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ABSTRACT The quality fluctuation of video is significant in human visual system, and thus, many rate
control schemes are widely developed in the area of video communication. In recent years, researchers show
more interests in region of interest (ROI)-based encoding, and it is widely applied in the latest video codecs,
such as HEVC and VP9. This paper presents a new rate control scheme for ROI mode coding based on
discrete fourier transform coefficient model and radial basis function neuron network. A new R-D model
is proposed by classifying blocks into different depth, ROI groups, and so on. Then, rate and distortion are
described based on the Laplacian distribution model using mathematical ways. Amachine learning approach
is induced to enhance the accuracy of the distortion estimation. By utilizing the new R-D model, a new rate
control scheme is designed for ROI mode coding from the group of picture layer to coding unit layer. By
comparisons with other rate control approaches, the proposed one has a better result in terms of visual quality,
R-D performance, bitrate accuracy, and so on. Hence, it outperforms the conventional schemes especially
for sequences with obvious ROI details.

INDEX TERMS Video coding, VP9, HEVC, region of interest, rate control, Laplacian distribution model,
rate-optimization model, radial basis function neuron network, machine learning.

I. INTRODUCTION
In recent years, there is a rapid development of efficient
video compression techniques considered by multimedia
community. One of the state-of-art video coding standard
developed by Joint Collaborative Team on Video Cod-
ing (JCTVC) is called High Efficient Video Coding (HEVC)
[1], [2], whose coding efficiency performs almost two times
than H.264/AVC [3]. Another state-of-art one developed
by Google is called VP9 codec [4], [5]. Both of them
involve more sophisticated coding features and techniques
than the previous coding standards. In HEVC, more flexible
hierarchical-block based coding unit (CU) is designed with
quadtree partitions and higher depth levels, together with
prediction unit (PU) and transform unit (TU). A coding tree
block (CTB) separated PU and CU from its maximum to
minimum size, and the PU in a CU block can have various
sizes like 2N × 2N , 2N × N , and N × 2N for 2N × 2N
CU block. As a convention, CUk denotes the CU in depth k .
Hence, when CTB size is set to 64 × 64 with the maximum
depth level of four, CU0, CU1, CU2 have their resolutions
as 64 × 64, 32 × 32, 16 × 16 respectively. Note that the
coding structure in VP9 is nearly the same as HEVC however

with their names distinguished [6], for example, the largest
CU (LCU) in VP9 is named as super-block (SB).

With the rapid development of computer vision, peo-
ple attempt to focus the region of interest (ROI) in video
sequences. Previous works show that researchers intend
to define the concept of ROI based on Human Visual
System (HVS) [7]. Meanwhile, ROI based video encod-
ing is adopted both in H.263 [8], [9], and the notion of
object-based encoding proposed in MPEG-4 [10] focuses
on ROI to cope with HVS. During the recent decade,
researchers regard moving objects as ROI so that they put
emphasis on moving objects and fore-ground/background
detection. Hence, many state-of-art techniques are devel-
oped for ROI detection such as Gaussian Mixture
Model (GMM) [11]–[13], Low-Rank modeling [14] with
Robust Principle Component Analysis (RPCA) [15]–[18],
and background model-based approaches [19]–[23]. ROI-
based encoding is proposed in [24], where CUs belong to ROI
group have smaller quantization parameters (QP) than CUs in
non-ROI group, for the sake of improving visual quality for
ROI blocks. Also, ROI-based encoding is widely used both in
H.264 and H.265 standards [25], [26]. Since the objective of
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video coding is to obtain the best reconstructed quality, rate
control is an important issue for ROI-based encoding.

A. RELATED WORKS
Above the current researches acknowledgements, there are
three typical models for rate control: R − Q model [27],
R−λmodel [28], and R−ρ model [29]. In R-Q model, rates
and distortion can be formulated as a function of QP sep-
arately. This model is first developed for hybrid video and
it is well fitted in H.264 [24], then it is extended in ROI
coding mode in [30]. Choi et al. [31] proposed a pixel-wise
unifiedR−Qmodel (URQ) implemented in HM6.0, however,
no-residue information is not considered in this model.
The R − ρ model is a ρ-domain model based on the
percentage of non-zero quantized transformed coefficient.
It is implemented as a Rate-Gop method [32] in HEVC,
where QP is determined by the picture order count (POC).
Lee and Kim [33], Lee et al [34] models the parameters
of ρ-domain separately for CUs with different depth and
frames with various types. Also, they propose a texture and
non-texture model where the bits estimation for texture and
nontexture blocks are computed separately, and the scheme is
also suited for ROI coding mode as well. Their experiments
reveals that separately modeled ρ-domain has a better per-
formance in HEVC, however, this is not the well-addressed
solution for ROI-based mode. R − λ model is well studied
in HEVC and AVC [35], which focuses on Rate Distort
Optimization (RDO). Therefore, larger λ causes larger dis-
tortion and fewer bit outputs. [36] shows that their improved
R − λ model considers both residual and nonresidual bits,
and it outperforms other approaches in terms of the esti-
mation precision. However, Wang et al. [37] point out the
disadvantages of R − λ is that it only considers the target
bits but neglects the characteristics of video data. Therefore,
we believe the performance can be improved by adding the
characteristic information hierarchically based on ROI cod-
ing mode. In addition, other models based on discrete fourier
transform (DCT) coefficients PDF deduce the relationship
between bits output and the entropy functions [38]–[41].
These approaches achieves a better performance in accuracy
at the expense of bringing computing costs.

B. OUR METHOD AND CONTRIBUTIONS
In this paper, we give a new idea of modeling the bits output
by inducing a mixture Laplacian DCT (MLD) coefficient dis-
tribution to represent CU’s rate and distortion by their prop-
erties (i.e., depth, ROI/non-ROI group). A frame-level target
bits estimation model is formed theoretically based on ROI
mode. Meanwhile, in the CU layer, a deep learning approach
is designed by creating artificial neuron networks (ANN) to
measure the accurate distortion, and the performance of ANN
model has a better estimation on distortion than the theoreti-
cal model via experiments. Next, a new rate control scheme
for based on ROI-mode is given by solving the R-D optimiza-
tion problem. Moreover, the proposed rate control scheme
operates from GOP level to CU level. Besides, a new GOP
selection and frame bit allocation method has been proposed.

Based on the proposed rate models and control scheme,
more accurate rate estimation is achieved with the minimum
distortion. Different from other approaches, the proposed
one first cluster GOP by histogram of differences (HOD)
judgements. Second, it updates a neuron network to get the
precise distortion periodically. Meanwhile, the accumulated
distortion is stored in a buffer to adaptively update QP by
threshold so that a feedback control approach is used.

The remainder of this paper is organized as follows.
In Section. II, the proposed R-D model is illustrated using
mathematical ways. In Section. III, the proposed rate control
method for ROI mode coding is given in GOP layer, frame
layer and CU layer. Experimental results are displayed in
Section. IV, which contain R-D performance, quality com-
parisons, etc. Finally, we conclude the paper in Section. V.

II. ROI-BASED RATE-DISTORTION MODELING
A. ROI RATE MODELING
By definition of ROI-based coding in HEVC, CUs are catego-
rized into two basic groups: group of ROI and group of non-
ROI. The two basic groups are separated further based on the
coding depth of CUs. They are classified into two levels: low-
textured and high-textured. The extent of ’textured’ indicates
the coding texture information levels of CUs. For example,
CU0 and CU1 have the lower variances in DCT coefficients
than CU2 and CU3. Hence, CU0 and CU1 are classified as
CUL and CU2 and CU3 are regarded as CUH . Note that
all of them belong to the basic two groups. According to
the [42], the histogram of DCT coefficients are well fitted
by Laplacian PDF with a confidence interval 95%. Thus,
we model the source distributions of the transform residues
for each category as :

fc(l) =
λc

2
e−λc|l|, λc ∈ {λl, λh}, (1)

where λl and λh are model parameters for CUs in level l
and h, l is a random variable for transform coefficient. λc is
computed as [38]:

λc =
√
2/σc, (2)

where σc is standard deviation of the residual transform coef-
ficients for different levels of CUs in a frame. Since QP for
CUs in ROI group is smaller than CUs in non-ROI group,
λl and λh are different in these two groups. Depending on this
property, a proposed frame-level rate model for ROI-mode
coding for transform coefficients in HEVC is given by:

R(q) =
∑

k∈{r,n}

αlNlkHlk (qk , λl)+ αhNhkHhk (qk , λh), (3)

where k belongs to the set of ROI and non-ROI groups.
Hc(q, λc) represents the entropies function for category
c (c ∈ {lr, hr, ln, hn}). Nc is the number of pixels for CU
in category c. The sum of Nlr , Nhr , Nln, Nhn and NSKIP equals
to the total frame’s pixel size. NSKIP means the total pixels
number for skip blocks in CUs. αc is a model parameter
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which can be computed via linear regression scheme [33].
The entropy function is computed as:

Hc(q, λc) = −P0,c log2 P0,c − 2
∞∑
i=1

Pi,c log2 Pi,c, (4)

where q is quantization step size, Pi,c denotes the probabili-
ties that transform coefficients are quantized to interval i in
category c. It is written by:

Pi,c

=


∫ q−fq

−(q−fq)
fc(l)dl = 1− e−(1−f )qλc , i = 0∫ (i+1−f )q

(i−f )q
fc(l)dl = 1/2e−(i−f )qλc (1− e−qλc ), i > 0.

(5)

In this expression, f is a rounding offset. According to [33],
f is set empirically to 1/6 for intercoded CU and 1/3 for
intracoded CU. After some mathematical manipulations, (4)
is simplified as :

Hc(q, λc) ' ac(e−(1−f )qλc ), (6)

where ac is a model parameter, the proof of this is done
explicitly in [34]. Finally, combining with (6) and (9), we get
R(q) as:

R(q) =
∑

k∈{r,n}

αlNlk (e−(1−f )qλ̂l )+ αhNhk (e−(1−f )qλ̂h ). (7)

Notice that λ̂l and λ̂h are the estimated model parameters in
different CU categories. The whole bits output in a frame not
only contains the bits from transform coefficients, but also
includes bits for header, motion vectors, CUs coding mode,
etc. For simplify reasons, we consider the major contributions
among these bits output. Suppose Rext as output bits for
a frame excluded from the transform coefficients, then we
have:

Rext =
∑

k∈{r,n}

Nlk R̄l(mv)+ Nhk R̄h(mv)+ NIk R̄h(Ik ), (8)

where Nlk and Nhk are the pixel number of inter blocks for
CU in different group levels, NIk denotes the pixel number of
intra blocks. R̄(mv) means the average motion vector bits per
block in CU levels and R̄(I ) is the average bits for intra blocks
of CU. Therefore, the rate model for a frame is proposed as:

R = R(q)+ Rext , (9)

where R(q) is written in (3).
As shown in Fig. 1, the histogram of DCT coefficient in

each CU category is well fitted into Laplacian PDFs in vari-
ous CU depth levels. The DCT coefficient follows Laplacian
PDF with a confidence interval 95% or more, which proves
the similar results provided in [42].

FIGURE 1. CUs DCT coefficients distribution and distortion analysis for
BasketballPass and RaceHorses. (a) BasketballPass. (b) RaceHorses.
(c) BasketballPass. (d) RaceHorses.

B. ROI DISTORTION MODELING
1) THEORETIC MODELING
The distortionmodel is designed for the purpose ofmeasuring
the relationship between rate and distortion. It is critical to
find appropriate R-Q and D-Q models for the sake of making
balance between rate output and distortion. However, to find
an accurate D-Q model is hard since transform distribution
model has errors itself. Also, the quad-tree coding structure
in HEVC brings in the diversity properties of CU, thus,
increasing the prediction difficulty of D-Q model. According
to the discussions above, the distortionDj(q) can be computed
approximately by an expression below:

Dj(q) = P0,c + 2
∑∞

i=1

∫ (i+f )q

(i−f )q
fc(l)|l − iq|dl

= P0,c + 2
∑∞

i=1
(
∫ iq

(i−f )q
fc(l)(iq− l)dl

+

∫ (i+f )q

iq
fc(l)(l − iq)dl). (10)

Note that j is the depth of CU and its range is default from
0 to 3 in HEVC, and i denote the quantization step index.
Substituting (1) into (10), we get:

Dj(q, λc) = P0,c + 2
∞∑
i=1

∫ (i+f )q

iq

1
2
λce−λcl(l − iq)dl

+ 2
∞∑
i=1

∫ iq

(i−f )q

1
2
λce−λcl(iq− l)dl

=

∞∑
i=1

−[fq+
1
λc

]e−λc(i+f )q

+
2
λc
e−λciq + (fq−

1
λc

)e−λc(i−f )q + P0,c

= {−[fq+
1
λc

]e−λcfq +
2
λc
+ (fq−

1
λc

)eλcfq}

×e−λcq/(1− e−λcq)+ 1− e−(1−f )qλc . (11)
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Note that the purpose of deducing this expression is to convert
integral to basic calculation, so that it is easy to be imple-
mented in computer. The total distortion of a frame can be
estimated as :

D =
∑

k∈{r,n}

NlkDlk (qk , λl)+ NhkDhk (qk , λh). (12)

Similarly,N is the block pixel number andDc is the distortion
function in level c, where c ∈ {lr, hr, ln, hn}.

FIGURE 2. Basic structure of RBF network.

2) ANN MODELING
The discussion in Theoretic Modeling reveals that only
approximate models can be found as a prediction for the
distortion. CU’s diversity and the ROI categories also enhance
the challenge for encoders to make trade-off between dis-
tortion and rate output. Hence, using Artificial Neuron
Network (ANN) can improve the current model and help
encoders make decisions on target bits allocation. In the
previous subsection, it can be seen that the D-Q model is not
a linear model. Thus, an optimal choice is to induce Radial
Basis Function Neuron Network (RBFNN) for non-linear
model prediction. The structure of RBFNN is displayed in
Fig. 2. For illustrative purpose, matrices and their dimensions
are marked in this figure. The input matrix P and output
matrix T have the following structure:

P =

MAD1 · · · MADR
λc1 · · · λcR
q1 · · · qR

 , T =
(
D1, · · · ,DR

)
.

(13)

Here, MADi, i = 1, 2, · · · ,R is the mean of absolute dif-
ference between the reconstruct CU and the origin one at
level c. R is the number of training samples which is shown
in the figure. Distortion D is treated as the output value in
this network. IW1,1 and LW2,1 are weight matrices with the
shape of S1×R and S2× S1 respectively, where S1 equals to
R and S2 = 1 since we only have one predict value D in each
samples. Threshold b1 = [b11, · · · , b1S1 ]

T and b2 = b21. For
convenient reasons, any b1j (b1j ∈ b1) is set to 0.8326

spread , where

spread is the spread speed of radial basis and it is usually set
as 0.5. The output data a1 from the hidden layer is computed
by RBF as:

a1 = exp(−‖IW1,1 − P‖2bi). (14)

FIGURE 3. Performance comparisons between Theoretic Modeling and
ANN Modeling. (a) MSE distributions for different CU levels. (b) Distortion
prediction for low level of CU. (c) Distortion prediction for high level of
CU. (d) Training performance of different neural networks.

Also, the matrix T from output layer can be expressed as:

T = [LW2,1 b2] • [A; I];

Ti = LW2,1a1 + b2, (15)

where A = [a1, a2, · · · , an], b2 = b21, and I =
[1, · · · , 1]1×n. By solving equation in (15), LW2,1 can be
computed as:

LW2,1 = (T− b2I)A†, (16)

where the A†
= AT (AAT )−1. As for the training sample

parameters, λc and q are easy to get. MADi is computed as
an average value to forbid abrupt change:

MADi =
1
Nf

Nf∑
n=1

MADin. (17)

Nf denotes the most recent frames related to CUi in a
co-located position which is set default to 3. (17) is derived
from the fact that MAD distribution is similar in correspond-
ing positions of the previous frames.

The performances of the two approaches of ROI distortion
modeling are shown in Fig. 3. We implement this test based
on HM13.0 software. Information of CUs is extracted from
the BlowingBubbles sequences at the 8th frame. Distortion
values for different CU depth (1-3) are displayed in Fig. 3(a).
Observe that CUs with higher depth (i.e., size 8X8) have
smaller distortion values than lower depth. In Fig. 3(b) and
Fig. 3(c), modeling accuracy is evaluated by making compar-
isons between the two methods. For ANN approach, training
samples are set to 400 CUs at the same level of the previous
frame. The inputs of ANN are acquired by (2) and (17).
MSE is measured as the training goal between the ANN out-
puts and real values, which is set to 0.1 as the target. Fig. 3(b)
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∂D(qj, λc)
∂qj

= {[(1+ f (f + 1)qjλc)e−λc(f+1)qj − 2e−λcqj + (1+ f (f − 1)λcqj)eλc(f−1)qj ]︸ ︷︷ ︸
A

(1− e−λcqj )− (λce−λcqj )

× [−(fqj +
1
λc

)e−λc(f+1)qj +
2
λc
e−λcqj + (fqj −

1
λc

)eλc(f−1)qj ]︸ ︷︷ ︸
B

}/(1− e−λcqj )2 + (1− f )qjλce−(1−f )qjλc︸ ︷︷ ︸
C

(18)

reveals the difference between modeling outputs and real
distortion for CUl (CUh in Fig. 3(b)). After training process,
RBF approach has better performance in accuracy than the
Theoretic Modeling, however, with higher spatial and time
complexity for training. Besides, learning efficiency is com-
pared between BP, RBF-fixed (proposed in this paper), and
RBF-k-means neuron networks. The RBF-K-Means method
uses the K-Means Clustering algorithm to update the center
of each hidden unit, until convergence. Learning efficiency
performance in Fig.3(b) presents that the proposed RBF-
fixed ANN has a better convergence speed than others, which
means its learning efficiency is higher.

C. ROI R-D OPTIMIZATION
A popular problem in video rate control is to optimize the
total distortion with a constrained rate available, which is
named as the R-D Optimization problem. Our goal is to
minimize the distortion function of a frame series in GOP.
This problem is simply depicted as :

min
GS−1∑
j=0

Dj(qj, λj)

s.t.
GS−1∑
j=0

Rj(qj, λj) ≤ RT qj, λj > 0. (19)

Note that GS is the number of frames in a GOP, and its value
depends on the video source. A brief discussion of dynam-
ically determining GOP is done later in this paper. D and R
are rate and distort function based on q and λ respectively.
In general, ROI-mode encoding allocates qr and qn to CUs
in ROI group and non-ROI group correspondingly, so that
QP is varied in a single frame and qr − qn = 1, where 1
is a constant value. According to the features of ROI-mode
encoding, (19) can be rewritten as:

min
∑GS−1

j=0

∑
k∈{r,n}

NjlkD(qjk , λjl)+ NjhkD(qjk , λjh)

s.t.
∑GS−1

j=0

∑
k∈{r,n}

NjlkR(qjk , λjl)

+NjhkR(qjk , λjh) ≤ RT qjk , λjk > 0. (20)

It is easy to check that this problem is a convex optimization
problem by rules in [43]. However, this problem is very hard
to solve since Nlk and Nhk is changing at each frames and the
object function contains sub-functions with variable q and λc.
Fortunately, λc can be acquired or updated based on (2) or
previous encoded frames. We attempt to approximately sim-
plify this problem. To begin, the Lagrange function L(q, µ)

is written below:

L(q, µ) = inf
q

GS−1∑
j=0

Dj(qj, λj)+ µ(
GS−1∑
j=0

Rj(qj, λj)− RT ).

(21)

By computing partial derivation with respect to qjk , we have:

∂L(q, µ)
∂qjk

=

∑
c∈{l,h}
k∈{r,n}

Njck (
∂D(qjk , λjc)

∂qjk
− µ

∂R(qjk , λjc)
∂qjk

).

(22)

Using (11) and (6), ∂D(qj,λc)
∂qj

can be expressed in (18),

as shown at the top of the this page. Since λc is quite small,
(λce−λcqj ) × B and C approximately equals to zero. Thus,
we have the following result:

∂D(qj, λc)
∂qj

− µ
∂R(qj, λc)
∂qj

=
A

1− e−λcqj
− µ(1− f )λce−(1−f )qjλcac = 0. (23)

By solving this equation, qj can be acquired. However, the
Lagrange multiple parameter µ is unavailable. A theoretic
way to compute µ is using the Karush-Tuhn-Tucker (KKT)
condition of the problem in (20):
µ(
∑GS−1

j=0
∑

c∈{l,h}
k∈{r,n}

ajce−(1−f )λjcqjk × Njck − RT ) = 0.[I]

qjk > 0, λjc > 0, ajc > 0, j = 0, · · · ,GS− 1.[II]
(23).[III]

(24)

Substituting the condition I of (24) into (23), a new expression
is get:

GS−1∑
j=0

∑
c∈{l,h}
k∈{r,n}

Njck (
A(λjc, qjk )

1− e−λjcqjk
)− µ(1− f )λ̃jcRT = 0. (25)

Here, we rewrittenA in (18) asA(λjc, qjk ) sinceA is a function
of λjc and qjk . λ̃ck is treated as average weight factor, and it
is computed by this formula:

λ̃ck =

∑GS−1
j=0

∑
c∈{l,h}
k∈{r,n}

Njckλjc

GS× N̄
, (26)
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FIGURE 4. (a) Solutions of q in (23). (b) Boundary for fun(q, λ) in (31).

where N̄ equals to frame width × frame height. Rearranging
(25), µ is computed as:

µ =

∑GS−1
j=0

∑
c∈{l,h}
k∈{r,n}

Njck (
A(λjc,qjk )

1−e−λjcqjk
)

(1− f )λ̃jcRT
. (27)

By substituting (27) into (23), qjk can be gained by solving
the equation. However, it is a transcendental equation which
is hard to solve, and an approximate way is proposed in the
following discussion. By expanding (23), we have:

[f (1+f )qjλc+1]e−λc(f+1)qj + [1+ f (f − 1)qjλc]eλc(f−1)qj

−2e−λcqj = (1− e−λcqj )µ(1− f )acλce−(1−f )qjλc . (28)

Multiplying eλcqj on both sides, the equation becomes:

[f (1+ f )qjλc + 1]e−λcfqj + [1+ f (f − 1)qjλc]eλcfqj − 2

= (eλcqj − 1)︸ ︷︷ ︸
X

µ(1− f )acλce−(1−f )qjλc . (29)

Observe that X can be simplified as eλcqj since eλcqj � 1.
After some manipulation steps, we get:

[1+ f (f + 1)qjλc]e−2λcq − 2e−λcqj︸ ︷︷ ︸
fun(q,λ)

+[1+ f (f − 1)qjλc]

= µ(1− f )acλc. (30)

Now, we find that fun(q, λ) is within a range of (-1,0). The
proof is simple. In fact, (30) has the following feature:

[1+f (f +1)qjλc]e−2λcqj − 2e−λcqj ≤ e−λcqj (e−λcqj − 2)︸ ︷︷ ︸
Y

.

(31)

Observe that the derivative of Y is positive, so that Y is
monotonic increasing. Taking qj from 0 to∞, the boundary
of Y is [-1,0]. Fig. 4(a) displays the solutions of quantization
steps q from the given equation (23) with varying µ. The
intersection points between curves and horizontal zero line
are treated as solutions. Fig. 4(b) validates the proof that
fun(q, λ) is within a range of -1 to 0, and it is seen clearly
through changing value of λc. According to this, (31) can be
approximately written as:

qj =
µ(1− f )acλc − O

f (f − 1)λc
, (32)

whereO is a constant offset whose range is [0,1]. In practical,
it is set as 0.8 nearly to the mean of fun(q, λ) + 1. By using
the similar calculation in (32), qj can be estimated although
with some turbulence, then it is adjusted by a control strategy
in the next section.

III. ROI-BASED RATE CONTROL SCHEME
A. GOP LEVEL RATE CONTROL
In ROI-based coding procedure, an intuitive approach is to
cluster similar topics of sequences into one GOP. In other
words, frames with the same ROI elements are allocated in
the same GOP so that GOP size is changeable, which is
different from fixed GOP size in HEVC. However, the coding
structure of GOP must be the same, and it is initialized in the
config file of the encoder. Observe that an important thing
is to cluster GOP size before encoding each frames, and a
way is to distinguish frames by computing Histogram Of
Difference (HOD) referred from [8]:

HOD(fn, fm) =
level∑
i=0

|hist(fn, i)− hist(fm, i)|2

Npixel
, (33)

where fn, fm are frame index. level denotes the histogram
level, and it is set to 255 as default. hist is the histogram value,
and Npixel equals to the total number of pixels in a frame.
We state a cluster method based on HOD below:

Algorithm 1GOP-Level Cluster and Rate Control Algorithm
1: Set the minimum GOP structure unit size SGOP, cnt = 1,
Hprev = 0 and threshold th.

2: for each frames fi in encode-frame buffer do
3: Compute Hcur = HOD(fi, fi−1) using (33).
4: if i > 2 and Hcur−Hprev

Hcur
> th then

5: GOP[cnt] = SGOP × di/SGOPe.
6: Allocate RT based on (35).
7: Skip fi+1 · · ·GOP[cnt] if GOP[cnt] ≥ fi+1.
8: cnt++, and Hprev = Hcur .
9: end if

10: end for

Observe that vector GOP[cnt] stores the cluster size of
each GOP, and the size must equal to n × SGOP, where n is
a positive integer. Clustering is implemented by computing
the gradient ofHOD. When detecting abrupt changing, a new
GOP size is added to GOP[cnt] and target bits are allocated
for this GOP depending on its size and texture complexity. For
texture complexity, define γ as the percentage of ROI sim-
ply as:

γ =
NROI
Npixel

, (34)

where NROI is the number of pixels belonging to ROI in a
frame, and the ROI-percentage for each sequences is plotted
in Fig. 5. Suppose Ru is the target bit rate set by users, then
RT for GOP[cnt] is computed as:

RT =
Ru
fps

SGOP(γ̄ + δ). (35)
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FIGURE 5. ROI-percentage for different video sequence.

TABLE 1. Basic configurations of HM13.0 and VP9.

δ represents a constant offset (0.75 as default), and γ̄+δ varies
from 0.75 to 1.75. We aim to increase target bits distribution
for larger γ̄ and reduce it for smaller γ̄ , so that RT depends
on both GOP size and ROI texture complexity. This allocation
strategy is reasonable since it puts more weight on GOP with
more ROI elements to meet human visual quality demands.

B. FRAME LEVEL RATE CONTROL
Once determining GOP sizes and GOP target bits, it is ought
to consider to what amount of bits we should set for each
frame. To handle this, a key point is how to update parameters
such as ac, λc (c ∈ {l, h}), and µ in our ROI rate model.
Like other works, they are updated via history results in order
to forbid high fluctuation during encoding. At the beginning
frame of each GOP, λc is initialized from (2) as an average
value:

λc =
1
Bc

Bc∑
i=1

√
2

σci
. (36)

Bc is the number of CUs in category c. When encoding frames
in GOP, λc is updated by the following formula:

λc,n =
1
Nre

Nre∑
i=1

ωiλc,n−i, (37)

where Nre denotes recent frames encoded before the current
one, n is the frame index and ωi is a weight factor that

FIGURE 6. PSNR curves per frames for different rate control schemes.
(a) PartyScene. (b) RaceHorse. (c) BQSquare. (d) BlowingBubbles.
(e) City. (f) Ice. (g) Stephan. (h) Suzie.

depends frame categories (i.e., I,P,B). ac is initialized as
empirically as a random value between 0.75 and 1.75. During
the encoding procedure, it is updated by linear regression
referred from [33]:

ac

=

∑N−1
i=0 Rc,n−iR̂c,n−i− 1

N (
∑N−1

i=0 Rc,n−i)(
∑N−1

i=0 R̂c,n−i)∑N−1
i=0 R̂2c,n−i−

1
N (
∑N−1

i=0 R̂c,n−i)2
.

(38)

Note that N equals to the frame number counted at the begin-
ning of current GOP, meanwhile, Rc,n−i and R̂c,n−i are real
bits output and estimate bits without Rext (8) for this frame
respectively. Given an initial value of ac, it is updated and
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TABLE 2. R-D performance In ROI encoding mode.

regressed when encoding each frame as iterations. A tough
problem is how to update µ instantaneously. Suppose we
are encoding frame j now, according to equation (27), the
remaining λc and q is unavailable. To solve this ’egg and
chicken’ problem, we state a strategy for updating µ by:

µcnt =
N − i
N

µ̄cnt−1+
i
N

∑i−1
j=0

∑
c∈{l,h}
k∈{r,n}

Njck (
A(λjc,qjk )

1−e−λjcqjk
)

(1− f )λ̃jc
∑i−1

j=0 Rj
,

(39)

where N represent recent frame size, and µ̄cnt−1 means the
previous GOP ’s µ computed by (27).

∑i−1
j=0 Rj represents

the accumulated output bits from the start frame of current
GOP to the current frame i. In fact, there is little difference
of µ between previous and current GOP. Hence, it is reason-
able to use a decay weight to estimate current value of µ.
In summary, a frame-level rate control strategy for ROI mode
is stated in Algorithm. 2. Note that in step 7, function clip is
defined through an empirical expression:

clip(xcur ) =

{
min(xcur , xprev × e

1
2 ); xcur > xprev;

max(xcur , xprev × e−
1
2 ) xcur > xprev.

(40)

Also, ζ is refreshing rate (an integer value) to forbid over-
learning of RBFNN, and it is empirically set to 3 in practical.

C. CU LEVEL RATE CONTROL
After setting the frame-level QP (renamed as QPcur ), the
encoder encodes each CU in order, or by using tiles in slice
layer. In ROI encoding mode, CUs are classified in four
categories (i.e., CUlr , CUhr , CUhn, CUln). For those CUs
belonging to ROI group, QP is lowered down to reduce
distortion, and it generates more bits output. As for CUs
belonging to non-ROI group, QP is lifted up to compensate
bits outputs. Hence, we make small adjustments in QP for
each dependent CU to meet the accuracy demands of rate
control. Note that CU’s distortion value can be predicted by

Algorithm 2 Frame-Level Rate Control Algorithm
1: for each frames fi in GOP vector GOP[cnt] do
2: Acquire Nick , and compute λc using (37).
3: Compute ac and µ using (38) and (39) respectively.
4: clip(x), where x = {ac, λc}.
5: Compute qk for frame i using (32).
6: Allocate estimate target bits R̂i for frame i using (7)

and (8).
7: Set QP for frame i by mapping qk , k ∈ {r, n}.
8: Encode each CU by implementing CU-level rate con-

trol (See Algorithm. 3).
9: Acquire the real output bits Ri.
10: if mod(i, ζ ) = 0 then
11: Restart training RBFNN and config its parameters.
12: end if
13: end for

ANN model by training RBFNN at the beginning of each
GOP, the prediction error of CU’s reference is proposed as
an important factor to alternate this CU’s QP. Suppose we are
encoding an inter-mode CUc now, and the co-located CUs in
CUc’s reference lists are named as {CUc1, · · · ,CUcrf}, where
rf is the size of reference list. The average prediction error can
be measured by:

ē =
1
rf

rf∑
i=1

D̂(i,CUci)− D(i,CUci). (41)

ē reflects the extent of overestimation or underestimation for
the current encoding CU. If ē > 0, we deduce that distortion
prediction is overestimation, so as the opposite condition that
ē < 0. QP is altered within a range of [QP-1, QP+1] depend-
ing on ē. According to [9], adjusting factor 1 is set to 2 as
maximum without bringing fluctuations. Therefore, we have
the following control approach for CU-level: Observe that
Algorithm. 3 makes adjustments of each CU based on its
category c. The purpose is to let the total rate output of
CUs meet the estimate target bit R̂i gained by solving the
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FIGURE 7. Buffer fullness analysis for different rate control schemes at low-delay. (a) BlowingBubbles. (b) PartyScene. (c) RaceHorses.
(d) Foreman. (e) Suzie. (f) Ice.

R-D optimization problem in (19). A threshold ξ is set to
judge wether the estimated error reaches a bound. In other
words, if |ē| > ξ and ē > 0, then increasing QP will raise
D(i,CUci) near to D̂(i,CUci) so that |ē| is reduced. When
|ē| > ξ and ē < 0, the same result follows by decreasing QP.

Algorithm 3 Frame-Level Rate Control Algorithm
1: for each CUc in frame fi (c ∈ {l, h}) do
2: Acquire CUc’s reference list L, compute ē using (41).
3: if |ē| > ξ , adjust QP = ē > 0?QP+1 : QP−1.
4: Encode the current CUc with the assigned QP.
5: Acquire D̂(i,CUci) for the current CU indexed by

i from the encoder, and push it into L.
6: end for

IV. EXPERIMENTAL RESULTS
A. EXPERIMENT SETUP
In order to verify the effectiveness of the proposed rate control
scheme in ROI encoding mode, we implement the method
in HM13.0 and VP9. Test sequences of various resolution
with different signal characteristics are included. The GOP
structure is set as IPPP, and sequences are encoded at various
target bitrates. For comparison purpose, four other rate con-
trol methods are taken into consideration. They are: HM13.0,
Lee et al [34], VP9. Their R-D models contains R − λ,
R−ρ, and R−qmodels with the variants. As for ROI coding
mode, each frame is assigned with an ROI palette R(i, j),

where i, j is within the boundary of height and width of the
frame. R(i, j) = 1 indicates the current pixel located at row i
column j is ROI pixel, otherwise R(i, j) = 0. QP assigned
with ROI blocks is initiated with a constant gap 1 to non-
ROI blocks, and the coding configurations are initialized
in Table. 1.

B. QUALITY COMPARISONS
Video quality is evaluated by objective PSNR since it is the
most widely accepted measurement [44]. The PSNR between
the reconstructed and the original video signal for the set of
pixels in A is defined as :

PSNR = 10 lg
2552

MSE
dB, (42)

where MSE denotes the mean squared error of pixel set A.
In this sub-experiment, we compare the proposed method,
Lee’s method, and the original rate control scheme of ROI
encoding mode in HM13.0. The GOP size is dynamically
determined both in the proposed and Lee’s method by their
algorithms. Specifically in Lee et al, ROI and non-ROI com-
ponents are treated as texture and non-texture parts. Four
HEVC and four AVC test sequences are included which
can be downloaded on the official website [45]. The PSNR
curve per frames is displayed on Fig.6, one can see that
the proposed rate control scheme achieves an average of
0.5-1.5dB improvement in PSNR results. The improvements
can be seen obviously when γ changes frequently or fast
scene changes such as BlowingBubbles and Stephan.
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TABLE 3. Bitrate accuracy and encoding time analysis.

C. R-D PERFORMANCE
The R-D performances are evaluated by utilizing five
data points at different target bit rates according to [37].
where BD-PSNR and bj∅ntegaard delta-bit rate (BD-BR)
are included. In this sub-experiment, we compare the
proposed rate-control method with the others on three
sequences categories. The first one contains high resolutions
(i.e., 1920×1080), the second one has medium resolutions
(i.e., 832×480), and the last one includes traditional test
sequences of H.264 whose size are CIF and QCIF. The results
are summarized in Table. 2. In the first group, our method
shows an average improvement of 0.30, 0.33-dB gains in
BD-PSNR and 2.83%, 3.41% BD-BR reductions respec-
tively. In the second group, the averafe improvements of
BD-PSNR gains are 0.12, 0.15, 0.11-dB and the reduction
of BD-BR are 3.17%, 3.30%, 2.61% correspondingly. In the
third one, our approach shows similar results as the second,
specifically, 0.13, 0.14-db improvement in BD-PSNR and
2.55%, 2.66%, 2.58% savings in BD-BR. In general, the pro-
posed rate control scheme has a remarkable R-D performance
according to BD-BR and BD-PSNR evaluation.

D. BUFFERFULLNESS ANALYSIS
Buffer occupancy analysis is important for rate control and
bit assignments problems which is relevant to practical appli-
cations [46]. The buffer size is set as:

Buffer = Delay × Target , (43)

where Delay denotes the delay time for the real-time video
bitstream and Target is the channel bandwidth. In variable-bit-
rate (VBR) situation, the buffer fullness is represented by:{

B0 = Binit
Bi+1 = min(Bi + RTi − bi,Bmax),

(44)

where bi is the bits consumed for frame i. R is the given bit
rate, and Ti is the time it takes to display frame i. According
to (43), the buffer occupancy is determined by the target bits
for a large extent. Fig. 7 shows buffer fullness occupancy
results for six test sequences. The data is presented as the
percentage value, usually, Bmax is set as 1.5 ∼ 2 times of R.
For comparison purpose, we run the schemes for HM13.0,
VP9 without ROI coding mode and Lee et al, the proposed

one with ROI coding mode to plot the buffer fullness curve.
One can see that in ROI coding mode, the template buffer
size fluctuate since the ROI rate γ varies at each frame.
However, in general, the proposed method can seldom have
overflow underflow cases, which indicates that it has a better
control performance. Meanwhile, it provides less variation in
ROI codingmode and has a satisfactory performance in buffer
occupancy.

E. BITRATE ACCURACY AND ENCODING TIME
Bitrate accuracy can reflects how precise that the actual bit
rate is when comparing with the target bit rate. Then, we have
the bitrate accuracy (BRAC) defined as:

BRAC = (1−
|BRActual − BRTarget |

BRTarget
)× 100% (45)

In this sub-experiment, we measure the bitrate accuracy
together with the encoding time based on HM13.0 and
VP9 encoders. An Intel 2-Core 2.7GHZ CPU is used for the
encoder to encode test sequences in ROI coding mode, and
the proposed method is implemented on HM13.0 compared
with VP9. Table. 3 shows the results of BPAC, the target bit
rate BRT , the actual bit rate BRA and the elapsed encoding
time (sec). The target bit rate is sorted in the descend order.
Obviously, the encoding time depends on the number of
frames processed and the bitrate output (video quality). One
can see that the proposedmethod gets a better bitrate accuracy
in ROI coding mode at the expense of consuming longer
encoding time. This is because artificial neural networks
needs more training time to forecast an accurate R-D model.
However, it achieves a better performance within a tolerant
boundary of the extra computational time.

V. CONCLUSION
In this paper, a new rate control scheme is proposed for
ROI mode coding based on DCT coefficient model. CUs are
categorized by their depth levels and whether they belong
to ROI or non-ROI group. The proposed R-D model takes
considerations of various sraristical characteristics of trans-
formed coefficient residues for CUs by multiple Laplacian
PDFs. For the sake of improving the estimation of distor-
tion, a machine learning approach is adopted by using his-
torical results and parameters as the training sequence and

13686 VOLUME 5, 2017



Z. Zhang et al.: New Rate Control Scheme For Video Coding Based On ROI

the distortion is predicted as the output of neuron network.
A new rate control scheme is designed from GOP level to
CU level. Besides, we keep a feedback control in alternating
QP for each CU via accumulated errors. Experimental results
show that the proposed rate control method for ROI-based
coding improves an average PSNR of 0.5-1.0dB than other
approaches. Also, the proposed method shows a BD-BR or
BD-PSNR improvements compared with other rate control
methods. In addition, it still maintains a stable buffer status
levels. The future work will contain the computing time opti-
mization of the algorithm, meanwhile, more features of frame
and block characteristics will be included in R-D estimation
for accuracy enhancement.
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