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ABSTRACT The wideband underwater acoustic multipath channel can be modeled as a multi-scale
multi-lag (MSML) channel because signals from different paths might experience different Doppler scales.
This brings great challenge to channel parameter estimation. In this paper, we propose a novel algorithm
for parameter estimation of MSML channels. This new algorithm is a modified particle swarm optimiza-
tion (MPSO) algorithm, which can estimate the parameters of the Doppler scale, the time delay, and the
amplitude simultaneously for each individual path. Comparing to PSO algorithm, MPSO algorithm uses a
multipath list to record positions and fitness values of particles whose fitness values are selected as lbests,
and uses these lbests to update particles’ velocities at each iteration. As for training sequence, we employ
the zero correlation zone sequence which has excellent correlation properties. Computer simulation is used
to evaluate the proposed algorithm in comparison with the matching pursuit (MP)-based method and the
fractional Fourier transform (FrFT)-based method. Simulation results confirm that the proposed MPSO
algorithm outperforms both MP-based method and FrFT-based method in estimation accuracy as well as
computation complexity.

INDEX TERMS Multi-scale multi-lag (MSML) channel, parameter estimation, modified particle swarm
optimization (MPSO) algorithm, zero correlation zone (ZCZ) sequence.

I. INTRODUCTION
Underwater acoustic (UWA) communication has attracted
considerable attention and investigation recently [1]–[4]. The
demand for high-quality UWA communications arises in
many military, scientific and civilian applications [5], [6].
However, at the physical layer, effective communications
for UWA channels is quite challenging for large mul-
tipath spread and significant Doppler effects, which are
caused by the motion of platform and sea-surface [7].
Specifically, on the one hand, due to the low propaga-
tion speed at 1500m/s of acoustic waves, multipath spread
leads to long time delay characteristic of the UWA channels
and severe inter-symbol interference (ISI) when received

signals from different paths collapse into each other [8], [9].
On the other hand, low propagation speed of acoustic waves
also results in more significant Doppler effects in UWA
communication than in terrestrial wireless systems whose
carrier propagates at 3 × 108m/s. Doppler effects can be
treated as Doppler shift in terrestrial wireless system which
is narrowband, i.e., the signal bandwidth is far less than
the carrier frequency [10]. However, for UWA systems, the
ratio between bandwidth against carrier frequency is usually
1000 times greater than that of terrestrial wireless systems.
Thus, the UWA channel is wideband in nature and Doppler
effects could have different values for different frequencies
throughout the bandwidth. Due to its nature, Doppler effects

4808
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017



X. Zhang et al.: Parameter Estimation for MSML Underwater Acoustic Channels Based on MPSO Algorithm

should be treated as Doppler scale [2], [11], which cause
signal compressing or dilating in time domain. Furthermore,
the Doppler scale of each path might be different owing to
distinct angles of arrival in the UWA environment as observed
in experiments [12]–[14]. So we adopt the multi-scale multi-
lag (MSML) channel model denoted in [15] in this paper.

The MSML channel model arose in the last few years
of the 2000s and has the optimal performance in dynamic
water circumstances with multipath. One possible approach
to achieving the MSML channel model is to parameterize the
amplitude, the time delay and the scale factor in a path-wise
manner [5]. However, using the path-based model, with the
increase of path number, problems arise such as computa-
tional complexity. A remedy to these problems is to exploit
the sparse structure of the UWA channels, which means that
only a few paths are dominant in energy while others could be
neglected [16], [17]. So only the dominant paths’ parameters
need to be concerned while the rest could be neglected for
UWA channel estimation.

The parameters for UWA channel estimation include the
scale factor, the time delay and the amplitude. Among these
three parameters, the scale factor is widely considered to be
the most difficult to accommodate for the wideband nature
of UWA channel, where estimation methods for terrestrial
wireless system can not be applied. Therefore, it attractsmany
researchers and different Doppler estimation methods have
been proposed for UWA communication. [18] proposes the
block Doppler estimation method, which can be realized by
measuring the duration change of a known signal, usually the
linear frequency modulation (LFM) signal. The estimation
accuracy relies on the length of the LFM signal. The longer
the preamble is, the more accurate scale estimation we can
get. However, the length increase of the preamble will reduce
the communication efficiency. [10] puts forward an improved
method by using block Doppler estimation as the coarse
estimation, and by minimizing the energy of null subcarriers
to estimate residual Doppler effects. Furthermore, [19] adopts
hyperbolic frequency modulation (HFM) signal as preamble
instead of LFM signal in [18], because HFM signal has
better Doppler-invariant property. In [20], ambiguity function
method is proposed, which employs a bank of correlators at
the receiver to get the ambiguity function of the received
pseudo-random noise (PN) sequence.The range and reso-
lution of the Doppler estimate depend on the number of
correlators used. More correlators need additional hardware
overhead. Based on [20], [2] proposes the use of multicarrier
waveforms as the preamble which includes two identical
orthogonal frequency division multiplexing (OFDM) sym-
bols. A joint synchronization and Doppler scale estimation
method with dual PN padding time domain synchronous
orthogonal frequency division multiplexing (TDS-OFDM) is
given in [11], which involves a two-dimensional searching
that can estimate the time delay and Doppler scale simultane-
ously at the expense of high computation complexity.

However, all of the aforementioned methods only con-
sider one dominant scale factor. In MSML channel model,

such scale estimation and compensation mechanism will
leave residual sampling errors to other scaled components.
Therefore, the challenge of MSML channel estimation is to
identify the parameters for each individual path. At present,
the estimation methods for MSML cases can be divided
into two groups. One is the compressed-sensing (CS) based
sparse channel estimation and the other is fractional Fourier
transform (FrFT) based channel estimation.

Based on CS, [12], [16], [21]–[24] search for those optimal
parameters within a predefined dictionary with the assis-
tance of those greedy algorithms. The intension of those
greedy algorithms is to iteratively search for the optimal
estimation, while basis pursuit (BP) and orthogonal matching
pursuit (OMP) are two applications. Specifically, in [21]
and [22], MP algorithm is used to distinguish paths featur-
ing different Doppler scale factors. The parameters of each
path are estimated by finding the columns of the dictionary
which are most relevant with the received signal. Then the
received signal updates itself by eliminating the estimated
path components. Based on MP, the order-recursive least
squares MP (LS-MP) algorithm developed in [16] selects the
column according to the LS error at each iteration, instead of
picking the most relevant column as the MP algorithm does.
[12] introduces both MP and its orthogonal version, the OMP
algorithm, and makes comparison with traditional subspace
methods. Both MP and OMP algorithms perform better than
subspace methods. To reduce the computational complexity,
[23] proposes to use fast block-Fourier transform in OMP
algorithm, and a two-stage OMP algorithm is developed
in [24], which sequentially estimates the delay and Doppler
scale factor. However, all the CS-based methods have a com-
mon deficiency: using a fixed dictionary to approximate the
target signal. Thus, a fine resolution will be at the expense of
large dictionary and extensive calculation.

LFM signals are chosen as preamble for FrFT methods
because the LFM signal will become an impulse signal in
the FrFT domain with an appropriate rotation. A method
proposed in [25] can estimate the delay and scale factor
according to the locations and widths of the peaks of the
received LFM signal in the FrFT domain. [26] develops a
coarse-to-fine method to search for the optimal fractional
order of LFM signal’s FrFT and the scale can be calculated
according to the optimal fractional order change of the trans-
mitted and the received LFM signals. Based on [26], [27]
proposes an iterative algorithm to estimate parameters of
each path and then separate it from the received signal.
A sub-iteration is used to adjust the optimal fractional order
at each iteration, which is found by the method in [26]. The
biggest drawback of the FrFT based method is the poor time
resolution of the LFM signal [2], whichwill lead to inaccurate
time delay estimate and influence the estimate accuracy of the
scale.

According to the above analyses, a novel parameters
estimation scheme is proposed in this paper, and we call
it modified particle swarm optimization (MPSO) algorithm.
The PSO algorithm is one of the intelligent algorithms which

VOLUME 5, 2017 4809



X. Zhang et al.: Parameter Estimation for MSML Underwater Acoustic Channels Based on MPSO Algorithm

has many advantages, such as high efficiency, fast search
speed and simple algorithm [28]. In PSO, each individual is
called a particle and represents a potential optimal solution
in the optimization problems. At each iteration, particles
move in the solution space to search for better fitness
values and update their positions and velocities according to
their own best values achieved so far, called pbests, and the
whole swarm best value, called gbest. Directly applying PSO
algorithm can only find out the parameters of the strongest
path. So we propose the MPSO algorithm for MSML channel
estimation. In comparison with PSO, MPSO algorithm has
the following distinctions:
1) Each particle’s position represents a possible pair of scale

factor and time delay. At the initialization period, a mul-
tipath list is formed by selecting particles whose fitness
values are greater than a threshold. These fitness values in
the multipath list are called lbests.

2) At each iteration, each particle updates its position and
velocity according to its pbest and the lbest in the multi-
path list whose time delay is nearest to the particle’s.

3) At each iteration, the multipath list will also be updated
after recalculating the fitness value of each updated
particle.
The contributions of this paper are the following:

1) We propose a novel algorithm which is called MPSO
algorithm for the parameter estimation ofMSML channel.

2) We propose to use zero correlation zone (ZCZ)
sequence [29] as the training sequence and analyze its
correlation properties. The excellent properties of the
ZCZ sequence can benefit the performance of MPSO
algorithm.

3) We use extensive numerical simulations to investigate
the performance of the proposed algorithm, and make
comparisons with MP-based and FrFT-based methods.

4) We present the performance analysis and complexity anal-
ysis of the proposed algorithm as well as MP-based and
FrFT-based algorithms in detail.
The rest of this paper is organized as follows. Section II

gives the system model and a introduction of the ZCZ
sequence. In Section III we present the PSO and the proposed
MPSO algorithms, respectively. In Section IV we analyze
MPSO-based MSML channel parameters estimation method.
And computer simulation is given in Section V. Finally, we
conclude in Section VI.
Notation: we will use the following notations in this paper:

Upper (lower) bold-face letters stand for matrices (vectors);
Superscript ∗ denotes conjugate. We use Re{·} for the real
part, [A]k,m for the (k,m)th entry of matrix A, and δ(t) for a
delta function which is equal to one only if t = 0 and zero
otherwise.

II. SYSTEM MODEL
OFDM is widely used in UWA communication whose
available bandwidth is limited. Further, to reduce power con-
sumption of the guard interval between OFDM symbols, we
consider zero-padded (ZP) OFDM as the basic signalling

format as in [2], [12], and [23]. Specifically, let T denote
the duration of an OFDM symbol and Tg denote the guard
interval. Then T

′

= T+Tg is the duration of thewholeOFDM
block and 1/T is the subcarrier spacing. The kth subcarrier is
at frequency

fk = fc + k/T , k = −K/2, . . . ,K/2− 1 (1)

where fc is the carrier frequency and K is the number of
subcarriers, so the bandwidth is B = K/T . Data streams are
encoded with a nonbinary low-density parity-check (LDPC)
code. And after quadratic phase-shift-keying (QPSK) or
quadratic amplitude modulation (QAM), the information
symbol transmitted on the kth subcarrier is s[k]. The signal
in baseband can be written as

x(t) =
K−1∑
k=0

s[k]ej2π
k
T tq(t), t ∈ [−Tg,T ] (2)

where q(t) is the pulse shaping filter and we use the rectan-
gular pulse shaper in this paper, that is

q(t) =
{
1 t ∈ [0,T ]
0 otherwise

(3)

and the corresponding passband signal is

x̃(t) = Re

{
ej2π fct

K−1∑
k=0

s[k]ej2π
k
T tq(t)

}
, t ∈ [−Tg,T ]

(4)

A. CHANNEL MODEL
The channel impulse response for a time-varying multipath
underwater acoustic channel can be modeled as a MSML
channel, that is

h(τ, t) =
L∑
l=1

Al(t)δ(τ − τl(t)) (5)

where L is the number of channel taps. Al(t) and τl(t) are the
time-varying path amplitude and time delay of the lth path.
τl(t) is caused by platform motion and scattering off of the
moving sea surface. Al(t) change with τl(t) because the path
attenuation is related to travel distance and the physics of the
scattering and propagation processes [12].

For the duration of one OFDM symbol, τl(t) can be repre-
sented by a Doppler scale factor al as

τl(t) = τl − (al − 1)t (6)

and Al(t) is assumed to be constant: Al(t) ≈ Al . With this, we
simplify the channel model as

h(τ, t) =
L∑
l=1

Alδ(τ − (τl − (al − 1)t)) (7)

and the passband signal at the receiver is

ỹ(t) =
L∑
l=1

Al x̃(al t − τl)+ ñ(t), t ∈ [−Tg,
T
al
] (8)

where ñ(t) is the additive noise.
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B. RECEIVER PROCESSING
Performing down conversion and ZP-OFDM demodulation,
the output ym is

ym =
1
T

T/al∫
0

ỹ(t)e−j2π fcte−j2π
m
T tdt (9)

Plugging in ỹ(t), we simplify ym to

ym =
L∑
l=1

Al
al
e−j2π fcτl

K−1∑
k=1

s[k]e−j2π
k
T τl

×sinc(β lk,mT )e
jπβ lk,mT + nm (10)

where nm is the additive noise and

β lk,m = (k − m)
1
T
+

(al − 1)fm
al

(11)

The formula deduction can be seen in Appendix A.
Defining y as the received vector , s as the data vector and

n as the noise vector across all subcarriers, the input-output
relationship can be written as following:

y = Hs+ n (12)

where H is the channel mixing-matrix and can be expressed
as

H =
L∑
l=1

ξl3l0l (13)

where ξl is the complex path gain for the lth path and is
expressed as

ξl =
Al
al
e−j2π fcτl (14)

3l is a K × K diagonal matrix whose (k, k)th entry is

[3l]k,k = e−j2π
k
T τl (15)

And 0l is a K × K non-diagonal matrix, and its
non-zero off-diagonal elements represent the inter-carrier
interference (ICI). The (k,m)th element is

[0l]k,m = sinc(β lk,mT )e
jπβ lk,mT (16)

The formulation in (13) clearly specifies the contribution
from each discrete path with delay τl and Doppler scale
al towards the channel mixing matrix that defines the ICI
pattern [12]. So estimating channel parameters accurately has
important implications for the coherent OFDM performance.

C. TRAINING SEQUENCE
We consider to apply ZCZ sequence as the training sequence.
ZCZ sequence set is first introduced in code division multiple
access (CDMA) system to enhance timing synchronization
robustness [30], [31]. It has shown that ZCZ sequence is the
optimal channel estimation training sequence [32]–[34].

Let S be a sequence set with M sequence of period P and
be expressed as

S = {S0, S1, S2, . . . , Su, . . . , SM−1} (17)

Su = {su0, s
u
1, s

u
2, . . . , s

u
v, . . . , s

u
P−1} (18)

where 0 ≤ u ≤ M − 1, 0 ≤ v ≤ P − 1, Su and suv denote a
sequence and a sequence element respectively.

If all of the sequences in the set S satisfy the auto-
correlation and cross-correlation properties in the following,
then S can be called as a set of ZCZ sequences or a ZCZ
sequence set [35]:

RSu0 (τ ) =
P−1∑
v=0

su0v (su0(v+τ ) mod P)
∗

=

{
Eu0 (τ = 0)
0 (−T0≤τ ≤−1, 1≤τ ≤ T0)

(19)

RSu0,Su1 (τ ) =
P−1∑
v=0

su0v (su1(v+τ ) mod P)
∗

= 0 (−T0 ≤ τ ≤ T0) (20)

where RSu0 (τ ) is the periodic auto-correlation function of
the sequence Su0, and RSu0,Su1 (τ ) (u0 6= u1) is the periodic
cross-correlation function between the sequences Su0 and Su1.
Eu0 is the energy of the sequence Su0 [35] and is defined as
following:

Eu0 =
P−1∑
v=0

su0v (su0v )
∗
=

P−1∑
v=0

|su0v |
2 (21)

Here, M ,P and T0 represent the family size of the ZCZ
sequence set, the period of the sequences, and the length of
the ZCZ, respectively [35].

III. MODIFIED PARTICLE SWARM OPTIMIZATION
(MPSO) ALGORITHM
UWA multipath channels are sparse both in time domain and
frequency domain [12], [16], [27], which means that only
some taps are nonzero in the channel model and we can set L
as a small positive integer in (7). Therefore, only L sets of
parameters need to be estimated and the calculation complex-
ity is significantly reduced. Furthermore, it is possible that
those L paths can be identified by a modified PSO algorithm.

A. PSO ALGORITHM
PSO was introduced in 1995 by Kennedy and Eberhart [36].
The original intent was to graphically simulate the graceful
but unpredictable choreography of a bird flock. The system
of PSO is initialized with a population of random solutions
and each potential solution is assigned a randomized velocity,
and the potential solutions, called particles, are then ‘‘flown’’
through the problem space.

In the problem space, each particle updates its position
according to two ‘‘best’’ values. One is the best solution itself
has achieved so far, called pbest; and the other is the best
solution tracked by all particles in the swarm, called gbest.
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A brief introduction to the operation of the PSO algorithm
is as follows. Let p denote the number of particles in the
swarm and each particle’s position represents a potential
solution of the problem space D. At the (k + 1)th iteration,
for particle i, its position x ik+1 can be calculated as follows:

x ik+1 = x ik + v
i
k+1 (22)

with a pseudo-velocity vik+1 calculated in the following
manner:

vik+1 = ωkv
i
k + c1r1(p

i
k − x

i
k )+ c2r2(p

g
k − x

i
k ) (23)

Where ωk is an inertia weight which was developed to
better control exploration and exploitation. Suitable selection
ofωk provides a balance between global and local exploration
and exploitation, thus accelerates the algorithm convergence
speed. pik is the position corresponding to pbest of particle i
at the kth iteration, and pgk represents the position of gbest
at the kth iteration. r1, r2 are random numbers between
0 and 1. c1 and c2 are the acceleration constants that pull each
particle toward pbest and gbest positions and can be set as
c1 = c2 = 2. The purpose of calculating vik+1 as in (23) is to
maintain separation of particles in the group and to search a
greater space.

The following is the process for implementing the PSO
algorithm in detail, the iteration will stop when a criterion is
met, usually a maximum number of iterations or a sufficiently
good fitness. Here, we use a fixed number of swarm iterations
as the stopping criteria.
1. Initialize
(a) Set constants c1, c2, ωk , the maximum velocity vmax and

maximum iterations kmax, set counters k = 0.
(b) Initialize a population of particles with random positions

x i0 ∈ D for i = 1, · · · , p and velocities 0 ≤ vi0 ≤ vmax
for i = 1, · · · , p.

(c) Evaluate fitness values f i0 using initialized positions x i0
for i = 1, · · · , p.

(d) Set f ibest = f i0, p
i
0 = x i0 for i = 1, · · · , p.

(e) Set f gbest to best f
i
best and p

g
0 to corresponding x

i
0.

2. Optimize
(a) Update particle velocity vector vik+1 using Equation (23)

and if vik+1 > vmax then set vik+1 = vmax, for i =
1, · · · , p.

(b) Update particle position x ik+1 according to Equation (22)
for i = 1, · · · , p.

(c) Evaluate fitness value f ik+1 using x
i
k+1, for i = 1, · · · , p.

(d) If f ik+1 is better than f
i
best then f

i
best = f ik+1, p

i
k+1 = x ik+1

else pik+1 = pik , for i = 1, · · · , p.
(e) If f ik+1 is better than f

g
best then f

g
best = f ik+1, p

g
k+1 = x ik+1

else pgk+1 = pgk , for i = 1, · · · , p.
(f) Set k = k + 1 and loop to step 2(a) until k > kmax.
Particle’s velocity on each dimension are clamped to a

maximum velocity vmax which is a parameter specified by
the user. If the velocity on one dimension would exceed vmax,
then it will be limited to vmax.

B. MPSO ALGORITHM
Let each particle’s position represent a possible pair
of {al, τl}. The optimal Doppler scale factor and time delay
can be found out by PSO algorithm. So PSO algorithm
can be applied in signal detection and channel parameters
estimation. However, PSO algorithm can only find out the
parameters of the strongest path as all particles are searching
for gbest. For MSML channel, parameters of each individual
path need to be identified, thus somemodifications are neces-
sary. This paper proposes amodified PSO (MPSO) algorithm.
In MPSO, we distinguish two paths by the difference value of
time delay, i.e., the difference value of time delay of two paths
should satisfy the following formula:

|τi − τj| > 1peak , i 6= j (24)

where 1peak is the set threshold. For each path, its fitness
value will be the maximum fitness value of particles which
are divided into the same path. And we use lbest to update
particle’s velocity instead of gbest. The process for imple-
menting the MPSO algorithm is as follows:
1. Initialize
(a) Set constants c1, c2, ωk , the maximum velocity vmax and

maximum iterations kmax, set counters k = 0.
(b) Initialize a population of particles with random

two-dimensional positions x i0 ∈ D for i = 1, · · · , p
and two-dimensional velocities 0 ≤ vi0 ≤ vmax for
i = 1, · · · , p.

(c) Evaluate fitness values f i0 using x i0 for i = 1, · · · , p.
And if f i0 > thr1, x i0 and corresponding f i0 will be added
to a multipath list and be written as pilbest and lbest(i)
respectively.

(d) Set f ibest = f i0, p
i
0 = x i0 for i = 1, · · · , p.

2. Optimize
(a) For each particle i, find out the nearest τl from the mul-

tipath list. If f ik < lbest(l) then skip to step 2(b) else skip
to step 2(c).

(b) Update particle velocity using the following equation:

vik+1 = ωkv
i
k + c1r1(p

i
k − x

i
k )+ c2r2(p

l
lbest − x

i
k )

where pllbest is the position of the lbest(l), and update
particle position using Equation (22).

(c) Update particle velocity using the following equation:

vik+1 = ωkv
i
k + c1r1(p

i
k − x

i
k )

and update particle position using Equation (22).
(d) Set i = 0.
(e) Evaluate fitness value f ik+1 using x

i
k+1.

(f) If f ik+1 > min(lbest) then skip to step 2(g), else set i =
i+ 1 and skip to step 2(e).

(g) Find out the nearest τl from the multipath list and calcu-
late the difference value of time delay: 1τ = |τi − τl |.

(h) If 1τ > 1peak then add x ik+1 and corresponding f ik+1 to
the multipath list to represent another possible path. And
update particle best value f ibest and position p

i
k+1, skip to
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step 2(j), else update particle best value f ibest and position
pik+1, skip to step 2(i).

(i) If lbest(l) < f ik+1, then update lbest.
(j) If i > p, then set k = k + 1 and skip to step 2(k), else set

i = i+ 1 and skip to step 2(g).
(k) Loop to step 2(a) until k > kmax.
(l) Select {al, τl} from the multipath list whose lbest(l) >

thr2, consequently, {al, τl} are the Doppler scale factor
and the time delay of path l respectively.

Note:1peak , thr1 and thr2 are three thresholds we need to set
for this algorithm. 1peak is set as the minimum difference of
time delay that can distinguish two paths. thr1 is the normal-
ized threshold for the initializing of the multipath list and its
value can be a small positive number, usually 0.1 or 0.2. thr2
is the normalized energy threshold used to select parameters
from the multipath list. It is set according to the desired signal
to noise ratio (SNR).

IV. MPSO-BASED MSML CHANNEL
PARAMETERS ESTIMATION
Consider a MSML channel model, the discrete-time signal at
the receiver is expressed as

r =
L−1∑
l=0

slhl + n (25)

where sl = [s0, s1, · · · , sP−1]T is the training sequence on
the lth path and P denotes the period of the sequence. hl
denotes the lth discrete-time channel impulse response (CIR).
n denotes a noise vector with mean zero and variance σ 2.
For ease of deduction, the form of (25) can be rewritten
as

r = Sh+ n (26)

where S = [s0, s1, · · · , sl, · · · , sL−1] and h =

[h0, h1, · · · , hl, · · · , hL−1]T . The least square (LS) estimator
of h is given by

ĥ = (SHS)
−1

SHr (27)

Note that h = (SHS)−1SH (r − n), then the mean square
error (MSE) of h can be expressed as

MSE =
1
L
tr{E{(ĥ− h)(ĥ− h)

H
}}

=
σ 2

L
tr{(SHS)

−1
} (28)

To minimize the MSE, that is, to reach classical Cramer-
Rao lower bound (CRLB), SHS should satisfy the following
formula:

SHi Sj =
{
Esi,sjIL , i = j
0L , i 6= j

(29)

where Esi,sj = sHi sj, IL is a L × L unit matrix and 0L is a
L × L zero matrix. The sequence set satisfying (29) is called
an optimal training sequence set [29].

Formula (29) can also be rewritten as

Rsi,sj (τ ) =
P−1∑
n=0

sni (s
(n+τ ) mod P
j )

∗

=


Esi,sj (τ = 0, i = j)
0 (0 < |τ | ≤ TL , i = j)
0 (0 < |τ | ≤ TL , i 6= j)

(30)

where TL is the maximum time delay of all paths. Then it is
clear that ZCZ sequence meets (30) based on the definition
in part II.C. So it means that ZCZ sequence can serve as
the optimal training sequence and can be in favor of MPSO
algorithm for channel estimation.

A. ESTIMATION OF THE SCALE FACTOR
AND THE TIME DELAY
Denoting r(t) as the received training sequence and sLocal(t)
as the local ZCZ sequence, and denoting s(ai,τi)

Local
(t) =

sLocal(ait−τi) as the resampled-delay version of sLocal(t) with
ai as the resampling factor and τi as the time delay, the cross-
correlation value of r(t) and s(ai,τi)

Local
(t) is given by

< r, s(ai,τi)
Local

> = Ai

∫
+∞

−∞

si(t)sLocal(ait − τi)dt

+

L∑
l=1,l 6=i

Al

∫
+∞

−∞

sl(t)sLocal(ait − τi)dt

+

∫
+∞

−∞

n(t)sLocal(ait − τi)dt (31)

According to the auto-correlation and cross-correlation
properties of ZCZ sequence, we can know that if the parame-
ters {ai, τi} are available, the first term of the right-hand side
of (31) is approximately equal to Esi,si , the peak value of
path i, and the second term approaches to zero. So we can
distinguish different paths and deal with signals fromMSML
channel.

(31) can be solved by brute force approach, that is, trying
all possible combinations of {ai, τi} and the best solution will
be the onewith themaximum cross-correlation value. But this
needs high computation cost, and the accuracy is limited by
the step size, in the exhaustive search it may jump over the
peak if the step is not appropriate.

InMPSO, each particle’s position represents a possible pair
of {ai, τi} and parameters of Doppler scale and time delay
can be get simultaneously once a particle reaches the lbest.
We can get all paths parameters from the multipath list at the
end of iterations. Comparing with the brute force approach,
on the one hand, each particle can update its position and
velocity according to the nearest lbest, thus this algorithm
features high speed of convergence. On the other hand,MPSO
can search more precisely around the peak for the velocity
will be dynamically adjusted in each iteration. Further-
more, MPSO is shown to be robust as it introduces random
factors.
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B. ESTIMATION OF THE AMPLITUDE
From (31) we can know that the cross-correlation function
of ZCZ sequence can reach a sharp peak if sLocal(ait − τi)
matches the received signal si(t) well. Therefore, once the
scale factor and time delay are estimated using MPSO
algorithm, then the amplitude Ai can be estimated through
calculating the cross-correlation between s(aiτi)

Local
(t) and r(t),

i.e.

Âi =

∫
+∞

−∞
r(t)s(ai,τi)

Local
(t)dt∫

+∞

−∞
||s(ai,τi)Local (t)||2dt

(32)

In fact, it is exactly the fitness value of the corresponding
{ai, τi} in the multipath list. So the triplet of {ai, τi,Ai} can
be get simultaneously from the multipath list.

FIGURE 1. The structure of the data packet.

V. SIMULATION RESULTS
In this section, we use computer simulation to evaluate the
proposed MPSO algorithm. Firstly, we will give a brief intro-
duction about the ZCZ sequence and simulation parameters
adopted in this paper. Secondly, we evaluate and analyse the
performance of theMPSO algorithmwith different evaluation
criteria. And comparisons with other estimation methods will
also be included. Finally, we will give out the complexity
analysis of MPSO algorithm as well as make comparisons
with other estimation methods.

A. SIMULATION SETUP
The length of the ZCZ sequence we adopt in the simulation
is 512. The data packet structure used and the property of ZCZ
sequence are demonstrated in Fig.1 and Fig.2 respectively.

From Fig.2 in the next page, we can see that ZCZ sequence
has very good correlation properties, i.e., it reaches a sharp
peak if the local sequence matches the receive signal well and
nearly zero for other cases.

We will use the path-based model to emulate the real
MSML underwater acoustic channel which is sparse in
nature.

h(τ, t) =
L∑
l=1

Alδ(al t − τl) (33)

And we will use similar assumptions as the ones in
references [15]–[17], [21]–[24]. For the sparsity of UWA
channel, only a few of quantized channel parameters need
to be considered and estimated, which is supported by many
underwater communication experiment data as presented
in [2], [10], [12], and [13].

1) Set path number L = 8, and the amplitudes of these paths
are uniformly distributed.

2) The scale factors al(l = 1, 2, · · · L) are uniformly
distributed within al ∈ [1, amax], with an accuracy to
three decimal places. Here, we set amax = 1.02 which
corresponds to a relative velocity about 30 knots and is
relatively high for underwater movement [27].

3) The delays follow uniformly distribution and all the paths
arrive at the receiver within one signal duration T [27].
Although the values of Al, al, τl are assumed to stay con-

stant during sone signal duration T , they result in a wideband
channel which varies with time.

The ZP-OFDM specifications are summarized in Table 1.

TABLE 1. Parameters of ZP-OFDM in numerical simulation.

The data rate, R, also depends on the modulation scheme
and the number of OFDM symbols, N , transmitted in each
packet. We adopted 10 symbols in each packet and use a rate
1/2 nonbinary LDPC code to encode data. Using a 16-QAM
modulation, the spectral efficiency λ and the data rate R can
be calculated by

λ =
T

T + Tg
·

N × 1024
N × 1024+ 512

·
1
2
· log216 = 1.5bits/s/Hz

(34)

R = λB = 14.7kb/s (35)

At the receiver, in MPSO algorithm, each particle’s posi-
tion, {ai, τi}, can be used to modulate the local ZCZ sequence
and get a scale-delay version, sαi , to match the receive ZCZ
sequence, r . At the optimizing step, we will select particles
according to their fitness values:

M = |C|2/E2 (36)

where

C =
Kz−1∑
k=0

r(τi + k) · sαi
∗(k) (37)

E =
Kz−1∑
k=0

sai (k) · sai
∗(k) (38)

where Kz is the length of sαi . And parameters adopted in
MPSO are listed in table 2.

B. PERFORMANCE OF CHANNEL
PARAMETER ESTIMATION
In this part, the performance of the proposed MPSO algo-
rithm, is evaluated as a comparison with the performances of
the MP-based method [22] and FrFT-based method [27].
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FIGURE 2. Property of ZCZ sequence. (a) auto-correlation (b) cross-correlation.

TABLE 2. Parameters of MPSO.

For MP-based method, we construct a signal dictionary
correspond to delay-scale spreading function (DSSF) [27],
the detail information about DSSF can be seen inAppendix B.
The dictionary is composed of atoms which are scale-delay
versions of the transmitted LFM signal. The atoms are sam-
pled uniformly on scale factor and the sampling interval 1α
equals 0.001 [27], and the time delay difference of two atoms
with the same scale factor is one sample.

The proposed MPSO algorithm and FrFT-based method
both apply the path-based channel model, while the
MP-based method applies the DSSF’s virtual representation
model [27]. Due to the model difference, we modify the
output of MPSO and FrFT-based method into the DSSF
matrix HM×N , in order to compare their performance fairly.
The (m, n)th element is H [m, n] = α

1/2
m ηm,n, combing the

normalization factor. The scale factors, time delays, and
amplitudes can be modified by [27]:

αm = 1+ (m− 1)/1000
τn = (n− 1)/fs
Am,n = H [m, n] = α1/2m ηm,n

,
for m = 1, . . . ,M
n = 1, . . . ,N

(39)

where ηm,n is the sampling value of the (m, n)th grid of the
discretized DSSF [27] and fs is the sampling rate.

FIGURE 3. NMSEs of the DSSF estimates versus SNR.

1) PERFORMANCE COMPARISON OF THE
DSSF ESTIMATIONS
We adopt the normalized mean squared error (NMSE) in
the following as the evaluation indicator of the estimation
accuracy,

NMSEDSSF =

∑
m
∑

n |Ĥ [m, n]− H [m, n]|2∑
m
∑

n |H [m, n]|2
(40)

where Ĥ [m, n] = α̂
1/2
m η̂m,n denotes the discrete DSSF

estimate for the simulated algorithms.
The NMSEs of the estimated DSSF using MP, FrFT meth-

ods and MPSO algorithm versus SNR are drawn in Fig.3.
It can be seen that the estimation accuracy of the proposed

MPSO algorithm and the FrFT-based method are signifi-
cantly better than the MP-based method. The MPSO algo-
rithm is slightly better than FrFT-based method for low SNR,
gaining about 4dB; and much better as SNR increases, that is,
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FIGURE 4. NMSEs of the PSP estimates versus SNR.

after the SNR exceeds −4dB, the gap is away from the FrFT
method.

2) PERFORMANCE COMPARISON OF THE POWER SCALE
PROFILE (PSP) ESTIMATIONS
Further, we compare the PSP performances of the MPSO
algorithm and other methods. The PSP of the channel can
be obtained by stacking up the delay dimension of the
DSSF [27]. The NMSE of the PSP can be calculated by

NMSEPSP =

∑
m |
∑

n Ĥ [m, n]−
∑

n H [m, n]|2∑
m |
∑

n H [m, n]|2
(41)

The numerical simulation results are depicted in Fig.4, the
MPSO algorithm performs much better compared with the
MP-based method, and outperforms the FrFT-based method,
especially after the SNR exceeds −2dB. However, when
SNR is in −8∼-4dB, performances of the two methods are
close, MPSO performs only a little better than FrFT method.
Comparing to Fig.3, we find that both MP method and FrFT
method in low SNR perform much better in NMSE of the
PSP than DSSF estimates while MPSO not. So we speculate
that LFM signal has a poor performance on time synchroniza-
tion [2], thus cannot estimate delay accurately, so it performs
better when stacking up the delay dimension. Therefore, we
turn to evaluate the performance of MPSO in the NMSE of
scale factor and the error of delay in the following part.

3) PERFORMANCE COMPARISON OF THE
SCALE FACTOR ESTIMATIONS
To compare the estimation accuracy of the scale factors, we
investigate the NMSEs of the scale factor estimates as the
following formula:

NMSEscale =

∑L
l=1 |α̂l − αl |

2∑L
l=1 |αl |

2
(42)

and show the results in Fig.5. The MPSO algorithm
outperforms the other two methods significantly, and even
at −10dB, the MPSO algorithm can estimate the scale factor
as accurate as the FrFT-based method in high SNR.

FIGURE 5. NMSEs of the scale factor estimates versus SNR.

4) PERFORMANCE COMPARISON OF THE
TIME DELAY ESTIMATIONS
Time delay is one of the channel parameters we need to
estimate, for it carries important channel information, for
example, the propagation distance between the transmitter
and the receiver as well as the path intensity. The estimation
accuracy can be evaluated by error of delay estimate:

Errordelay =
1
L

L∑
l=1

|τ̂l − τl | (43)

where L is the number of the dominant paths.
As a comparison, the performance of the MP-based and

FrFT-based methods are also evaluated. For the training
sequences of the MP-based method, the LFM sequence, PN
sequence and ZCZ sequence are simulated respectively. The
estimate error is averaged over the results of 500 trials for
each method. It can be seen that the proposed MPSO method
outperforms the others from the error results, which are drawn
in Fig.6. Specifically, PN-MP, ZCZ-MP, FrFT and MPSO
methods perform better with the increase of SNR, neverthe-
less, LFM-MP method keeps fluctuating around the error of
2.6 samples. When the SNR exceeds 4dB, PN-MP,
ZCZ-MP and MPSO methods all outperform the two
LFM-based method: LFM-MP and FrFT. It strongly suggests
that LFM signal has poor time resolution. ZCZ-MP performs
better than PN-MP, especially in low SNR, which indicates
that ZCZ sequence has better correlation properties than PN
sequence. So utilizing the good property of ZCZ sequence,
the proposed MPSO algorithm can achieve a satisfactory per-
formance after −5dB as the estimate error is approximately
zero.

5) PERFORMANCE ANALYSIS
For MP-based method, the performance has no improvement
as the SNR increases, i.e., its NMSEs or estimate error show
no obvious downtrend in Figs 3,4,5,6. Such result owes to two
reasons, one is the poor time resolution of the LFM signal
in the scale-delay domain, which results in an inaccurate
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FIGURE 6. Errors of delay estimate versus SNR.

estimate of the time delay. And inaccurate delay estimate
also leads to an inaccurate scale factor estimate. The other
is that MP-based method uses a dictionary which composed
of scale-delay versions of the transmitted LFM signal. So if
one scale-delay version is not included in the dictionary, the
method can only use other versions to approximate it, thus the
estimation error cannot be eliminated by increasing the SNR.

For FrFT-based method, the performance is not satisfac-
tory, especially in low SNR, i.e., the NMSE of the scale
factor estimate is worse than MP method. One of the reason
is the same as MP method as it also involves LFM signal
as preamble. Another reason may be that it separates the
multicomponents from the overlapped LFM signals during
iterations. So if the estimated parameters of one iteration is
inaccurate, the latter iterations will be influenced.

For MPSO algorithm, firstly, it adopts ZCZ sequence as
preamble. As we mentioned above, ZCZ sequence has excel-
lent correlation properties, which can resist multipath inter-
ference without the need of multipath separation like MP and
FrFT methods do. Thus, it is in favor of delay estimation.
Secondly, like many other evolutionary computation algo-
rithms, MPSO algorithm can dynamically adjust particle’s
velocity according to lbest and pbest. Thus it can search
a much larger portion of the problem space, and get more
accurate positions than methods like MP, which uses a fixed
dictionary.

C. COMPLEXITY ANALYSIS
Another considerable issue is the complexity of the chan-
nel estimation algorithm. For MP-based method, FrFT-based
method and the proposed MPSO algorithm, the computation
mainly includes two parts: 1) the calculation of the inner
products between the received signal and the local delay-scale
version. 2) The iterations inwhich the algorithm distinguishes
the dominant paths and estimates their parameters.
1) Complexity of MP-based method: Let KL denotes the

average samples of the local delay-scale version of LFM
signal. N = NτNα is the total number of delay-scale
versions, i.e., atoms in the dictionary. In each iteration, the

TABLE 3. Complexity comparison.

inner products between the received signal and atoms in
the dictionary require ρ1 = NKL complex multiplications
and ρ2 = N (KL − 1) additions. Therefore, the total
operation counts for RMP iterations are of the order of
O(RMPNKL).

2) Complexity of FrFT-based method: According to
Algorithm 2 in [27], at each iteration, the major computa-
tion is spent on FrFT scanning, i.e., the step 1 and step 4
in Algorithm 2, whose calculation is O(NFrFTKL logKL),
where KL is the samples of the transmitted LFM signal,
NFrFT is the number of total FrFT times in the scanning
and approximately equals to 77 in [27]. In step 2∼5, a
sub-iteration is included for the optimal fractional order
adjusting according to the estimated time delay. Specif-
ically, in step 3, the calculation of searching for delay
is O(KL2), and in step 4, rescanning the FrFT requires
the calculation of O(NFrFTKL logKL). Totally, four order
adjusting loops are required for the sub-iteration. There-
fore, the total operation counts for RFrFT iterations are of
the order of O(5RFrFTNFrFTKL logKL + 4RFrFTKL2).

3) Complexity of MPSO algorithm: We assume there are
P particles and maximum number of iteration times is
RMPSO. For MPSO algorithm, the computation is mainly
determined by calculating fitness value for each particle.
Fitness value is defined as the inner products between the
received signal and delay-scale version of original ZCZ
sequence. At the initialization period, the computation for
evaluating initial fitness values is O(PKZ ),KZ is the length
of the ZCZ sequence. Then at the optimization period,
the main computation is in step 4∼10, of the order of
O(PKZ ). Thus, the overall computation is of the order of
O(PKZ + RMPSOPKZ ).

4) Complexity comparison:
Note that in both MP and FrFT methods, the maximum
number of iterations is determined by path numbers.
So RMP and RFrFT approximately equal to path num-
bers, 8, in this paper. And we suppose the scale factor
α ∈ [1, 1.02], with the sampling interval 1α = 0.001,
thus Nα = 21. In addition, we assume signals from
different paths arrive at the receiver within one signal
duration T . Since we adopt 1τ = 1

fs
, fs is the sampling

rate, then Nτ = T
1τ

. For MP and FrFT method, Nτ =
KL = 4000, refer to the simulation part in [27]. And
for MPSO method, we set P = 200 and RMPSO = 30
in the simulation, and KZ = 512. In conclusion, use the
above numerical values, we list the computations of these
methods in Table 3. It shows that the complexity of the
proposedMPSO algorithm is far less than that of the other
two methods.
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VI. CONCLUSION
In this paper, we model the UWA channels as MSML
channels which can be parameterized in a path-wise manner.
Signals from different paths can be distinguished by the
triplets of Doppler scale factors, time delays and amplitudes.
And by exploiting the sparsity of UWA channels, only the
dominant paths’ parameters need to be estimated. Based on
this, we propose MPSO algorithm for parameter estimation
of MSML channels. The main advantage of the proposed
algorithm is that it can search a much larger portion of the
problem space and get more accurate estimation than other
existing methods, like MP-based method and FrFT-based
method. Furthermore, the ZCZ sequence is transmitted as
the training signal and its good correlation properties are in
favor of the time delay estimation. The performance gain of
the MPSO algorithm is demonstrated through comparing the
estimation accuracies of the DSSF, the PSP, the scale factor
and the time delay with MP-based and FrFT-based methods.
Simulation results show that the performance of the MPSO
algorithm surpasses the other two methods.

APPENDIX A
THE FORMULA DEDUCTION OF RECEIVER PROCESSION
Performing down conversion and ZP-OFDM demodulation:

ym =
1
T

T/al∫
0

ỹ(t)e−j2π fcte−j2π
m
T tdt (44)

for the sake of simplicity, Plugging in ỹ(t) without n(t)
and q(t):

ym =
L∑
l=1

Alej2π (fc+
k
T )(−τl )

K−1∑
k=0

s[k]

×
1
T

T/al∫
0

ej2π fc(al−1)tej2π
k
T al te−j2π

m
T tdt

=

L∑
l=1

Alej2π (fc+
k
T )(−τl )

K−1∑
k=0

s[k]
1
T

T/al∫
0

ej2π (al fk−fm)tdt

=

L∑
l=1

Alej2π (fc+
k
T )(−τl )

K−1∑
k=0

s[k]
1
T
(ej2π (al fk−fm)T/al − 1)

j2π (al fk−fm)

(45)

where

1
T
(ej2π (al fk−fm)T/al − 1)

j2π (al fk−fm)

=
1
T

cos(2π (al fk − fm) Tal )+ j sin(2π (al fk − fm)
T
al
)− 1

j2π (al fk−fm)

=
1
T
(
2 sin(π (al fk − fm) Tal ) cos(π (al fk − fm)

T
al
)

j2π (al fk−fm)

−
2sin2(π (al fk − fm) Tal )

j2π (al fk−fm)
)

=
1
T

sin(π (al fk − fm) Tal )
π (al fk−fm)

(cos(π (al fk − fm)
T
al
)

+ j sin(π (al fk − fm)
T
al
))

=
1
al

sin(π (al fk − fm) Tal )

π (al fk−fm) Tal
ejπ (al fk−fm)

T
al (46)

let

β lk,m = (al fk − fm)/al = (k − m)
1
T
+

(al − 1)fm
al

(47)

Therefore,

ym =
L∑
l=1

Al
al

K−1∑
k=0

s[k]e−j2π (fc+
k
T )τl

sin(πβ lk,mT )
πβ lk,mT

ejπβ
l
k,mT

=

L∑
l=1

Al
al
e−j2π fcτl

K−1∑
k=0

s[k]e−j2π
k
T τl sinc(β lk,mT )e

jπβ lk,mT

(48)

APPENDIX B
DELAY-SCALE SPREADING FUNCTION
The delay-scale spreading function (DSSF) h(α, τ ), is a con-
tinuous function that takes the scaling factor α and time delay
τ as variables [27]. At the receiver, the received signal r(t) can
be written as

r(t) =
∫
+∞

−∞

∫
+∞

−∞

h(α, τ )α1/2s(α(t − τ ))dτdα (49)

where α1/2 is a normalization factor. This model reflects
the fact that in wideband UWA communication, the received
signal r(t) can be represented by different scaled (by α) and
delayed (by τ ) versions of the transmitted signal, and each
weighted by α1/2h(α, τ ).
The DSSF can be discretized through sampling at reg-

ular intervals on the delay-scale plane. To be specific, let
h(α, τ ) = 0,∀(α, τ ) /∈ [αmin, αmax] × [0, τmax], where
αmin, αmax denote the lower bound and upper bound of the
scale factor changing and τmax denotes the maximum delay
of the channel. The expression of the DSSF can be written as:

h̃(α, τ ) =
M∑
m=1

N∑
n=1

ηm,nδ(α − αm)δ(τ − τn) (50)

where αm = αmim + m1α, τn = n1τ,M = (αmax −

αmin)/1α,N = τmax/1τ , with 1α and 1τ denote the scale
factor sampling interval and delay sampling interval, respec-
tively. ηm,n is the (m, n)th sampling value of the discretized
DSSF [27].

Substitute (50) into (49), we have

r(t) =
∑
m

∑
n

ηm,nαm
1/2s(αm(t − τn)) (51)
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