIPT is considered,
which is shown in Fig. 1. The network consists of one
NM -antenna MBS and N NF -antenna FBSs. The MBS serves
M MUs and each FBS serves K FUs, where NM > M and
NF > K . There exists L ERs in the network and they can
harvest energy from the N FBSs to recharge their batteries
and prolong their work time. The MUs, FUs and ERs each
has a single antenna. The ERs can be viewed as the other
kind of FUs, which do not receive information from the FBSs.
At the same time, the ERs act as the potential eavesdroppers
and manage to wiretap the confidential message transmitted
to a legitimate MU. We assume that the transmit power of the
MBS and each FBS are PM and PF , respectively. The relevant
variables are summarized in Table 1.

It is assumed that the N FBSs can cooperatively employ
the CCI to enhance the secrecy rate and the EH performance
of the ERs. Suppose that the AN is transmitted at the MBS

FIGURE 1. Two-tier downlink HetNet with SWIPT, consisting of one MBS
and N FBSs. The MBS serves M MUs and each FBS serves K FUs.
L ERs harvest energy from the FBSs and manage to wiretap the
intended MU.

TABLE 1. List of the Major Variables

and the FBSs. Moreover, we assume the ERs are registered
users of the network, and the ECSI is available at the MBS
and FBSs to make the joint TB and AN design more tractable.
Based on this assumption, the transmit signal at the MBS and
the FBSn can be expressed as

x0 =
M∑
m=1

wmsm + z0, (1)

xn =
K∑
k=1

wnksnk + un + zn, (2)

where wm ∈ CNM×1 and sm with E
{
|sm|2

}
= 1, are

the beamforming vector and the information symbol for
MUm, respectively. Similarly, wnk ∈ CNF×1 and snk with
E
{
|snk |2

}
= 1 represent the information beamforming vector

VOLUME 5, 2017 4969



Y. Ren et al.: Secure Wireless Information and Power Transfer in HetNets

and the information symbol for FUnk . un =
∑d

i=1 unisE,ni is
the sum of d ≤ NF energy beams, in which uni ∈ CNF×1

and sE,ni ∼ CN (0, 1) denote the i-th energy beamforming
vector and the i-th energy-carrying noise signal, respectively.
Un =

∑d
i=1 uniu

H
ni denotes the energy covariance matrix of

un. zi ∈ CNF×1, i ∈ [0,N ], is the AN vector which satisfies
CN (0,Zi), and Zi denotes the covariance matrix of zi. The
transmit power constraints of the MBS and FBSn satisfy∑M

m=1 ‖wm‖
2
+ Tr(Z0) ≤ PM and

∑K
k=1 ‖wnk‖

2
+ ‖un‖2 +

Tr(Zn) ≤ PF , respectively.
The received signal at MUm is represented as

ym = hHmwmsm + hHm (
M∑
q6=m

wqsq + z0)

+

N∑
n=1

hHn,m(
K∑
k=1

wnksnk + un + zn)+ nm, (3)

where hm ∈ CNM×1 and hn,m ∈ CNF×1 represent the
channel vectors from theMBS and the FBSn to MUm, respec-
tively. nm is the additive white Gaussian noise (AWGN) at
MUm obeying independent and identically distributed (i.i.d.)
CN (0, σ 2

m). The fading channels are assumed to be i.i.d.
Rayleigh block fading channels. Without loss of generality,
assume that MU1 is wiretapped.

Similarly, the received signal at ERl is expressed as

yE,l = gHl w1s1 + gHl (
M∑
q=2

wqsq + z0)

+

N∑
n=1

gHn,l(
K∑
k=1

wnksnk + un + zn)+ nE,l, (4)

where gl ∈ CNM×1 and gn,l ∈ CNF×1 denote the channel
vectors from the MBS and the FBSn to ERl , respectively.
nE,l is the AWGN noise at ERl following i.i.d. CN (0, σ 2

E,l).
The received signal at FUnk can be represented as

ynk = hHn,nkwnksnk + hHn,nk (
K∑
t 6=k

wntsnt + un + zn)

+

N∑
p 6=n

hHp,nk (
K∑
t=1

wptspt + up + zp)

+hHnk (
M∑
m=1

wmsm + z0)+ nnk , (5)

where hnk ∈ CNM×1 and hp,nk ∈ CNF×1 denote the channel
vectors from the MBS and the FBSp to FUnk , respectively.
nnk is the AWGN noise obeying i.i.d. CN (0, σ 2

nk ). The SINR
of MUm is expressed as

SINRm =

∣∣hHmwm
∣∣ 2∑M

q 6=m

∣∣hHmwq
∣∣2 + ∣∣hHmz0∣∣2 + Bm + σ 2

m

,

where Bm =
∑N

n=1
∑K

k=1

∣∣hHn,mwnk
∣∣2 +∑N

n=1(
∣∣hHn,mun∣∣2 +∣∣hHn,mzn∣∣2). Similarly, the SINR of ERl is represented as1

SINRE,l =

∣∣gHl w1
∣∣ 2∑M

q=2

∣∣gHl wq
∣∣2 + ∣∣gHl z0∣∣2 + BE,l + σ 2

E,l

,

where BE,l =
∑N

n=1
∑K

k=1

∣∣∣gHn,lwnk

∣∣∣2 + ∑N
n=1

∣∣∣gHn,lzn∣∣∣2.
Finally, the SINR of FUnk is expressed as

SINRnk =

∣∣∣hHn,nkwnk

∣∣∣ 2∑M
m=1

∣∣hHnkwm
∣∣2 + ∣∣hHnkz0∣∣2 + Bnk + σ 2

nk

,

where Bnk =
∑K

t 6=k

∣∣∣hHn,nkwnt

∣∣∣2 + ∑N
p=1(

∣∣∣hHp,nkup∣∣∣2 +∣∣∣hHp,nkzp∣∣∣2)+∑N
p6=n

∑K
t=1

∣∣∣hHp,nkwpt

∣∣∣2. In the considered sce-
nario, it is assumed that the harvested energy at ERs includes
three parts: information beams, energy beams and AN of the
FBSs. Therefore, the harvested energy at ERl can be modeled
as2

QE,l = ε(
N∑
n=1

K∑
k=1

|gHn,lwnk |
2
+

N∑
n=1

|gHn,lun|
2
+

N∑
n=1

|gHn,lzn|
2),

(6)

where 0 ≤ ε ≤ 1 is the energy conversion efficiency. Then,
the secrecy rate can be formulated as

Rs = [log(1+ SINR1)− max
l∈[1,L]

log(1+ SINRE,l)]+. (7)

III. JOINT TB AND AN DESIGN WITH PERFECT ECSI
In this section, we study the joint TB and AN design with
perfect ECSI to secure the transmission of MU1 in HetNet
with SWIPT. In particular, by jointly designing the informa-
tion beamforming vectors, the energy covariance matrices
and the AN covariance matrices of the MBS and FBSs, we
aim to maximize the secrecy rate of MU1 subject to the
SINR constraints of the unclassified MUs and FUs, the EH
requirements of the ERs, and the transmit power constraints
of theMBS and the FBSs. Specifically, each cooperative FBS
sends its local CSI to theMBS, and the global CSI is available
at the MBS. Then, the beamforming vectors and the AN are
jointly optimized at the MBS with the aid of the global CSI.
The secrecy rate maximization problem is expressed as

max
wm,wnk ,
Un,Zi

min
l∈[1,L]

(log(1+ SINR1)− log(1+ SINRE,l)) (8a)

s.t. SINRm ≥ γm,m 6= 1, (8b)

SINRnk ≥ γnk ,∀n, k, (8c)

QE,l ≥ φl,∀l, (8d)

1As shown in [36], for the considered case, the energy beams only serve
as the pseudorandom signals and carry no information, and the energy beams
can be cancelled at each ER by a cancellation operation.

2Asmentioned in [35], the harvested energy of the ERs from theMBS and
the background noise are ignored as we focus on the worst-case scenario for
energy harvesting system design.
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M∑
m=1

‖wm‖
2
+ Tr(Z0) ≤ PM , (8e)

K∑
k=1

‖wnk‖
2
+ Tr(Un + Zn) ≤ PF ,∀n. (8f)

(8b) and (8c) represent the QoS constraints of the unclassi-
fied MUs and FUs, respectively. (8d) characterizes the EH
requirements of the ERs, which means that the harvested
energy should be higher than the given threshold. Finally,
(8e) and (8f) constrain the transmit power of the MBS and
the FBSs.Without loss of generality, we assume σ 2

m = σ
2
E,l =

σ 2
nk = 1.

A. JOINT TB AND AN DESIGN
Define Wm = wmwH

m and Wnk = wnkwH
nk . We further drop

the rank-one constraint for Wm and Wnk due to its noncon-
vexity, which results in an SDP problem that is convex. Then,
we introduce a slack variable t , and the relaxed problem is
represented as

max
Wm,Wnk ,
Un,Zi,t

1
t

(
1+

Tr(H1W1)
A1

)
(9a)

s.t.
Tr(HmWm)

Am
≥ γm,m 6= 1, (9b)

Tr(Hn,nkWnk )
Ank

≥ γnk ,∀n, k, (9c)

max
l∈[1,L]

(1+
Tr(GlW1)

AE,l
) ≤ t, (9d)

ε

N∑
n=1

Tr(Gn,lDn) ≥ φl,∀l, (9e)

M∑
m=1

Tr(Wm)+ Tr(Z0) ≤ PM , (9f)

K∑
k=1

Tr(Wnk )+ Tr(Un + Zn) ≤ PF ,∀n, (9g)

Wm,Wnk ,Un,Zi � 0,∀m, n, k, i, (9h)

where

Am =

N∑
n=1

Tr(Hn,mDn)+ Tr(Hm(D0 −Wm))+ 1,∀m,

Ank =

N∑
p=1

Tr(Hp,nk (Up + Zp))+
N∑
p6=n

K∑
t=1

Tr(Hp,nkWpt )

+Tr(HnkD0)+
K∑
t 6=k

Tr(Hn,nkWnt )+ 1,∀n, k,

AE,l = Tr(Gl(D0 −W1))+
N∑
n=1

Tr(Gn,l(Dn − Un))+ 1,∀l,

and D0 =
∑M

m=1Wm + Z0,Dn =
∑K

k=1Wnk + Un +

Zn, n ∈ [1,N ], Hm = hmhHm ,Gl = glgHl ,Hn,nk =

hn,nkhHn,nk ,Hn,m = hn,mhHn,m,Hnk = hnkhHnk ,Gn,l =

gn,lgHn,l . The logarithm function is monotonically increasing
and thus is dropped from the objective function. It is observed
that for a given t , the problem (9) can be transformed into
an SDP problem by Charnes-Cooper transformation [37].
To deal with the problem, a two-stage optimization frame-
work is employed. To this end, the inner stage part is quasi-
convex with fixed t , i.e., a linear fractional function, and the
outer stage part is a one-dimensional line search problem
with t .

For a fixed t , the inner stage optimization problem of (9)
is equivalent to

max
Wm,Wnk ,Un,Zi

Tr(H1W1)
A1

(10a)

s.t. (9b)−(9h). (10b)

Applying Charnes-Cooper transformation [37], the
problem (10) can be transformed into a convex problem.
We introduce the auxiliary variables Xm,Xnk ,Qn,Yi � 0,

ω > 0, i.e., Wm =
Xm
ω
,Wnk =

Xnk
ω
,Un =

Qn
ω

and
Zi = Yi

ω
, and the problem (10) is reformulated as (11),

shown at the top of the next page. In (11), we have C0 =∑M
m=1 Xm + Y0,Cn =

∑K
k=1 Xnk + Qn + Yn, n ∈ [1,N ].

As we can see, the problem (11) becomes a convex SDP
and can be solved efficiently by numerical solvers such as
SeDuMi [38]. Based on the discussion above, the prob-
lem (11) and the problem (10) have the same optimal solution,
i.e., (X̃m, X̃nk , Q̃n, Ỹi, ω̃), due to the equivalence between
them. Therefore, the optimal solution of the problem (9) can
be obtained by (W̃m =

X̃m
ω̃
, W̃nk =

X̃nk
ω̃
, Ũn =

Q̃n
ω̃
, Z̃i = Ỹi

ω̃
).

The outer stage part is a one-dimensional line search prob-
lem and can be expressed as

max
t

1+ D(t)
t

s.t. 1 ≤ t ≤ 1+ Tr(H1)PM ,

where D(t) is the optimal objective value of the problem (11)
for a given t . We can obtain the lower bound of t from (9d).
Considering the secrecy rate Rs ≥ 0, the upper bound of t
can be obtained by t ≤ 1 + Tr(H1W1)

A1
≤ 1 + Tr(H1W1) ≤

1+ Tr(H1)PM .
By performing one-dimensional line search, e.g., Golden

Section Search, we can get the optimal solution of the
problem (9), i.e., (W∗m,W

∗
nk ,U

∗
n,Z
∗
i , t
∗). Note that to get the

final solution, a sequence of SDP problems are supposed to
be solved. As we can see, the only difference between the
original problem (8) and the problem (10) is that the relaxed
rank-one constraints in the SDR process. If W∗m and W∗nk
satisfy the rank-one constraints, the optimal beamforming
vectors (w∗m,w

∗
nk ) can be obtained exactly by eigenvalue

decomposition. A proposition is proposed in the next sub-
section to prove that the optimal solution of problem (10) is
indeed rank-one.
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max
Xm,Xnk ,
Qn,Yi,ω

Tr(H1X1) (11a)

s.t. Tr(HmXm) ≥ γm(Tr(Hm(C0 − Xm))+
N∑
n=1

Tr(Hn,mCn)+ ω),m 6= 1, (11b)

Tr(Hn,nkXnk ) ≥ γnk (
K∑
t 6=k

Tr(Hn,nkXnt )+
N∑
p 6=n

K∑
t=1

Tr(Hp,nkXpt )

+

N∑
p=1

Tr(Hp,nk (Qp + Yp))+ Tr(HnkC0)+ ω),∀n, k, (11c)

Tr(GlX1) ≤ (t − 1)(Tr(Gl(C0 − X1))+
N∑
n=1

Tr(Gn,l(Cn −Qn))+ ω),∀l, (11d)

N∑
n=1

Tr(Gn,lCn) ≥
ωφl

ε
,∀l, (11e)

Tr(H1(C0 − X1))+
N∑
n=1

Tr(Hn,1Cn)+ ω = 1, (11f)

Tr(C0) ≤ PMω,Tr(Cn) ≤ PFω,Xm,Xnk ,Qn,Yi � 0, ω > 0,∀m, n, k, i. (11g)

B. TIGHTNESS ANALYSES FOR SDR
In this subsection, we analyze the tightness of SDR of the
problem (10). The direct analyses on the problem is difficult.
To this end, let us turn our concentration into the following
power minimization problem

min
Wm,Wnk ,
Un,Zi

(
M∑
m=1

Tr(Wm)+
N∑
n=1

K∑
k=1

Tr(Wnk )) (12a)

s.t. Tr(H1W1) ≥ F(t)A1, (12b)

Tr(HmWm) ≥ γmAm,m 6= 1, (12c)

Tr(Hn,nkWnk ) ≥ γnkAnk ,∀n, k, (12d)

Tr(GlW1) ≤ (t − 1)AE,l,∀l, (12e)
N∑
n=1

Tr(Gn,lDn) ≥
φl

ε
,∀l, (12f)

(9f)− (9h), (12g)

where F(t) is the optimal objective value of the
problem (10) for a fixed t . It can be verified that the optimal
solution (Wo

m,W
o
nk ,U

o
n,Z

o
i ) of the problem (12) is also a

feasible solution of the problem (10). Then, the correspond-
ing objective value satisfies Fo(t) ≤ F(t), where Fo(t) can
be calculated by substituting (Wo

m,W
o
nk ,U

o
n,Z

o
i ) into (10).

On the other hand, by examining the constraints (12b)-(12g),
it can be verified that the feasible solution of (12) is the
optimal solution of (10), which means Fo(t) ≥ F(t) holds
as well. Therefore, the optimal solution of (12) has the same
quality as the optimal solution of (10). Furthermore, the
following proposition is provided to show that the relaxation
of (Wo

m,W
o
nk ) is tight.

Proposition 1: The optimal solution (Wo
m,W

o
nk ) of

problem (12) is always rank-one.
Proof: Please refer to Appendix.

From Proposition 1, we conclude that there always exists
a rank-one solution of problem (10) for all feasible t . Then,
for the fixed t∗, the optimal beamforming vectors (w∗m,w

∗
nk )

can be obtained directly from (W∗m,W
∗
nk ) by using eigenvalue

decomposition.
Remark 1: By properly designing the transmission

scheme, the various types of CCI can be exploited to enhance
the secrecy rate of the intended MU as well as the EH
efficiency of the ERs. For the proposed scheme, with the
limited cross-tier cooperation, the MBS collects the local
CSI of the collaborative FBSs and conducts the joint TB
and AN design. Then, the MBS delivers the TB and AN to
the relevant FBSs. Moreover, no data sharing is required of
the proposed scheme and the limited cross-tier cooperation
imposes acceptable overhead for the backhaul links.
Remark 2: The proposed scheme is also applicable to

the scenario, where a FU is eavesdropped by the ERs, and
multiple FBSs work collaboratively to enhance the secrecy
performance of the intended FU under the different kinds
of constraints at the related receivers and transmitters. The
proposed algorithm can be used to solve the problem with a
slight modification of the objective function.

IV. ROBUST JOINT TB AND AN DESIGN
In the previous section, we have studied the joint TB and
AN design for secure SWIPT in HetNet with perfect ECSI.
However, in practical scenarios, it is difficult for the MBS
and FBSs to obtain the perfect ECSI. In this section, the
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TB and AN are jointly optimized to maximize the worst-
case secrecy rate by incorporating ellipsoid-bounded channel
uncertainties.

It is assumed that the MBS and FBSs only know the
estimation of the ECSI, i.e., ĝl, ĝn,l, l ∈ [1,L], n ∈ [1,N ].
The channel models are represented as

gl = ĝl + el, gn,l = ĝn,l + en,l,

where el and en,l are the channel errors of the estimated ECSI
from the MBS and FBSn to ERl , respectively. The ellipsoid-
bounded uncertainty models are assumed as

eHl Clel ≤ 1, eHn,lCn,len,l ≤ 1,

where Cl � 0 and Cn,l � 0 determine the shape and size of
the uncertainty regions.

Next, we investigate the worst-case secrecy rate maximiza-
tion problem with imperfect ECSI for HetNet with SWIPT.
In particular, a robust joint TB and AN design is proposed
to maximize the worst-case secrecy rate of MU1, while guar-
anteeing the worst-case EH requirements at the ERs, the QoS
constraints of the unclassifiedMUs and FUs, and the transmit
power constraints of the MBS and FBSs. To begin with, the
worst-case secrecy rate can be represented as

Rws = min
l∈[1,L]

(log(1+ SINR1)− log(1+ SINR
′

E,l)),

where SINR
′

E,l = max
el ,en,l

Tr(GlW1)
AE,l

. Based on the analyses in

the previous section, the worst-case secrecy rate optimization
problem is formulated as

max
Wm,Wnk
Un,Zi

min
l∈[1,L]

min
el ,en,l

1+ Tr(H1W1)
A1

1+ Tr(GlW1)
AE,l

(13a)

s.t. min
en,l

ε

N∑
n=1

Tr(Gn,lDn) ≥ φl,∀l, (13b)

Tr(HmWm) ≥ γmAm,m 6= 1, (13c)

Tr(Hn,nkWnk ) ≥ γnkAnk ,∀n, k, (13d)

(9f)− (9h), (13e)

where Am,Ank and AE,l are defined in the problem (9). For
the objective function of the problem (13), the logarithm
function is dropped because it is monotonically increasing.
(13b) represents the worst-case EH requirements at the ERs.
It is noted that (13) is a nonconvex problem due to the
complicated objective function and the infinite constraints on
the ECSI error, which is difficult to solve. To deal with (13),
we first introduce three slack variables r, t1 and t2, and the
problem is reformulated as

max
Wm,Wnk ,

Un,Zi,r,t1,t2

r (14a)

s.t. t1t2 ≥ r2, (14b)

1+
Tr(H1W1)

A1
≥ t1, (14c)

max
el ,en,l

1+
Tr(GlW1)

AE,l
≤

1
t2
,∀l, (14d)

(13b)−(13e). (14e)

It is easy to recognize the equivalence of (13) and (14) by
noting that the constraints (14b), (14c) and (14d) hold with
equalities at the optimal solution. Otherwise, a larger objec-
tive value can be obtained by increasing t1, t2 or r . To make
the problem (14) more tractable, two slack variables u1 and
u2 are introduced. Then, the optimization problem (14) can
be equivalently rewritten as

max
Wm,Wnk ,Un,
Zi,r,t1,t2,u1,u2

r (15a)

s.t. Tr(H1W1) ≥ (t1 − 1)u1, (15b)

A1 ≤ u1, (15c)

min
el ,en,l

AE,l ≥ t2u2,∀l, (15d)

max
el ,en,l

AE,l + Tr(GlW1) ≤ u2,∀l, (15e)

min
en,l

N∑
n=1

Tr(Gn,lDn) ≥
φl

ε
,∀l, (15f)

(13c)− (13e), (14b). (15g)

The equivalence of (14) and (15) can be easily recognized,
since (15c) and (15e) satisfy equations at the optimum.
Otherwise, the objective value can be further increased by
decreasing u1 or u2. Therefore, we can obtain the fact that
the optimization problem (15) is equivalent to the original
problem (13). However, as we can see, the constraints (15b),
(15d), (15e) and (15f) are not convex. Next, we will try to deal
with these problems.

1) TRANSFORMATION OF (15b)
Let k (x) be a convex function and h (x) be a concave func-
tion, and thus the constraint k (x) ≤ h (x) is a convex
constraint [39]. It is obvious that (15b) is nonconvex. The
main factor causing its nonconvex property is the function
on the right-hand side (RHS), i.e., h (x, y) = xy, which is
quasi-concave. Then, inspired by the idea of SCA [40], [41],
we manage to approximate this term with the convex upper
estimates. Assuming θ > 0, we consider the following
function

kθ (x, y) =
θ

2
x2 +

1
2θ
y2,

which is convex and is always an upper estimate of the func-
tion h (x, y) for a fixed θ . Moreover, kθ (x, y) also satisfies the
following equations

kθ (x, y) = h (x, y) ,∇kθ (x, y) = ∇h (x, y) , θ = y/x.

According to SCA, the RHS of the constraint (15b) can be
replaced by kθ (t1 − 1, u1) with θ = 1

t̃1−1
ũ1. It is noted that

the initial values, i.e., (t̃ (1)1 , ũ(1)1 ), are selected randomly, and
(t̃ (n)1 , ũ(n)1 ) can be updated by the optimal solution of (t1, u1)
in the (n− 1)-th iteration when n ≥ 2.
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2) TRANSFORMATION OF (15d), (15e) AND (15f)
Now, we are supposed to focus on the first worst-case
constraint (15d). Similarly, we can replace the RHS of the
constraint (15d) by kη (t2, u2) with η = 1

t̃2
ũ2. It is noted

that the left hand side of (15d) contains several ellipsoidal
uncertainty regions, which is not known to be tractable [42].
In the following, it can be turned into some exact equivalent
convex conditions. By introducing the slack variables pl and
pnl, l ∈ [1,L], n ∈ [1,N ], the constraint (15d) can be
reformulated as

min
el

Tr(Gl(
M∑
m=2

Wm + Z0)) ≥ pl, (16a)

min
en,l

Tr(Gn,l(
K∑
k=1

Wnk + Zn)) ≥ pnl, (16b)

pl +
N∑
n=1

pnl + 1 ≥ kη (t2, u2) , pl ≥ 0, pnl ≥ 0,∀l. (16c)

Recalling the channel uncertainty model introduced in
Section IV, the constraints in (16) are equivalent to

eHl Clel ≤ 1

⇒ (ĝl + el)H
( M∑
m=2

Wm + Z0
)
(ĝl + el) ≥ pl, (17a)

eHn,lCn,len,l ≤ 1

⇒ (ĝn,l + en,l)H
( K∑
k=1

Wnk + Zn
)
(ĝn,l + en,l) ≥ pnl . (17b)

Note that the infinite constraints can be solved effectively by
the following lemma.
Lemma 1: (S-Procedure [39]) Define fk (x) = xHAkx +

2Re{bHk x} + ck , where Ak = AH
k ∈ Cn×n,bk ∈ Cn×1 and

ck ∈ R, k = 1, 2. The implication f1(x) ≤ 0 ⇒ f2(x) ≤ 0
holds if and only if there exists an α ≥ 0 such that

α

[
A1 b1
bH1 c1

]
�

[
A2 b2
bH2 c2

]
,

provided there exists a point x̄ satisfying f1(x̄) < 0.
Based on Lemma 1, we can rewrite (17a) and (17b) as the

following equivalent linear matrix inequality’s (LMI) form[
αlCl + VM1 VM1ĝl
ĝHl VM1 −αl + ĝHl VM1ĝl − pl

]
� 0, (18a)

[
αnlCn,l + Vn Vnĝn,l

ĝHn,lVn −αnl + ĝHn,lVnĝn,l − pnl

]
� 0, (18b)

αl ≥ 0, αnl ≥ 0,∀n, l, (18c)

where VM1 =
∑M

m=2Wm + Z0,Vn =
∑K

k=1Wnk + Zn and
αl, αnl, l ∈ [1,L], n ∈ [1,N ], are slack variables.
Next, the second worst-case constraint (15e) can be

turned into exact equivalent convex conditions by the similar

method above. We introduce the slack variables ql, qnl, l ∈
[1,L], n ∈ [1,N ], then (15e) can be recast as

max
el

Tr(Gl(
M∑
m=1

Wm + Z0)) ≤ ql, (19a)

max
en,l

Tr(Gn,l(
K∑
k=1

Wnk + Zn)) ≤ qnl, (19b)

ql +
N∑
n=1

qnl + 1 ≤ u2, ql ≥ 0, qnl ≥ 0,∀l. (19c)

Then, by using S-Procedure [39], (19a) and (19b) are refor-
mulated as the following equivalent LMI’s form[

βlCl − VM2 −VM2ĝl
−ĝHl VM2 −βl − ĝHl VM2ĝl + ql

]
� 0, (20a)[

βnlCn,l − Vn −Vnĝn,l
−ĝHn,lVn −βnl − ĝHn,lVnĝn,l + qnl

]
� 0, (20b)

βl ≥ 0, βnl ≥ 0,∀n, l, (20c)

where VM2 =
∑M

m=1Wm + Z0 and βl, βnl, l ∈ [1,L],
n ∈ [1,N ], are slack variables.
Finally, by introducing the slack variables vnl, n ∈

[1,N ], l ∈ [1,L], the last worst-case constraint (15f) can be
equivalently recast as

min
en,l

Tr(Gn,l(
K∑
k=1

Wnk + Un + Zn)) ≥ vnl, (21a)

N∑
n=1

vnl ≥
φl

ε
, vnl ≥ 0, ∀l. (21b)

Then, with the assistance of S-Procedure [39], (21a) can be
rewritten as the following equivalent LMI’s form[

λnlCn,l + Vn Vnĝn,l
ĝHn,lVn −λnl + ĝHn,lVnĝn,l − vnl

]
� 0, (22a)

λnl ≥ 0,∀n, l, (22b)

where Vn =
∑K

k=1Wnk + Un + Zn and λnl, n ∈ [1,N ], l ∈
[1,L], are slack variables.
With the transformations above, the problem (15) is equiv-

alently represented as

max
Wm,Wnk ,Un,Zi,r,t1,
t2,u1,u2,pl ,pnl ,αl ,αnl ,
ql ,qnl ,βl ,βnl ,vnl ,λnl

r (23a)

s.t. ‖[2r, t1 − t2]‖ ≤ t1 + t2, (23b)

Tr(H1W1) ≥ kθ (t1 − 1, u1) , (23c)

(13c)− (13e), (15c), (16c), (23d)

(18a)− (18c), (19c), (21b), (23e)

(20a)− (20c), (22a), (22b), (23f)

where (23b) is the second-order constraint and it can be
obtained from the fact that z2 ≤ xy is equivalent to
‖[2z, x − y]‖ ≤ x + y, when x ≥ 0, y ≥ 0. It is observed that
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Algorithm 1 The proposed iterative algorithm for
solving (23)

1. Initialization: Set n = 1, and (θ (1), η(1)) that is feasible
to problem (23).
2. Repeat:
Solve the convex problem (23) with

( 1
t̃ (n)1 −1

ũ(n)1 ,
1
t̃ (n)2

ũ(n)2

)
,

and obtain the optimal solution as
(
t∗1 , u

∗

1, t
∗

2 , u
∗

2

)
.

Update
(
θ (n+1), η(n+1)

)
=
( 1
t∗1−1

u∗1,
1
t∗2
u∗2
)
,

n=n+1.
3. Until convergence or reach the maximal number of
iterations.

the problem (23) is convex and can be solved efficiently using
the numerical solvers such as SeDuMi [38]. The proposed
iterative algorithm is summarized in Algorithm 1.
Remark 3: Since the problem (23) is convex, we can

obtain the optimal solution by solving (23) for a given (θ, η)
in the n-th iteration. Based on the optimal solution of the
n-th iteration, (θ, η) is updated by (t̃ (n)1 , ũ(n)1 , t̃

(n)
2 , ũ(n)2 ) at the

(n+1)-th iteration. In particular, (t̃ (n)1 , ũ(n)1 , t̃
(n)
2 , ũ(n)2 ) is always

a feasible solution of the (n+1)-th iteration. Then, the optimal
value r∗, which is obtained by (t̃ (n)1 , ũ(n)1 , t̃

(n)
2 , ũ(n)2 ) in the

(n + 1)-th iteration will become larger than or equal to the
optimal value in the n-th iteration. Therefore, the secrecy rate
is monotonically increasing or nondecreasing during each
iteration. Due to the transmit power constraints at the MBS
and the FBSs, there exists an upper bound of the secrecy rate.
It reveals that the convergence of the proposed algorithm can
be guaranteed, which is shown in Fig. 2.

Up to now, the optimal solution (W∗m,W
∗
nk ,U

∗
n,Z
∗
i ) can

be obtained by solving the problem (23). Next, we need to
extract the beamforming vectors (w∗m,w

∗
nk ) from (W∗m,W

∗
nk ).

If rank(W∗m) = 1 or rank(W∗nk ) = 1, we can get w∗m
or w∗nk by eigenvalue decomposition. Otherwise, we can
apply some rank-one approximation procedures, e.g.,
Gaussian randomization [43], toW∗m andW∗nk to get w

∗
m and

w∗nk , respectively.

V. SIMULATIONS
In this section, the simulation results are presented to evaluate
the secrecy rate of the intendedMU for the proposed schemes.
The path loss model is given by ( dd0 )

−α for all users, i.e.,
the MUs, FUs and ERs, where d represents the distance
between one given user to its connecting base station, the
reference distance d0 is 5 meters, and α = 3.5 is the path loss
exponent. It is assumed that the small scale fading channels
are Rayleigh fading channels. Moreover, we assume that the
distance from the MBS to all the users is 80 meters, and
the distances from the FBS to the MUs, FUs and the ERs
are 35, 25 and 10 meters, respectively. We assume a target
harvested power of φl = φ, l ∈ [1,L], and the EH efficiency
of ε = 0.5. TheMBS and the FBS are equipped withNM = 6
and NF = 4 antennas, respectively. The number of the FBSs,
MUs, ERs, and the FUs served by each FBS are set to be

FIGURE 2. Convergence property according to different transmit power of
the MBS with PF = 15 dBm and τ = 0.1.

N = 2,M = 3,L = 2 and K = 1, respectively. Also,
sphere-bounded ECSI errors are adopted, i.e., Cl =

1
τ 2
INM ,Cn,l =

1
τ 2
INF .

Three benchmarks are considered in the simulations. The
non-robust joint TB and AN design is benchmark 1, and the
estimated ECSI (ĝl, ĝn,l) is treated as the perfect ECSI for
benchmark 1. Benchmark 2 is the robust beamforming design
without AN, which is denoted as ‘‘Robust w/o AN’’. For
benchmark 3, a non-secrecy oriented beamforming scheme
is adopted to maximize the information rate of the wire-
tappedMU1 without the consideration of the imperfect ECSI.
Therefore, we do not employ the AN at the MBS and the
FBSs. In particular, the problem is represented as

max
Wm,Wnk ,Un

log(1+ SINR1) (24a)

s.t. (13b)− (13e), (24b)

where we set Zi = 0, i ∈ [0,N ], in SINR1 and
(13b)-(13e). Following the same method proposed in
Section IV, the problem (24) can be reformulated into a
convex problem and solved via numerical solvers. The bench-
mark 3 is denoted as ‘‘Benchmark’’ in the simulation. More-
over, the proposed joint TB and AN design with perfect ECSI
and the proposed robust joint TB and AN design are denoted
as ‘‘Perfect ECSI’’ and ‘‘Robust’’, respectively.

Fig. 2 presents the convergence of the proposed
Algorithm 1, and the convergence behaviors of the worst-
case secrecy rate of MU1 for different sets of the transmit
power of the MBS are demonstrated. As can be shown, the
secrecy rate of the proposed scheme, as discussed before,
increases monotonically in each iteration, and it converges
to a stationary value within a few iterations.

In Fig. 3, the secrecy rate of MU1 is depicted versus the
transmit power of the MBS. The secrecy rate of the proposed
joint TB and AN design with perfect ECSI serves as the
performance upper bound of all the beamforming schemes.
We can observe that with the increase of PM , the worst-
case secrecy rate of MU1 increases monotonically, and the
proposed robust joint TB and AN design is able to achieve
a better performance gain than the benchmarks. To be more
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FIGURE 3. The secrecy rate versus the transmit power of the MBS with
PF = 15 dBm and τ = 0.1.

FIGURE 4. The secrecy rate versus the number of ERs with PM = 30 dBm,
PF = 15 dBm and τ = 0.1.

specific, when PM increases, the performance gap of the two
schemes, i.e., the robust joint TB and AN design and the non-
robust scheme, is enlarged. Besides, as we can see, the robust
joint TB and AN design has better secrecy performance than
the robust beamforming scheme without AN, which indicates
that theAN-aided transmission strategy employed at theMBS
and FBSs can significantly improve the worst-case secrecy
rate. Therefore, considering imperfect ECSI at the MBS and
the FBSs, AN is necessary for enhancing the secrecy rate
performance of the intended MU in the HetNet with SWIPT.

Fig. 4 shows the secrecy rate of MU1 versus the number of
ERs for different beamforming schemes. It is observed that
the secrecy rate decreases with the increase of the number of
ERs for two reasons. First, with increasing number of ERs
in the network, more devices require EH from the FBSs,
even though some of them have poor channel conditions.
Therefore, to conduct efficient power transfer, more power
of the FBSs should be allocated to the energy beams to
guarantee the EH requirements of the increased number of
ERs. Second, the increasing number of ERs also indicates that
there exist more potential eavesdroppers. Then, the MBS and
the FBSs should provide a larger amount of AN for jamming
the channels of the potential eavesdroppers, which is difficult
to be achieved due to the transmit power constraints of the

FIGURE 5. The secrecy rate versus the EH requirement at ER with
PM = 30 dBm, PF = 15 dBm and τ = 0.1.

FIGURE 6. The secrecy rate versus the number of transmit antennas of
the MBS with PM = 30 dBm, PF = 15 dBm and τ = 0.1.

MBS and the FBSs. Moreover, it can be observed that the
secrecy rate performance of the proposed robust joint TB and
AN design outperforms that of the benchmark schemes for
different number of ERs in the system.

In Fig. 5, we show the secrecy rate of MU1 versus the
EH requirement at ER. It is obtained that the secrecy rate
of different beamforming schemes decreases monotonically
with increasing φ. This is attributed to the fact that for the
proposed joint TB and AN design, there exists a trade-off
between the EH performance at the ERs and the secrecy per-
formance of the wiretapped MU. Particularly, the excessive
harvested power at the ERs comes at the expense of low
secrecy rate of MU1. Besides, the secrecy rate degrades more
significantly in the high EH requirement regime due to the
limited energy-rate region. Moreover, the robust joint TB and
AN design achieves a better secrecy rate performance gain
than the robust TB scheme without AN over the whole range
of the tested φ, which shows that AN is also beneficial for EH.

Fig. 6 shows the secrecy rate of MU1 versus the number
of transmit antennas at the MBS. It is observed that for
all schemes the secrecy rate improves with increasing the
number of transmit antennas. In fact, increasing the number
of transmit antennas at the MBS will increase the degrees-
of-freedom for the beamforming design. Thus, the secrecy
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rate is proportional to the number of transmit antennas at the
MBS. Moreover, the secrecy performance of the robust joint
TB and AN design approaches that of the proposed scheme
with perfect ECSI when NM is large.

VI. CONCLUSIONS
In this paper, we have investigated the joint TB and AN
design for secure SWIPT in a two-tier HetNet with multiple
ERs trying to wiretap a legitimate MU. For both perfect
and imperfect ECSI cases, we aim to maximize the secrecy
rate of the wiretapped MU subject to the QoS constraints
of the unclassified MUs and FUs, the EH requirements of
the ERs and the transmit power constraints at the MBS and
FBSs. To solve the nonconvex problems, we reformulate the
problems by using the one-dimensional line search based
two-stage framework and SCA. Furthermore, the effec-
tiveness of the proposed schemes is demonstrated by the
simulations.

APPENDIX
PROOF OF PROPOSITION 1
The main idea of the proof is based on the Karush-Kuhn-
Tucker (KKT) conditions [39]. The parts of KKT conditions
relevant to the proof are listed as follows

F1 = I− aH1 +

M∑
m=2

amγmHm

+

N∑
n=1

K∑
k=1

ankγnkHnk +

L∑
l=1

blGl + dI, (25)

F1W1 = 0, (26)

D0 = aF(t)H1 +

M∑
m=2

amγmHm

+

N∑
n=1

K∑
k=1

ankγnkHnk − (t − 1)
L∑
l=1

blGl + dI, (27)

Fm = I+ aF(t)H1 − amHm +

M∑
q 6=1,m

aqγqHq

+

N∑
n=1

K∑
k=1

ankγnkHnk−(t−1)
L∑
l=1

blGl+dI,m 6= 1,

(28)

FmWm = 0,m 6= 1, (29)

Fnk = I+ aF(t)Hn,1 +

M∑
m=2

amγmHn,m

− ankHn,nk +

K∑
t 6=k

antγntHn,nt +

N∑
p 6=n

K∑
t=1

aptγptHn,pt

− (t − 1)
L∑
l=1

blGn,l −

L∑
l=1

clGn,l + dnI,∀n, k, (30)

FnkWnk = 0,∀n, k, (31)

Dn = aF(t)Hn,1+

M∑
m=2

amγmHn,m+

N∑
p=1

K∑
t=1

aptγptHn,pt

− (t − 1)
L∑
l=1

blGn,l −

L∑
l=1

clGn,l + dnI,∀n, (32)

where a ≥ 0, am ≥ 0, ank ≥ 0, bl ≥ 0, cl ≥ 0,
d ≥ 0, dn ≥ 0, Fs � 0, Fnk � 0 and Di � 0,m ∈
[2,M ] , n ∈ [1,N ] , k ∈ [1,K ] , l ∈ [1,L] , s ∈ [1,M ] , i ∈
[0,M ] , are the optimal dual variables associated with the
constraints (12b)-(12f), (9f), (9g), Wm � 0,Wnk � 0 and
Zi � 0, respectively.
Note that W1 6= 0, otherwise the resultant secrecy rate is

zero, which is trivial. Based on (26), the rank of F1 should be
less than or equal to NM − 1, i.e.,

rank(F1) ≤ NM − 1. (33)

By subtracting (27) from (25), we have

F1 − D0 = I+
L∑
l=1

tblGl − a(1+ F(t))H1

⇒ F1 = M1 − a(1+ F(t))H1, (34)

where M1 = I + D0 +
∑L

l=1 tblGl . It can be observed that
M1 is positive definite and rank(M1) = NM . From (34), we
have

rank(M1) = rank(F1 + a(1+ F(t))H1)
(a)
≤ rank(F1)+ rank(a(1+ F(t))H1),

where (a) holds true based on the fact that

rank(A+ B) ≤ rank(A)+ rank(B),

where A,B ∈ Cm×n. Thus, we have

rank(F1) ≥ NM − 1. (35)

According to (33) and (35), rank(F1) = NM − 1 always
holds. From (26), we can get rank(W1) ≤ dim(N (F1)) =
NM − rank(F1) = 1, where dim(N (F1)) represents the
dimension of the null space of F1. Since W1 6= 0, thus we
have rank(W1) = 1.
It is noted that rank(Wm) = 1,m ∈ [2,M ], and

rank(Wnk ) = 1, n ∈ [1,N ], k ∈ [1,K ], can also be proved
following the same procedures. Hence, we have completed
the proof.
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