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ABSTRACT Condition monitoring and incipient fault diagnosis of rolling bearing is of great importance
to detect failures and ensure reliable operations in rotating machinery. In this paper, a new multi-speed
fault diagnostic approach is presented by using self-adaptive wavelet transform components generated
from bearing vibration signals. The proposed approach is capable of discriminating signatures from four
conditions of rolling bearing, i.e., normal bearing and three different types of defected bearings on outer
race, inner race, and roller separately. Particle swarm optimization and Broyden–Fletche—Goldfarb–Shanno
-based quasi-Newton minimization algorithms are applied to seek optimal parameters of Impulse Modeling-
based continuous wavelet transform model. Then, a 3-D feature space of the statistical parameters and a
nearest neighbor classifier are, respectively, applied for fault signature extraction and fault classification.
Effectiveness of this approach is then evaluated, and the results have achieved an overall accuracy of 100%.
Moreover, the generated discriminatory fault signatures are suitable for multi-speed fault data sets. This
technique will be further implemented and tested in a real industrial environment.

INDEX TERMS Fault diagnosis, vibration measurement, continuous wavelet transforms, roller bearing,
particle swarm optimization, quasi-newton minimization, fault signatures.

I. INTRODUCTION
Roller bearings have been extensively used in industrial envi-
ronments, where they play a vital role designed for supporting
constrained relative rotation and reducing friction between
two parts used for transformation of energy. Statistically,
the normal service life of a roller bearing is determined by
material fatigue, corrosion, and wear at the running surface.
Insights into incipient fault detection and diagnosis (FDD)
and predictive maintenance are conducive to alleviate the
negative impacts of uncertain mechanical failures and proac-
tively provide administrators with the first-time mechan-
ical running state information before severe faults occur.
In the last decades incipient FDD of roller bearing has
attracted a great deal of attentions attempting to effectively

monitor, diagnose, and isolate bearing faults in purpose of
leading to less down-time and economic loss in industrial
factories [1].

For several years great efforts has been devoted to the
study of fault diagnosis of roller bearing with various
condition monitoring methods in terms of vibration signal,
acoustic emission, temperature monitoring, and electronic
current monitoring [2], [3]. Among those the vibration sig-
nals, depicted as machine’s signature, particularly enjoy the
inherent capability of characterizing typical vibration lev-
els and certain frequency spectrums generated from roller
bearings. In practice, vibrations are caused by the transmis-
sion of cyclic forces which in fact are behaviors of energy
loss. Defective roller bearings therefore gradually generate
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various forces causing high amplitude of vibration leading
to the increasing energy consumption. For instance, in a
specific case of a water pumping station bearing faults would
increase vibration level up to 85%, where power consump-
tion increases 14% and pump efficiency decreases 18% [4].
Most importantly, with the advent of accelerometer sensor,
collecting data has currently become a simple exercise that
helps to provide a wide dynamic range and frequency range
for vibration measurement, which has been found to be the
most reliable, versatile and accurate.

During the last decades plenty of techniques for FDD
of roller bearing have been further studied to establish a
firm position based on vibration signal processing. In gen-
eral, steps of FDD can be mapped into three phrases: data
acquisition, feature extraction, and fault classification, and
the later two are the priority. The vibration data as initial
input is supposed to be correctly operated and measured to
reflect equipment’s intrinsic behaviors. Feature extraction [5]
is regarded as the key step that transforms input data into a
reduced set of features which contain critical, compressed,
and characteristic information, after which various classifi-
cation algorithms can be used to map signals into classes
of interest, e.g., artificial intelligence. Before that, signal
processing techniques are needed to be applied to reduce the
magnitude and the redundant information in original signals.
Fast Fourier transform (FFT) and short time Fourier trans-
form (STFT) are two approaches for signal decomposition
by converting the time domain contents into the frequency
spectrum; however, it has been emphasized that it may prob-
ably lower down the decomposing performance based on
FFT and STFT since inappropriate time windows adopted in
these methods [6].

In supplement, a great deal of data-driven models have
been further studied to establish a firm position in signal
processing. Among those, wavelet analysis is one of the
most powerful signal processing techniques which enjoys
high resolution in both time and frequency domain [7], [8].
To be more specific, the wavelet analysis has good time and
poor frequency resolutions at high frequencies, and good
frequency and poor time resolutions at low frequencies. Ver-
ifying window size allows the possibility to extract valu-
able information from vibration signals. Continuous wavelet
transform (CWT) , one efficient wavelet method, uses groups
of non-orthogonal wavelet frames to generate general symp-
toms, which enjoys the ease of interpretation at the cost of
saving space. In addition, with the recent advent of artificial
intelligent methods, plenty of techniques have been success-
fully employed in the field of FDD based on CWT analysis
(e.g., artificial neural networks (ANNs), and support vector
machine (SVM)). Various artificial intelligence techniques
are used with wavelet transform for fault diagnosis in rotat-
ing machineries [9], [10], [11]. Zarei et al. [12] proposed
a method for diagnosis of roller bearings based on ANNs.
In this method, vibration signals firstly pass through remov-
ing non-bearing fault component (RNFC) filter, and then
another neural networks for fault classification. Similarly,

Kankar et al. [13] presented an approach for FDD of
roller bearings by using three machine learning methods,
SVM, ANN, and self-organizing maps (SOM). The results
showed that SVM and ANN performed better than SOM.
Apart from that, Lou and Loparo [14] introduced a new
scheme for the diagnosis of localized bearing defects based
on wavelet transform and neuro-fuzzy classification. In [15]
a hybrid method based on CWT and SVM was proposed for
detecting defects in motor ball bearings.

It is needed to notice that although there are a number
of diagnostic approaches have been proposed for bearings
based on wavelet analysis, whilst it cannot be neglected that
for achieving optimistic accuracy it usually involves a large
number of parameters and increasing computation burden.
Apart from that, considering of non-stationary and non-linear
features commonly exist in vibration signals, the pre-defined
kernels may not completely guarantee the convergence to the
characteristics of signals. There is still a need to design a new
technique that uses optimized wavelet transform directly gen-
erated from original signals for multi-speed fault diagnosis of
roller bearing in rotating machinery.

In this paper, the impulse modelling based CWT (IMCWT)
model is introduced for decomposing vibration signals
obtained from roller bearings with wavelet transformation.
To obtain optimal IMCWT model, PSO and Broyden-
Fletcher-Goldfarb-Shanno (BFGS) based quasi-Newton opti-
mization algorithms are respectively used to optimize
IMCWT model for global and local optimization. After
that, three-dimensional statistical parameters are applied to
extract fault characteristics. Nearest Neighbor (NN) classi-
fier using Mahalanobis distance is adopted to map samples
into corresponding categories. Combining IMCWT decom-
position, PSO and BFGS-based quasi-Newton optimiza-
tion algorithms, three-dimensional feature extraction, and
NN-based classifier using Mahalanobis distance evaluation a
novel intelligent fault diagnostic approach for roller bearings
is presented with experimental validation.

The main contributions in this paper are concluded as
follows:
• An optimized impulse modelling approach was pro-
posed for wavelet analysis to characterize fault fea-
tures within vibration signatures obtained from roller
bearings.

• In this paper, a hybrid approach for multi-speed fault
diagnosis of roller bearing was proposed based on the
optimized impulse modelling continuous wavelet trans-
form and statistical analysis with NN-based classifier
using Mahalanobis distance.

• Statistical parameters were evaluated and compared by
investigating their performances of speed sensitivity and
discriminatory potentials to generate fault signatures
corresponding to different speeds.

• In experimental results 2D and 3D fault signatures in
feature space dimension were generated, meanwhile
accuracy of results was verified which has been illus-
trated that the proposed approach can be effectively
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used for generating both single and multi speed fault
signatures based on vibration monitoring.

The rest of this paper is organized as follows: Section II
introduces IMCWTmodel and describes parameter optimiza-
tion method of IMCWT model using PSO and BFGS-based
quasi-Newton minimization techniques. Section III presents
the proposed fault diagnostic methodology for generating
multi-speed fault signatures. Experimental validation, results
and multi-speed fault signatures are given in Section IV.
Finally, the conclusion of this paper is presented in Section V.

II. PROPOSED IMCWT MODEL
In this section, CWT is first briefly introduced. Afterwards,
IMCWT is presented for decomposing the redundant original
vibration signals of roller bearing. After that, the process
of parameter selection and optimization of IMCWT model
based on PSO and BFGS-based quasi-Newton optimization
techniques are separately introduced.

A. REVIEW OF WAVELET ANALYSIS
Problems of the time and frequency resolution commonly
exist regardless of any transform applied in the process
of decomposition. CWT was developed as an alterna-
tive approach to FFT and STFT to overcome the resolu-
tion problem, which decomposes different segments of the
time-domain signal with adjustable window function. The
CWT wavelet transform is defined as follows:

CWTψx (γ, s) = 9ψx (γ, s) =
1
√
s

∫
x(t)9

(
t − γ
s

)
dt.

(1)

where x(t) is the signal, s is the scale factor, γ is the trans-
lation parameter, 9(t) is the wavelet transforming function,
and it is also called the mother wavelet. The term wavelet
represents the window function which has finite length. The
term mother wavelet means that time functions transformed
to map different segments of the signal are deserved from one
major function. Similar to the frequency used in STFT, the
parameters s and9(t) in the wavelet analysis are respectively
used in the transforming operation of dilating and translating
time function. To be more specific, large s value corresponds
to non-detailed global view, and low s value corresponds to
a detailed view of the segment of a signal. Particularly, the
factor 1

√
s is used to ensure energy preservation.

In general, wavelet analysis is one of the most powerful
technique used for signal processing. Having been enjoyed
the advantages of reliable and flexible abilities of generating
general and fine-grained information extraction, CWT has
been extensively proved that can be employed in the field of
FDD for analysis of non-stationary and non-linear signals.

B. IMPULSE MODELLING BASED CONTINUOUS
WAVELET TRANSFORM (IMCWT)
In practice, the response of the system to the instant
δ-impulse in vibrodiagnostics can be represented
using a pattern depicted as a response of the

single-degree-of-freedom-system, which can be formulated
as follows [16]:

f (x) = αe−βxcos(wx + ϕ) (2)

where f (x) is the displacement, α is the premier amplitude,
w is the resonance frequency, which is the frequency of the
systemfluctuationwithout resistance. Taking assumption that
at the impulsive start the systemwas at rest into consideration,
Eqs. (2) can be applied as a mother wavelet in CWT, which
can be expressed as follows:

9(t) = sin(αt + β)e−γ |t| (3)

For keeping minimum parameters in the mother wavelet,
this IMCWT model has three parameters that has the ability
of representing a system’s working state, which therefore can
be employed into FDDof roller bearing. To optimize IMCWT
model, global and local optimization techniques are used for
parameter selection, which are presented in the following.

C. PARAMETER SELECTION WITH GLOBAL
AND LOCAL OPTIMIZATION
1) GLOCAL OPTIMIZATION: PSO
The selection of the parameters, in practical applications, has
a great influence on the prediction effect of wavelet analysis.
PSO, proposed by Kennedy [17], is a population-based global
search algorithm, whichwas developed to optimize a problem
by iteratively improve a candidate solution with regard to a
given measure of quality. PSO, different from genetic algo-
rithms, has no crossover and variation instead of using the
optimal particle search in the solution space. To be more spe-
cific, PSO performs by iteratively using a population (called a
swarm) of candidate solutions (called particles) in the search-
space. The swarm consists of m numbers of particles, each
of which has own velocity vi,j(t), current position xi,j(t), and
local best known position pbestj(t) (i = 1, 2, · · · ,m; j =
1, 2, · · · , n). Each particle moves towards own best previous
position and the best known positions found by other particles
gbestj(t) in the search-space, which is expected to move the
swarm toward the best solutions. The standard PSO can be
performed according to the following equations:

vi,j(t + 1) = w× vi,j(t)+ c1 × r1()× (pbestj(t)− xi,j(t))

+ c2 × r2()× (gbestj(t)− xi,j(t)) (4)

xi,j(t + 1) = xi,j(t)+ vi,j(t + 1) (5)

where j is the nth dimension of a particle (1 ≤ j ≤ n),the
velocity is restricted to the [-vmax , vmax] range, r1() and
r2() are random numbers in the range of [0,1], c1 and c2
are positive constants corresponding to personal and social
learning factors, and w is the inertia weight. In this paper,
the initialize parameters with respect to the size of swarm,
inertia weight, maximum number of iterations are selected
as follows: swarm size p = 20, c1 = 1.3, c2 = 1.75, max
stall iterations tmax = 6. The search range of α, β, γ is from
[0, 0, 0] to [200, 200, 200].
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2) LOCAL OPTIMIZATION: BFGS BASED
QUASI-NEWTON MINIMIZATION
After generally searching optimized parameters by using
global optimization, the the BFGS-based quasi-Newton
unconstrained minimization method is used to accurately
locate minimum solutions for IMCWT model [18]. In local
unconstrainedminimization, the quasi-Newtonmethod is one
of the most favored optimization methods that uses curvature
information at each iteration to formulate a quadratic model
problem, which has the following form:

min
x∈Rn

f (x) =
1
2
xTHx + bT x + c (6)

where H , the Hessian matrix, is a positive definite sym-
metric matrix, b is a constant vector, and c is a constant.
This method has optimal solution when the partial derivatives
of x approach to zero shown as below:

5f (x∗) = Hx∗ + c = 0 (7)

The optimal solution, x∗, can be formulated as

x∗ = −H−1c (8)

Different from Newton-type methods that directly calcu-
late H , quasi-Newton methods use the observed behavior
of f (x) and its gradient to build up curvature information to
properly update an approximation to H , which avoid a large
amount of calculation. For Hessian updating, the BFGS is
generally thought to be an effective method that can be used
for iteratively optimizing the search direction. It’s needed to
notice that, in BFGS method, H is a positive definite matrix
that generates a direction of descent, as a result of which
for any small length of step the value of objective function
decreases all the time. In BFGS, the formula for generating
an approximation to H is described below:

Hk+1 = Hk +
qkqTk
qTk sk

−
HksksTk H

T
k

sTk Hksk
(9)

where sk and qk are formulated as following:

sk = xk+1 − xk (10)

qk = 5f (kx+1)−5f (xk ) (11)

At the beginning of iterations, H0 can be set to identify
matrix I0. This formula therefore can be used to make an
approximation of the H−1 at each update to avoid a great
deal of calculation. After that, line-search method is applied
to locate the best solution, xk , along the search direction by
repeatedly minimizing polynomial interpolation models of
the objective function. That it, the next iterate xk+1 has the
following form:

xk+1 = xk + α∗dk (12)

where xk is the current iterate, dk is the search direction, and
α∗ is a scalar step length parameter. At each iteration, a line
search is performed to locate the best solution in the given
direction:

dk = −H
−1
k · 5f (xk ) (13)

In this paper, BFGS based quasi-Newton unconstrained
minimization serves to locate optimized parameters after
global optimization. The max number of iterations, tmax , is
set to 80, max number of function evaluations is 300.

3) THE PROCESS OF PARAMETER SELECTION USING
GLOBAL AND LOCAL OPTIMIZATION
In this study, for obtaining optimized IMCWT model, there
are in total three parameters, namely α, β, γ needed to be
evaluated. The process of parameter selection and evaluation
with PSO and BFGS based quasi-Newton algorithms is pre-
sented in Fig. 1, which is described below:

Step 1: initialization of global optimization. Randomly
generate the initial position (corresponding to α, β,
and γ ) and velocity of each particle. Set the size of
swarm, iteration variable t = 0, maximum iteration
number tmax , inertia weight c1, c2. Afterwards, start
global training process from step 2 to 4.
Step 2: fitness evaluation. The fitness function is
designed for evaluating current particles’ performance,
which is needed to be given before the start of opti-
mization. In this paper trust rate is adopted to evaluate
statistical similarity between the new sample and given
classes, which is as follows:

T itrust =
(
1−

di
dmin + di

)
× 100% (i ∈ c) (14)

where i is the ith number of classes, di is the distance
between ith class and the new sample. Particularly,
since there are only four given fault types studied in this
paper, the trust rate of the class with minimum distance
can be achieved by using 100−max(T itrust ). Afterwards,
on the basis of trust rate evaluation, fitness function is
formulated as below:

Ffit = −T̄trust = −

∑c
i=1 T

i
trust

c
(15)

where c is the total number of classes, T̄trust is the mean
trust rate of c kinds of classes. From the above defi-
nition, it can be easily seen that the fitness decreases
when trust rate increases. It is needed to notice that
both PSO and quasi-Newton optimization manners are
minimization methods, the fitness value is supposed to
decrease with higher classification accuracy. That is,
the value of fitness tends to approach to desired solution
when the mean similarity increasingly rises between
the new sample and four classes.
Step 3: particle update. Update the velocity and posi-
tion of each particle according to Eqs. (4) and (5).
Step 4: global optimization status checking. If stopping
criteria is satisfied, go to step 5. Otherwise, set iteration
variable: t = t + 1, go to step 2.
Step 5: end global optimization. Finish global opti-
mization, and output global optimized parameters, after
which these parameters are to be used as initial param-
eters to start local optimization in step 6.
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FIGURE 1. The process of parameter selection for IMCWT model using PSO and BFGS-based quasi-Newton optimization.

Step 6: initialization of local optimization. Set up initial
points x0 (i.e., α, β, and γ obtained from PSO), initial
matrix H0 = I0, iteration variable k = 0, max iteration
number kmax , and then perform the training process
from step 7 -10.
Step 7: calibration of search direction. Initialize direc-
tion dk corresponding to Eqs. (13).
Step 8: line-search performance. At each step of this
performance, the line-search method searches the best
solution (containing the current point, xk ) parallelling
to current search direction according to Eqs. (12).
Step 9: local optimization status checking. To evaluate
the minimum desired value, Ffit is applied according to
Eqs. (14) and (15). If precision satisfied, go to step 11.
Otherwise, judge the current value of k whether meets
the value of kmax . If next iteration k + 1 = kmax , go to
step 7, and set x0 = xkmax . Otherwise, go to step 10.
Step 10: Hessian updating with BFGS.Update positive
definite symmetric matrix Hk+1 and search direction
dk+1 according to Eqs. (9) - (13), and then go to step 7.
Step 11: end local optimization. Finish the overall train-
ing procedure and output the optimized parameters,
namely α, β, and γ after global and local optimizations.

III. PROPOSED METHODOLOGY FOR FDD
In general, statistical signal analysis of FDD after signal
processing can be mapped into three key phrases: (1) feature
extraction; (2) fault classification; (3) fault identification.
In this section, the proposed methodology for FDD of roller

bearing is presented, including feature selection of statistical
parameters, fault classification, and fault identification.

A. FEATURE SELECTION OF STATISTICAL PARAMETERS
In practical, time-domain statistical parameters have been
successfully adopted as trend parameters attempting to reflect
the different amplitude and distribution of the time-domain
signals, by which an enormous amount of information can
be obtained from vibration signals. In this paper, before
the step of feature extraction using determined features, the
widely used time-domain statistical parameters are applied,
each performance of which is investigated for extracting
features from wavelet coefficients and generating fault sig-
natures in feature space dimension (i.e., the peak value, root
mean square (RMS), crest factor, kurtosis, clearance factor,
impulse factor, shape factor, and skewness [19]). Apart from
that, wavelet power spectrum density (PSD) is also analyzed,
which is used for determining the distribution of energy
by computing the absolute-value squared of wavelet coeffi-
cients. In addition, rotating speed is considered one of the
most critical parameters that has great influences on the per-
formance of statistical parameters. In this study, for obtaining
reduced and appropriate parameters for feature extraction and
the generation of multi-speed fault signatures, two capabil-
ities of parameters were evaluated, namely speed sensitiv-
ity and discriminatory potentials. Obviously for generating
discriminatory fault signatures, parameters with low speed
sensitivity and high discriminatory ability can be considered
as proper indicators for the purpose of distinguishing fault
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symptoms in high efficiency. For this purpose, the objective
functions used are the values of statistical parameters. Hence,
the effect of different speeds on 9 statistical parameters above
mentioned is firstly evaluated. In this step, standard deviation
and liner normalization are used to make the comparison of
the performance of 9 feature candidates when they are applied
to discriminate fault symptoms after wavelet decomposition
under different speeds. Furthermore, for generating fault sig-
natures, the larger deviation between parameters’ values can
be considered that has better performance to visually distin-
guish four conditions of roller bearing. In this paper, the nor-
malized mean value of 9 candidates was primarily computed
to analyze the discriminatory ability under different speeds,
the experimental result of which is presented in Section IV.
After that, desired parameters are selected as proper features
which would be later used for representing vibration signals
and generatingmulti-fault signatures. After evaluation, in this
paper, reduced three-dimensional feature space dimension is
finally adopted, namely RMS [20], kurtosis [21], [22], and
PSD [23], which have relatively better discriminatory perfor-
mance for effectively generating 2D and 3D fault signatures.

RMS =

√√√√ 1
N

N∑
i=1

(x(i)− x̄)2 (16)

kurtosis =
1
N

∑N
i=1(x(i)− x̄)

4

RMS4
(17)

PSD =
N∑
i=1

|x(i)|2 (18)

where x(i) is the ith number of wavelet coefficients
(i = 1, 2, · · · ,N ), x̄ denotes the mean value of the coeffi-
cient data points. In this study, RMS and PSD are used to
generate single-speed fault signatures for roller bearing with
four conditions in 2D feature space dimension. PSD, RMS,
and kurtosis are together adopted to producemulti-speed fault
signatures in 3D feature space dimension.

B. FAULT CLASSIFICATION
Taking different conditions of roller bearing into consider-
ation, the classification of this kind of fault is multi-class
classification problem. NN algorithm is one of the most fun-
damental and commonly usedmethods for classification [24],
which enables to consistently achieve high performance. The
basic idea behindNNmethod is that a new sample can be clas-
sified by calculating the distance as well as similarity between
this new sample and given classes, after which the group label
of this sample can be determined using a class with the nearest
vector distance between this sample. To be more specific,
the minimum distance between a undetermined sample and
a class may have the greatest similarity compared with other
classes. On this basis, a NN-based classification using Maha-
lanobis distance is therefore adopted in this study for fault
classification bymapping new samples into the best matching
classes in both training and testing phrases [25].

Suppose that training data set has c classes of fea-
ture sets, w1,w2, · · · ,wt is {pi,kt , t = 1, 2, · · · , c;
i = 1, 2, · · · ,Nt ; k = 1, 2, · · · ,m}, where feature set wt is
the tth class in input data, pi,kt is the ith row in feature set wt
and the kth feature in this row,m is the sum of samples in each
row, i corresponding to Nt , Nt is the row number of wt , which
means for each class of bearing, wt , has in total Nt number
of rows. Suppose each feature set wt has Sumt number of
samples in total.

The major process of multi-fault classification is described
as follows:

step 1: In training step, calculate the average feature
set in wt , namely the mean value of each parameter in
feature vector t , can be defined below:

w̄t =

∑m
k=1

∑Nt
i=1 p

(i,k)
t

Sumt
(19)

step 2: calculate the distance between a new sample s
and each average feature set w̄t using Mahalanobis
distance.

dt =
√
(s− w̄t )S−1(s− w̄t )T (20)

where S−1 is covariance matrix resulted from s and w̄t .
step 3: locate the minimum distance dmin between
sample s and w̄t , and then perform fitness evaluation
corresponding to Eqs. (14) and (15). After that, the
category label of this sample can be determined using a
class having the minimum fitness value, which means
high trust rate and low classification error. It is needed
to note that step 1 only needs to be computed once in
training phrase to decide the vector center of each class.
During testing phrase, only step 2 - 3 are needed to
compute the Mahalanobis distance and carry out clas-
sification. Additionally, in testing phrase, classification
accuracy criteria is applied which can be defined as
follows:

EA =
(

Nf
Nt + N f

)
× 100% (21)

where Nt and Nf respectively denote the number of
true and false classification samples. The classification
result with low classification error produces high accu-
racy approaching to 100%.

C. FAULT IDENTIFICATION
The aggressive adoption of techniques of machine condition
monitoring and pattern recognition has helped in laying the
foundation for incipient FDD of roller bearing. The main
phrases involved in fault detection and identification include:
data acquisition, signal analysis, and fault identification.
To be more specific, data acquisition is used to collect phys-
ical signals of interest to be analyzed, which is supposed to
be correctly operated and measured. Signal analysis is com-
monly composed of data preprocessing, signal processing,
and feature extraction. Fault identification generally includes
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FIGURE 2. Training and testing process of fault diagnosis for roller bearing using proposed
techniques.

feature evaluation, and fault classification. Combining statis-
tical techniques, both of these steps have respective advan-
tages and great influences on the fault diagnosis of rotating
components in industrial factories.

In this paper, a novel hybrid diagnostic approach for
defects detection in roller bearings is proposed based on
wavelet analysis, reduced three-dimensional feature extrac-
tion, statistical similarity analysis. Optimized IMCWT is
obtained by using PSO and quasi-Newton minimization
techniques, and then used to decompose vibration signals
obtained from roller bearings. Afterwards, three features,
namely PSD, RMS, and kurtosis, are applied for char-
acterizing fault symptoms in wavelet coefficients. After
that, NN-based classifier using Mahalanobis distance is
adopted for fault classification. On the basis of these tech-
niques, the bearing fault diagnostic diagram is formed
as illustrated in Fig. 2, the process is described as
follows:

Step 1: collect vibration signals of roller bearing by
using experimental test rig, and then spilt data into two
data sets to respectively prepare training data set and
testing data set.
Step 2: signals are normalized to make the signals com-
parable regardless of differences in magnitude using
the following equation:

Xi =
x − x̄
σ

(22)

where x is the ith element of the signal, x̄ and σ are the
mean and standard deviation of the vector respectively.
Step 3: initialize three parameters (α, β, and γ ) in
CWT transformation using impulse model.
Step 4: perform feature extraction using statistical
parameters, in this paper, kurtosis, RMS, and PSD are
used for this purpose.
Step 5: classify samples into classes by usingNN-based
classification method with Mahalanobis distance, and
then perform fitness evaluation, Ffit , between four
given classes and the new sample corresponding to
Eqs. (14) and (15).
Step 6: go to global and local optimization algorithm.
In this phrase, IMCWT model can be used to per-
formwavelet analysis with three optimized parameters,
before which trust rate evaluation is used to select the
best wavelet order according to Eqs. (15). Combining
optimized IMCWT model, step 3 - 5 can be used for
testing classification accuracy based on this approach
by using testing data sets. After that, if results can
achieve high accuracy this proposed approach can be
used for either off-line or on-line fault diagnosis of
roller bearing based on optimized IMCWT model.

IV. EXPERIMENTAL STUDY
In this section, to illustrate the effectiveness of the proposed
approach, the fault diagnosis of roller bearing is studied and
verified by using experimental test rig. Primarily, comparison
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FIGURE 3. PT 500 experimental test rig and corresponding layout graph. (a) PT 500 test rig. (b) layout graph of test rig [26].

FIGURE 4. Four conditions of the experimental bearings. (a) Normal bearing A as reference. (b) Bearing B with outer race defect. (c) Bearing C with inner
race defect. (d) Bearing D with roller defect.

study is carried out for evaluating the different performance
of statistical parameters and vector distances, which are crit-
ical for generating discriminatory multi-speed fault signa-
tures. Afterwards, the experimental results of roller bearing
diagnosis and the generation of fault signatures are inves-
tigated and presented using the proposed approach in this
paper.

A. EXPERIMENTAL SYSTEM DESCRIPTION
In this study, PT 500 machinery diagnostic system [26] is
used to collect vibration signals of four conditions of roller
bearing, as shown in Fig. 3 (a) and (b). Roller bearing faults
kit is composed of motor assembly, motor control unit, shaft,
four types of bearings, belt drive kit, and computerised vibra-
tion analyser. The control unit is used to collect speed and
horsepower data. The piezo-electric sensor and measurement
amplifier are used for acceleration measurement. During the
tests, vibration data were captured at a sampling frequency
of 8 kHz for different bearing conditions. Roller bearings
used in this paper are illustrated in Fig. 4, which are bearing A
without damage, bearing Bwith outer race damage, bearing C
with inner race damage, and bearing D with rolling element
damage. To study and evaluate the performance of the pro-
posed approach, four conditions of roller bearing were mon-
itored and respectively recorded under five rotating speeds.
That is, 1000, 1500, 2000, 2500 and 3000 r.p.m.

The experimental data set contains four conditions of
roller bearing, for each condition in one speed, 200 data sets
are used, and therefore the total number of data set corre-
sponding to four roller bearings is 800. In each of data set
4096 sampling points are used. Finally, the entire data set is
split into two data sets, namely 400 for training and 400 for
testing respectively.

B. EXPERIMENTAL RESULTS
1) ANALYSIS OF STATISTICAL PARAMETERS AND
DISTANCE FUNCTION FOR FAULT DIAGNOSIS
In this paper, before determining reduced three-dimensional
features, widely used statistical parameters were firstly ana-
lyzed to select proper candidates with high discriminatory
ability and performance which would be applied to gener-
ate multi-speed fault signatures. For this purpose, in total
9 statistical parameters were primarily investigated to extract
fault symptoms under two rotating speeds, 500 and 3000
r.p.m respectively. These 9 parameters are represented from
x1, x2, · · · , x9, including shape factor, kurtosis, PSD, RMS,
peak, crest factor, clearance factor, skewness factor, and
impulse factor. In this study, considering four conditions of
roller bearing and two speeds, there are in total 1600 data sets
were used to compare their performance. The second-scale
Morlet wavelet was chosen for the application of wavelet
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FIGURE 5. The deviation of statistical parameter values under different speeds (i.e., 500 and 3000 r.p.m) using linear normalization.

TABLE 1. The comparative results of vector distance using three speed data sets: 1000, 2000, and 3000 r.p.m.

TABLE 2. Single-speed resulting trust rate of fault detection and identification on roller bearing.

transform, after which statistical parameters were used to
extract features, and then standard deviation was applied to
evaluate the dispersion degree of each parameter in same
bearing condition and speed. From Fig. 5, it can be concluded
that kurtosis, crest factor, and impulse factor are the most sen-
sitive parameters for detecting incipient faults corresponding
to increasing speeds. For the purpose of generating multi-
speed fault signatures, sensitive parameters however are not
the proper candidates since the mean value of which would
increasingly change following with the increasing speed, as a
result of which these parameters may be probably too sparse
to represent one sample in feature space dimension. Less
sensitive parameters therefore are chosen in this study, among

those shape factor, PSD, RMS, and clearance factor are both
considered as appropriate candidates to draw fault signatures.
It is needed to note that both of these parameters perform
well in feature extraction, in this study only reduced three-
dimensional feature space dimension is considered for fault
feature extraction and generation of fault signatures. That is,
each coefficient after wavelet decomposition is represented
by its three-dimensional feature vector.

Additionally, the ability of discriminatory potential of each
statistical parameter was evaluated by making comparison
between mean values of statistical parameters when used
to achieve better separability representing four bearing con-
ditions. Four rotating speeds (i.e., 1500, 2000, 2500 and
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FIGURE 6. The discriminatory ability of statistical parameters representing roller bearings under various rotating speed. (a) Mean value of statistical
parameters with 1500 r.p.m. (b) Mean value of statistical parameters with 2000 r.p.m. (c) Mean value of statistical parameters with 2500 r.p.m.
(d) Mean value of statistical parameters with 3000 r.p.m.

TABLE 3. Multi-speed resulting trust rate of fault detection and identification on roller bearing.

3000 r.p.m) and in total 3200 data sets were tested in this
study, the result of which is illustrated in Fig. 6. From this
figure, it can be seen that parameters in the left side can
relatively discriminate four bearing conditions after normal-
ization from 0 to 100. To be more specific, four bearing
conditions can be separately represented by one parameter

with different values after normalization. Hence, comprehen-
sively taking speed sensitivity and discriminatory potential
into account, in this proposed study, PSD, RMS are selected
as features to generate 2D fault signatures. Moreover, it
can be seen from Fig. 5 that kurtosis is highly sensitive to
variation of rotating speed, which is an appropriate feature
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FIGURE 7. The 2D fault signatures with single-speed showing training data distribution for fault diagnosis. (a) Fault signatures distribution with
1000 r.p.m. (b) Fault signatures distribution with 1500 r.p.m. (c) Fault signatures distribution with 2500 r.p.m. (d) Fault signatures distribution with
3000 r.p.m.

TABLE 4. Classification accuracy comparison by using CWT with different kernels under five different speeds.

that can be used to transfer 2D feature space to 3D dimen-
sion when multi-speed signals involved for fault diagnosis.
Therefore, combining kurtosis, RMS, and PSD together this

three-dimensional feature space can be properly applied
to generate multi-speed fault signatures in 3D feature
space dimension. In addition, to illustrate the selected
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FIGURE 8. (a) Fault signatures distribution with 1000, and 1500 r.p.m. (b) Fault signatures distribution with 1000, 1500, and 2000 r.p.m. (c) Fault
signatures distribution with 1000, 1500, 2000, and 2500 r.p.m. (d) Fault signatures distribution with 1000, 1500, 2000, 2500, and 3000 r.p.m.

distance function, Mahalanobis, has better performance in
NN-based classification, commonly used vector
distances (i.e., Euclidean, City Block, Chebyshev) were
selected to evaluate similarity between the new sample and
given classes. Trust rate and classification accuracy were
applied to evaluate the classification results corresponding
to Eqs. (14) and (19). As shown in Table I, it can be seen
that both of four distances can achieve 100% accuracy.
Mahalanobis analysis however achieved more high trust rate
than the rest. That is, the mean similarity between correct
classification and samples evaluated by Mahalanobis dis-
tance is more relatively accurate than the others. According
to the literatures, different from other similarity distances,
Mahalanobis distance takes the correlations of data sets into
account. Hence, Mahalanobis distance used for statistical
similarity analysis is more unitless and scale-invariant.

2) EXPERIMENTAL RESULTS OF MULTI-SPEED FAULT
DIAGNOSIS AND SIGNATURES
After having determined the feature vector and vector dis-
tance method, original vibration data sets of roller bear-
ing were used to verify the effectiveness of this proposed
approach andmulti-speed fault signatures. Primarily, the clas-
sification accuracy of single-speed diagnosis and the fault
signatures are illustrated in Fig. 7 and Table II. Fig. 7 shows
the 2D data distribution plots of the samples under a single
speed in this study. It can be noticed that the training data
sets with fault symptoms can be clearly found in the right
half, which visually seems like ‘‘fault trajectory" that can be
regarded to single-speed fault signatures. The healthy sam-
ples are represented by blue points in the lower left corner.

In addition, the experimental results of multi-speed fault
diagnosis and 3D fault signatures are summarized in Table III
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TABLE 5. Comparative review of related methods and proposed approach for bearing fault diagnosis.

and Fig. 8. Different from single-speed result, it can be
seen that in Fig. 8 samples representing one condition is
consisted with various groups corresponding to the number
of rotation speeds used in the training phrase. Interestingly,
for both single or multi speed fault signatures, the healthy
condition (represented by blue color) intensively locates in
the lower left corner with an intensivemanner. However,when
two rotating speeds of 1000 and 1500 r.p.m used for fault
signatures, samples representing roller fault condition (rep-
resented by pink color) approximately locate together in
feature space. In conclusion, it can be noticed that fault
signatures generated using this proposed method can be used
to accurately recognize whether the current running state of
roller bearing is healthy. Moreover, most of the time, samples
would be normally labeled with a certain rotating speed in
training phrase. Nevertheless, sometimes it can not achieve
high accuracy when the speed of sample can not be tested and
determined. In this paper, from Fig. 7 and Fig. 8 it is shown
that multi-fault signatures provide a solution that can be used
to classify samples to certain groups meanwhile estimate
current speed of testing samples by visually comparing with
the data distribution plots in feature space dimension.

Additionally, the comparative performance of wavelet
analysis using different wavelet kernels was given in Table IV.
Each best scale of wavelet transform was selected according
to fitness evaluation Eqs. (15), which is used to evaluate
the mean statistical similarity between testing samples and
given classes. It can be seen that both of IMCWT model and

Daubechies2/4/10 wavelets can achieve 100% classification
accuracy; however, misclassified samples occurred when the
others used. Moreover, it shows that IMCWTmodel however
enables to obtain the highest trust rate when used for five-
speed fault diagnosis compared with the others. In addition,
to manifest the efficiency of the proposed approach, recent
related diagnostic research work on bearings published in
literatures has been reviewed in Table V. In this table, com-
parison has been conducted based on the perspectives of
objects adopted, defects considered, techniques used for fault
diagnosis, features considered, classification method used,
and the classification efficiencies in each paper.

V. CONCLUSION
In this paper a novel hybrid fault diagnostic method for
roller bearing under multi-speed is presented using impulse
modelling continuous wavelet transform (IMCWT) model as
an advanced signal-processing tool. Particle swarm optimiza-
tion (PSO) and Broyden-Fletcher-Goldfarb-Shanno (BFGS)
based quasi-Newton optimization algorithms are applied to
optimize IMCWT model. Nearest neighbor (NN) statistical
analysis using Mahalanobis distance is applied as a classifier
to map samples into best matching classes.

In this proposed approach, IMCWT can be effectively
applied to extract fault information from vibration signals
by means of providing high time-frequency resolution for
signal analysis. Reduced three-dimensional feature space
dimension (i.e., RMS, PSD, and kurtosis) is adopted to
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extract fault features after wavelet decomposition. After that,
NN-based classifier and Mahalanobis vector distance are
used to evaluate vector similarity between samples to be
labeled and given classes for identifying conditions of testing
samples. At last, the effectiveness of this proposed method is
verified and presented.

An overall accuracy of 100% was achieved in the exper-
imental results, which demonstrated that this proposed
approach can be used to effectively classify vibration signals
of four conditions of roller bearing, i.e., normal, with the fault
of inner race, outer race, and roller operation. In addition, it
can be easily seen that this method meanwhile provides dis-
criminatory fault signatures for both single-speed and multi-
speed data sets, which has great scope for extending this
technique in identifying other types of rotating mechanical
faults.

This proposed approach is simple and easy to implement
providing a feasible method for multi-speed fault diagnosis of
roller bearing in rotating machinery. Hence, in the future this
method would be further extended to diagnose other rotating
components in industrial plants.
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