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ABSTRACT The complex-valued neural networks are the class of networks that solve complex problems
by using complex-valued variables. The gradient descent method is one of the popular algorithms to train
complex-valued neural networks. Essentially, the established networks are integer-order models. Compared
with classical integer-order models, the built models in terms of fractional calculus possess significant
advantages on both memory storage and hereditary characteristics. As one of commonly used fractional-
order derivatives, Caputo derivative ismore applicable in practical problems due to its simple requirements on
initial condition. In this paper, we adopt this specific fractional-order derivative to train split-complex neural
networks. As a result, the monotonicity and weak convergence of the presented model are rigorously proved.
In addition, numerical simulation has effectively verified its competitive performance and also illustrated the
theoretical results.

INDEX TERMS Complex-valued neural networks, Caputo fractional derivative, monotonicity, convergence.

I. INTRODUCTION
Recently, fractional-order complex neural networks have
been extensively studied on both theory and practical appli-
cations. Fractional calculus has already been emerged three
hundred years. It is a generalization of ordinary differential
and integer operations from integer order to fractional order.
Since the inherent fault tolerance and parallel computational
characteristics of neural networks, the established fractional
operations have the advantages in describing the memory
and hereditary properties of various procedures [1]. As a
natural extension of real number field, complex-valued prob-
lems are widely occurred in many research fields such as
electromagnetics, image processing, voice processing. There
have been increasing studies on complex-valued problems by
employing fractional-order neural networks.

Neural networks have attracted an increasingly interest
in the past decades, due to the powerful nonlinear map-
ping and parallel data processing abilities of them. Several
classical neural networks, multilayer perceptions, Radical
Basis function networks (RBF), bidirectional associative

memory (BAM) and support vector machine (SVM) have
been intensively investigated. Many good results have been
obtained on various researches [2]–[5]. Constrained by the
data volume and the dealing strategies, these models are the
networks with shallow architectures. Since 2006, a break-
through has beenmade in [12], which claimed the appearance
of deep learning networks. A vast of significant achievements
have been reached in a variety of research fields during the
past ten years. However, most of these results are confined in
real domain.

With the rapid development of electronic science, the
complex-value signals are frequently appeared in the engi-
neering practice and complex neural network is more
and more widely used. The complex-valued neural net-
works (CVNNs) are the extension of real-valued neural net-
works. It is embodied in: the input, output and the weights are
complex. Moreover, complex-valued neural networks have
advantage on classification issues and abilities in reducing
the number of parameters and operations. Therefore, more
and more scholars focus their researches on complex-valued
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neural networks [6]–[11], [22], [23]. In order to solve
nonlinear separation problems, authors concentrated on
complex-value BP algorithm [6]. In [7], the complex-valued
backpropagation neural networks (CBP) were trained by
Complex Levengberg-Marquardt algorithm and different
activation functions were compared. A fully complex-valued
radial basis function network was applied to solve real-
valued classification problems in [8]. Moreover, the FC-RBF
classifier was investigated experimentally well by a set of
real-valued benchmark problems. Based on wirtinger calcu-
lus [9], authors put forward an augmented algorithm for fully
complex-valued neural networks.

Fractional calculus is a branch of calculus. Nowadays, frac-
tional derivatives have been applied inmany fields.Moreover,
more and more researchers are concerned about the fractional
calculus. In the respects of fractional pattern recognition and
adaptive signal processing, integer-order adaptive learning
method is not applicable. Then the fractional steepest descent
approach was presented in [24]. There have some excellent
results about the dynamic analyses on fractional calculus [1],
[13]–[17], [25]. For example, Delavari et al. [15] investigated
the stability of fractional-order nonlinear systems. Applying
time domain scheme to the fractional order system [17], the
author studied the unified system and synchronization of the
fractional order.

Due to the good memory and heredity of fractional cal-
culus, fractional calculus is widely applied to complex-
valued neural networks. Currently, most of the results focus
on fractional-order CVNNs with time delays [18]–[21].
For example, under sufficient conditions, fractional-order
complex-valued neural networks for the existence and uni-
form steadiness are solved [18]. Bao et al. [19] discuss
the synchronization problem with fractional-order complex-
valued neural networks with time delays. In [20], the prob-
lems of leakage and discrete delays on fractional-order
complex-valued neural networks were considered, in which
authors handled the uniqueness and global uniform stability
of the equilibrium point. In order to study the dissipativ-
ity of neural networks with time delay, authors proposed
a kind of fractional-order complex-valued neural networks
with time delays and discussed its dissipativity and stability
analysis [21].

Motivated by the above discussion, we consider the con-
vergence analysis of fractional-order complex-valued neu-
ral networks. Different from the training algorithm in [22],
we use fractional order steepest descent method to train
split-complex neural networks. In particular, Caputo-type
fractional-order derivative is adopted. In the aspects of theo-
ries, the monotonicity and weak convergence of the presented
model are rigorously proved. In addition, numerical simu-
lations have effectively verified its competitive performance
and also illustrated the theoretical results.

The structure of this paper is as follows: Section 2 presents
a description of Caputo fractional-order derivative. The algo-
rithm descriptions with two types of algorithm are then pre-
sented in Section 3. The main results based on Caputo-type

fractional gradient descent method are drawn in Section 4.
In Section 5, a numerical example on XOR problem is per-
formed. Conclusions are presented in Section 6. Finally, the
appendix shows the proof process of Caputo-type fractional
order complex-valued neural networks algorithm.

II. FRACTIONAL-ORDER DERIVATIVE
There are several definitions used for fractional deriva-
tives. The three most common fractional calculus definitions
are Grünwald-Letnikov (GL), Riemann-Liouville (RL), and
Caputo [26], [28]–[30].
Definition 1 (GL Fractional-Order Derivative): The GL

derivative with order α of function f (t) is defined as

GL
aDαt f (t)

=

n∑
k=0

f (k)(a)(t − a)−α+k

0(−α + k + 1)

+
1

0(n− α + 1)

∫ t

a
(t − τ )n−αf (n+1)(τ )dτ, (1)

where GL
aDαt is the GL fractional derivative operator,

α > 0, n− 1 < α < n, n ∈ N , f (t) is the objective function
under consideration and [a, t] is the interval of f (t). 0(·) is
the Gamma function, that is, 0(α) =

∫
∞

0 tα−1e−tdt .
Definition 2 (RL Fractional-Order Derivative): The

Riemann-Liouville derivative with order α of function f (t)
is defined as

RL
aDαt f (t) =

dn

dtn a
D−(n−α)t f (t)

=
1

0(n− α)
dn

dtn

∫ t

a
(t − τ )n−α−1f (τ )dτ, (2)

where RLaDαt is the RL fractional derivative operator. In addi-
tion, the GL derivative may be obtained based on the defini-
tion of the RL fractional derivative.
Definition 3 (Caputo Fractional-Order Derivative): The

definition of the Caputo fractional-order derivative of order
α is defined as follows

Caputo
aDαt f (t) =

1
0(n− α)

∫ t

a
(t − τ )n−α−1f (n)(τ )dτ, (3)

where Caputo
aDαt is the Caputo derivative operator, α is the

fractional order.
Specifically, when α ∈ (0, 1), the expression for Caputo

derivative is as follows

Caputo
aDαt f (t) =

1
0(1− α)

∫ t

a
(t − τ )−αf ′(τ )dτ. (4)

When α ∈ (0, 1) and a = 0, there exists an evident
difference of the RL and Caputo derivatives with respect to a
constant. Assume that K is a constant, then the RL derivative
can be expressed as follows

RL
aDαt K =

K
0(1− α)

x−α 6= 0, (5)
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however, the corresponding Caputo derivative is equal to
zero, that is,

Caputo
aDαt K = 0. (6)

Since the initial values between the fractional differential
equations with the Caputo derivative and the integer dif-
ferential equations are the same: this derivative has a wide
range of application in physical processes and engineering
problems. In this paper, we just employ the Caputo fractional-
order derivative to evaluate the CBP training algorithm for
fractional-order complex-valued neural networks. For conve-
nience, we use the notion aDαt to denote Caputo fractional
derivative operator instead of CaputoaDαt .
Remark 1: There are close contacts between these three

definitions. For example, the relationship between Riemann-
Liouville definition and Grünwald-Letnikov definition [27]:
Suppose function u(t) is defined on the interval (a, b), u(t) has
m+1 order continuous derivatives and m at least takes [µ] =
n − 1, then the definitions between G-L fractional calculus
and R-L fractional calculus are equivalent. Moreover, G-L
definition is equal to Caputo definition if the kth derivative of
function u(t) also satisfies u(k)(a) = 0, k = 0, 1, · · · , n − 1.
Wu and Huang [27] give more clear relationships of these
three different fractional derivatives.

III. ALGORITHM DESCRIPTION
Without loss of generality, we consider a three-layered
CVNN consisting of p input neurons, n hidden neurons, and
1 output neuron. Suppose that training samples {zj, d j}Jj=1 ⊂

Cp
× C1. For input signals z =

(
z1, z2, . . . , zp

)T
=

x + iy ∈ Cp, where x =
(
x1, x2, . . . , xp

)T
∈ Rp, and

y =
(
y1, y2, . . . , yp

)T
∈ Rp. Let vl = vRl + ivIl =(

vl1, vl2, . . . , vlp
)T
∈ Cp as the weight vector between the

input neurons and lth hidden neuron, where vlm = vRlm+ iv
I
lm,

and vRlm, v
I
lm are the real part and the imaginary part of vlm,

respectively, l = 1, . . . , n,m = 1, . . . , p. The weight vector
between the hidden neurons and the output neuron is denoted
by u = uR + iuI = (u1, u2, . . . , un)T ∈ Cn, where ul =
uRl + iu

I
l , and u

R
l , u

I
l are the real part and the imaginary part

of ul , separately, l = 1, . . . , n. For simplicity, we incorporate
all the weight vectors into a total weight vector

w =
(
(v1)T , (v2)T , . . . , (vn)T ,uT

)T
∈ Cn(p+1). (7)

For the lth node of the hidden layer, the input is

θl = vl · z = (vRl + iv
I
l ) · (x+ iy) = θ

R
l + iθ

I
l

=

p∑
m=1

(
vRlmxm − v

I
lmym

)
+ i

p∑
m=1

(
vIlmxm + v

R
lmym

)
=

(
vRl
−vIl

)
·

(
x
y

)
+ i

(
vIl
vRl

)
·

(
x
y

)
, (8)

where "·" denotes the inner product of two vectors.

We consider the following popular real-imaginary type
activation function

gC (θ) = gR
(
θR
)
+ igI

(
θ I
)
, (9)

for any θ = θR+iθ I ∈ C1, where gR and gI are real activation
function, respectively. For simplicity, gR and gI are the same
in this paper. For example, the output of the lth hidden neuron
is given by

Hl = HR
l + iH

I
l = g

(
θRl

)
+ ig

(
θ Il

)
. (10)

Write:

H = HR
+ iHI ,

HR
=

(
HR
1 ,H

R
2 , . . . ,H

R
n

)T
,

HI
=

(
H I
1 ,H

I
2 , . . . ,H

I
n

)T
. (11)

For the output layer, the input is

S = u ·H = (uR + iuI ) · (HR
+ iHI ) = SR + iSI

=

n∑
l=1

(
uRl H

R
l − u

I
lH

I
l

)
+ i

n∑
l=1

(
uIlH

R
l + u

R
l H

I
l

)
=

(
uR

−uI

)
·

(
HR

HI

)
+ i

(
uI

uR

)
·

(
HR

HI

)
. (12)

Similarly, the output of the network is given by

O = OR + iOI = f
(
SR
)
+ if

(
SI
)
. (13)

For the jth sample, the input of the hidden neuron l is
denoted by θ jl = θ

j,R
l + iθ j,Il (1 ≤ l ≤ n, 1 ≤ j ≤ J ),

the output of the hidden neuron l is represented by H j
l =

H j,R
l + iH j,I

l (1 ≤ l ≤ n), S j = S j,R + iS j,I stands for the
input of the output neuron, and Oj = Oj,R + iOj,I represents
the actual output. The squared error function of CBP can be
represented as follows:

E(w) =
1
2

J∑
j=1

(Oj − d j)(Oj − d j)∗

=
1
2

J∑
j=1

[
(Oj,R − d j,R)2 + (Oj,I − d j,I )2

]

=

J∑
j=1

[
fjR(S j,R)+ fjI (S j,I )

]
, (14)

where "∗" signifies complex conjugate, and

fjR(t) =
1
2
(f (t)− d j,R)2, fjI (t) =

1
2
(f (t)− d j,I )2, (15)

for t ∈ R1, 1 ≤ j ≤ J .
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1) CBP ALGORITHM BASED ON GRADIENT DESCENT
METHOD
The kth derivatives of the error function in regard to uRl , u

I
l ,

vRlm and vIlm are, respectively, given by

Euk,Rl
(w) =

J∑
j=1

(f ′jR(S
j,R)H j,R

l + f
′
jI (S

j,I )H j,I
l ), (16)

Euk,Il
(w) =

J∑
j=1

(−f ′jR(S
j,R)H j,I

l + f
′
jI (S

j,I )H j,R
l ), (17)

Evk,Rlm
(w) =

J∑
j=1

[
f ′jR(S

j,R)(uk,Rl g′(θ j,Rl )x jm − u
k,I
l g′(θ j,Il )yjm)

+ f ′jI (S
j,I )(uk,Il g′(θ j,Rl )x jm + u

k,R
l g′(θ j,Il )yjm)

]
,

(18)

Evk,Ilm
(w) =

J∑
j=1

[
f ′jR(S

j,R)(−uk,Rl g′(θ j,Rl )yjm − u
k,I
l g′(θ j,Il )x jm)

+f ′jI (S
j,I )(−uk,Il g′(θ j,Rl )yjm + u

k,R
l g′(θ j,Il )x jm)

]
,

(19)

where k = 0, 1, 2, · · · ; l = 1, 2, · · · , n; j = 1, 2, · · · , J .
Given an initial weight w0, the batch learning of standard

CBP updates the weights iteratively by

uk+1l = ukl − η
(
Euk,Rl

(w)+ iEuk,Il
(w)

)
, (20)

vk+1lm = vklm − η
(
Evk,Rlm

(w)+ iEvk,Ilm
(w)

)
, (21)

where k = 0, 1, 2, · · · ; l = 1, 2, · · · , n; m = 1, 2, · · · , p;
η > 0 is the learning rate.

2) FRACTIONAL-ORDER CBP ALGORITHM BASED ON
CAPUTO FRACTIONAL-ORDER DERIVATIVE
Given any initial weight w0

= (u0,V0), without loss of gen-
erality, assume that c = min{ul k,R, ul k,I , vlmk,R, vlmk,I }(k =
0, 1, 2, . . . ; l = 1, . . . , n;m = 1, . . . , p), where k represents
the kth iteration. The CBP network with Caputo α-order
derivative updates the weights {wk

} iteratively by

uk+1l = ukl − η
(
cDαuk,Rl

E(w)+ icDαuk,Il
E(w)

)
, (22)

vk+1lm = vklm − η
(
cDαvk,Rlm

E(w)+ icDαvk,Ilm
E(w)

)
, (23)

where η > 0 is the learning rate, 0 < α < 1 is the
fractional order, cDαuk,Rl

E(w), cDαuk,Il
E(w), cDαvk,Rlm

E(w) and

cDαvk,Ilm
E(w) are the Caputo α-order derivative with respect to

uk,Rl , uk,Il ,vk,Rlm and vk,Ilm , respectively (l = 1, 2, . . . , n,m =
1, 2, . . . , p).
According to the definition of Caputo fractional derivative,

the fractional-order differential of a compostive function can
be inferred as the the product of an integer-order differential
and a fractional order differential. Suppose that h(s(t)) is a

composite function, the α-order (0 < α < 1) differential
with respect to t is as follows

aDαt h(s) =
∂

∂s
(h(s))aDαt s(t). (24)

Next, we will divide four parts to obtain the expressions of
cDαuk,Rl

E(w), cDαuk,Il
E(w), cDαvk,Rlm

E(w) and cDαvk,Ilm
E(w).

Part 1. cDαuk,Rl
E(w).

For the jth sample, it is easily to know from (12),

S j = S j,R + iS j,I

=

n∑
l=1

(
uRl H

j,R
l − u

I
lH

j,I
l

)
+ i

n∑
l=1

(
uIlH

j,R
l + u

R
l H

j,I
l

)
=

(
uR

−uI

)
·

(
Hj,R

Hj,I

)
+ i

(
uI

uR

)
·

(
Hj,R

Hj,I

)
. (25)

Since S j,R and S j,I all contain variable uk,Rl , the fractional
gradient of the error function with respect to uk,Rl includes
two parts. According to (24) and (14), we have

cDαuk,Rl
E(w)

=
∂E(w)
∂S j,R cDαuk,Rl

(S j,R)+
∂E(w)
∂S j,I cDαuk,Rl

(S j,I ), (26)

where

∂E(w)
∂S j,R

=

J∑
j=1

f ′jR(S
j,R),

∂E(w)
∂S j,I

=

J∑
j=1

f ′jI (S
j,I ). (27)

In order to calculate cDαuk,Rl
(S j,R), we need to utilize the

definition of (4) and (25), then

cDαuk,Rl
(S j,R) =

1
0(1− α)

∫ uk,Rl

c
(uk,Rl − τ )

−αH j,R
l dτ

=
1

0(1− α)
H j,R
l

∫ uk,Rl

c
(uk,Rl − τ )

−αdτ

=
1

0(1− α)
1

1− α
H j,R
l (uk,Rl − c)

1−α. (28)

Similarly,

cDαuk,Rl
(S j,I ) =

1
0(1− α)

∫ uk,Rl

c
(uk,Rl − τ )

−αH j,I
l dτ

=
1

0(1− α)
1

1− α
H j,I
l (uk,Rl − c)

1−α. (29)

Therefore, we obtain the expanded formula of cDαuk,Rl
E(w),

it follows from (26)− (29) that

cDα
uk,Rl

E(w) =
1

(1− α)0(1− α)

×

J∑
j=1

(
f ′jR(S

j,R)H j,R
l + f

′
jI (S

j,I )H j,I
l

)
×(uk,Rl − c)

1−α. (30)
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Part 2. cDαuk,Il
E(w).

Since S j,R and S j,I all contain variable uk,Il , the fractional
gradient of the error function with respect to uk,Il includes the
following two parts. According to (24) and (14), we have

cDαuk,Il
E(w) =

∂E(w)
∂S j,R cDαuk,Il

(S j,R)+
∂E(w)
∂S j,I cDαuk,Il

(S j,I ),

(31)

where

∂E(w)
∂S j,R

=

J∑
j=1

f ′jR(S
j,R),

∂E(w)
∂S j,I

=

J∑
j=1

f ′jI (S
j,I ). (32)

Employing (4) and (25), the Caputo fractional derivative
of S j,R and S j,I with respect to uk,Il are, respectively,
expressed by

cDαuk,Il
(S j,R) =

1
0(1− α)

1
1− α

(−H j,I
l )(uk,Il − c)

1−α,

(33)

cDαuk,Il
(S j,I ) =

1
0(1− α)

1
1− α

H j,R
l (uk,Il − c)

1−α. (34)

Therefore, based on (31) − (34), the expanded formula of
cDαuk,Il

E(w) is as follow

cDαuk,Il
E(w)

=
1

(1− α)0(1− α)

J∑
j=1

×

(
−f ′jR(S

j,R)H j,I
l + f

′
jI (S

j,I )H j,R
l

)
(uk,Il − c)

1−α. (35)

Part 3. cDαvk,Rlm
E(w).

For the jth sample, it is easily to get from (8),

θl = θ
R
l + iθ

I
l

=

p∑
m=1

(
vRlmxm − v

I
lmym

)
+ i

p∑
m=1

(
vIlmxm + v

R
lmym

)
=

(
vRl
−vIl

)
·

(
x
y

)
+ i

(
vIl
vRl

)
·

(
x
y

)
. (36)

Since θ j,Rl and θ j,Il all contain variable vk,Rlm , the fractional
gradient of the error function with respect to vk,Rlm includes the
following two parts. According to (24) and (14), we have

cDαvk,Rlm
E(w) =

∂E(w)

∂θ
j,R
l

cDαvk,Rlm
(θ j,Rl )+

∂E(w)

∂θ
j,I
l

cDαvk,Rlm
(θ j,Il ),

(37)

where

∂E(w)

∂θ
j,R
l

=

J∑
j=1

(
f ′jR(S

j,R)uk,Rl g′(θ j,Rl )+ f ′jI (S
j,I )uk,Il g′(θ j,Rl )

)
,

∂E(w)

∂θ
j,I
l

=

J∑
j=1

(
f ′jR(S

j,R)(−uk,Il )g′(θ j,Il )+f ′jI (S
j,I )uk,Rl g′(θ j,Il )

)
.

(38)

Employing (4) and (36), the Caputo fractional derivative of
θ
j,R
l and θ j,Il with respect to vk,Rlm are, respectively, expressed
by

cDαvk,Rlm
(θ j,Rl ) =

1
0(1− α)

1
1− α

x jm(v
k,R
lm − c)

1−α, (39)

cDαvk,Rlm
(θ j,Il ) =

1
0(1− α)

1
1− α

yjm(v
k,R
lm − c)

1−α. (40)

Therefore, it follows from (37)− (40) that

ccDαvk,Rlm
E(w)

=
1

(1− α)0(1− α)

×

J∑
j=1

[
f ′jR(S

j,R)
(
uk,Rl g′(θ j,Rl )x jm − u

k,I
l g′(θ j,Il )yjm

)

+ f ′jI (S
j,I )×

(
uk,Il g′(θ j,Rl )x jm + u

k,R
l g′(θ j,Il )yjm

) ]
×(vk,Rlm − c)

1−α. (41)

Part 4. cDαvk,Ilm
E(w).

Since θ j,Rl and θ
j,I
l all contain variable vk,Ilm , the frac-

tional gradient of the error function with respect to vk,Ilm
includes the following two parts. According to (24) and (14),
we have

cDαvk,Ilm
E(w) =

∂E(w)

∂θ
j,R
l

cDαvk,Ilm
(θ j,Rl )+

∂E(w)

∂θ
j,I
l

cDαvk,Ilm
(θ j,Il ),

(42)

where

∂E(w)

∂θ
j,R
l

=

J∑
j=1

(
f ′jR(S

j,R)uk,Rl g′(θ j,Rl )

+ f ′jI (S
j,I )uk,Il g′(θ j,Rl )

)
,

∂E(w)

∂θ
j,I
l

=

J∑
j=1

(
f ′jR(S

j,R)(−uk,Il )g′(θ j,Il )

+ f ′jI (S
j,I )uk,Rl g′(θ j,Il )

)
. (43)

Employing (4) and (36), the Caputo fractional derivative of
θ
j,R
l and θ j,Il with respect to vk,Ilm are, respectively, expressed
by

cDαvk,Ilm
(θ j,Rl ) =

1
0(1− α)

1
1− α

− yjm(v
k,I
lm − c)

1−α, (44)

cDαvk,Ilm
(θ j,Il ) =

1
0(1− α)

1
1− α

x jm(v
k,I
lm − c)

1−α. (45)
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Therefore, it follows from (42)− (45) that

cDαvk,Ilm
E(w)

=
1

(1− α)0(1− α)

×

J∑
j=1

[
f ′jR(S

j,R)
(
− uk,Rl g′(θ j,Rl )yjm

− uk,Il g′(θ j,Il )x jm
)
+ f ′jI (S

j,I )
(
− uk,Il g′(θ j,Rl )

yjm + u
k,R
l g′(θ j,Il )x jm

)]
(vk,Ilm − c)

1−α. (46)

This then completes the CBP network with Caputo α-order
derivative weights updates (22) and (23).

IV. MAIN RESULTS
In this section, the convergence behavior of the Caputo
fractional-order derivative for CVBP algorithm is presented.
The value range of α is 0 < α < 1. The following
assumptions are imposed for the convergence of Caputo-type
fractional-order CVNNs:

(A1) There exists a constant c1 > 0 such that
max
t∈R1
{|g(t)|, |g′(t)|, |g′′(t)|, |f (t)|, |f ′(t)|, |f ′′(t)|}

≤ c1;
(A2) There exists a constant c2 > 0 such that
||wk,R

|| ≤ c2, ||wk,I
|| ≤ c2 for all k = 0, 1, 2, . . . ;

(A3) η is chosen to satisfy 0 < η <
c9
c8
, where c9

c8
is a constant defined in (76) below.

Theorem 1: Suppose that the error function E(w) is
defined by (14) , w0

∈ Cn(p+1) be an arbitrary initial value,
the weight sequence {wk

} be generated by (22) and (23).
Assume that conditions (A1)− (A3) are valid, then we have,
(i) E(wk+1) ≤ E(wk ), k = 0, 1, . . . ;
(ii) There exists E∗ ≥ 0 such that limk→∞ E(wk ) = E∗;
(iii) lim

k→∞
‖cDαuRE(w

k )‖ = 0, lim
k→∞
‖cDαuIE(w

k )‖ = 0,

lim
k→∞
‖cDαvRl

E(wk )‖ = 0, lim
k→∞
‖cDαvIl

E(wk )‖ = 0(k =

0, 1, 2, . . . ; l = 1, 2, . . . , n).

V. NUMERICAL EXAMPLE
To verify the convergence of the proposed fractional steep-
est descent method for split-complex neural networks, we
demonstrate it by a numerical simulation. Simulation has
been done on a well-known XOR problem.

The training samples of the XOR problem for complex-
value neural networks are presented as follows:

{z1 = (0,−1− i)T , d1 = 0},

{z2 = (i,−1− i)T , d2 = 1},

{z3 = (1,−1− i)T , d3 = 1+ i},

{z4 = (1+ i,−1− i)T , d4 = i}.

FIGURE 1. The comparison of different fractional and integer order CBP
algorithms for the same learning rates with fixed numbers of hidden
nodes.

FIGURE 2. The sum of gradient norms for the same learning rates with
fixed numbers of hidden nodes.

We use a network with two input neurons, ten hidden
neurons, and one output neuron. We set the learning rate
η = 0.05. The activation function is tansig(· ) for hidden
layer and output layer function. In this example, we employ
different fractional α-order derivatives, where α = 2

9 ,
3
9 ,

4
9 ,

7
9

and 9
9 = 1, separately (α = 1 is the equal of integer order

derivative for the common CBP).
Fig. 1 shows that errors change for different fractional and

integer order CBP algorithms. It demonstrates that the simu-
lation of fractional orders perform better than that of integer
order, and we can also find a phenomenon that the larger the
order is, the slower the convergence rate in this simulation.
Therefore, we can infer that fractional order CVNN performs
better than integer order CVNN in our example. Fig. 2 implies
that the sum of gradient norms change for different fractional
CBP algorithms. Fig. 2 shows that the sum of the gradient
norms go to zero for 2

9 ,
3
9 ,

4
9 ,

7
9 . In addition, it also verifies

the week convergence theorem 1.

VI. CONCLUSIONS
In this paper, we have extended the fractional steepest descent
approach to CBP training of FNNs. The batch split-complex
fractional order gradient descent method (BSC-FGD) for
training complex value backpropagation is investigated. The
monotonicity of error function and weak convergence of the
proposed Caputo fractional-order CBP algorithm are derived.
Finally, the numerical results support the theoretical conclu-
sions very well.
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APPENDIX
For the sake of description, we introduce the following
notations:

1ukl = uk+1l − ukl

= −η

(
cDαuk,Rl

E(w)+ icDαuk,Il
E(w)

)
, (47)

1vklm = vk+1lm − v
k
lm

= −η

(
cDαvk,Rlm

E(w)+ icDαvk,Ilm
E(w)

)
, (48)

where

1uk,Rl = uk+1,Rl − uk,Rl = −ηcD
α

uk,Rl
E(w), (49)

1uk,Il = uk+1,Il − uk,Il = −ηcD
α

uk,Il
E(w), (50)

1vk,Rlm = vk+1,Rlm − vk,Rlm = −ηcD
α

vk,Rlm
E(w), (51)

1vk,Ilm = vk+1,Ilm − vk,Ilm = −ηcD
α

vk,Ilm
E(w), (52)

θ
k,j
l = θ

k,j,R
l + iθk,j,Il

=

(
vk,Rl
−vk,Il

)
·

(
xj

yj

)
+ i

(
vk,Il
vk,Rl

)
·

(
xj
yj

)
,

H k,j
l = H k,j,R

l + iH k,j,I
l = g

(
θ
k,j,R
l

)
+ ig

(
θ
k,j,I
l

)
,

Hk,j,R
=

(
H k,j,R
1 ,H k,j,R

2 , . . . ,H k,j,R
n

)T
,

Hk,j,I
=

(
H k,j,I
1 ,H k,j,I

2 , . . . ,H k,j,I
n

)T
,

Sk,j = Sk,j,R + iSk,j,I

=

(
uk,R

−uk,I

)
·

(
Hk,j,R

Hk,j,I

)
+ i

(
uk,I

uk,R

)
·

(
Hk,j,R

Hk,j,I

)
,

ψk,j,R
= Hk+1,j,R

−Hk,j,R,

ψk,j,I
= Hk+1,j,I

−Hk,j,I , (53)

where k ∈ N; l = 1, 2, . . . , n; m = 1, 2, . . . , p.
Lemma 1: Suppose AssumptionsA1,A2 hold, desired out-

puts {d j}Jj=1 satisfy |d j,R| ≤ c0, |d j,I | ≤ c0, for 1 ≤ j ≤
J , k = 0, 1, 2, . . ., then, there are constants ci(i = 3, . . . , 7)
such that

‖Hk,j,R
‖ ≤ c0, ‖Hk,j,I

‖ ≤ c0, (54)
|f ′jR(t)| ≤ c3, |f ′jI (t)| ≤ c3,

|f ′′jR(t)| ≤ c3, |f ′′jI (t)| ≤ c3, (55)

max{‖ψk,j,R
‖
2, ‖ψk,j,I

‖
2
}

≤ c4
n∑
l=1

(‖1vk,Rl ‖
2
+1vk,Il ‖

2), (56)

δ1 =

J∑
j=1

(
f ′jR(S

k,j,R)
(
1uk,R

−1uk,I

)
·

(
Hk,j,R

Hk,j,I

)
+ f ′jI (S

k,j,I )
(
1uk,I

1uk,R

)
·

(
Hk,j,R

Hk,j,I

))
≤ −

1
η
(1− α)0(1− α)(c2 − c)α−1(||1uk,R||2

+ ||1uk,I ||2), (57)

δ2 =

J∑
j=1

(
f ′jR(S

k,j,R)
(

uk,R

−uk,I

)
·

(
ψk,j,R

ψk,j,I

)
+f ′jI (S

k,j,I )
(
uk,I

uk,R

)
·

(
ψk,j,R

ψk,j,I

))
≤

(
c5 −

1
η
(1− α)0(1− α)(c2 − c)α−1

)
n∑
l=1

(||1vk,Rl ||
2
+ ||1vk,Il ||

2), (58)

δ3 =

J∑
j=1

(
f ′jR(S

k,j,R)
(
1uk,R

−1uk,I

)
·

(
ψk,j,R

ψk,j,I

)
+f ′jI (S

k,j,I )
(
1uk,I

1uk,R

)
·

(
ψk,j,R

ψk,j,I

))
≤ c6

( n∑
l=1

(||1vk,Rl ||
2
+ ||1vk,Il ||

2)+ ||1uk,R||2

+ ||1uk,I ||2
)
, (59)

δ4 =
1
2

J∑
j=1

(
f ′′jR(t

k,j
1 )(Sk+1,j,R − Sk,j,R)2

+f ′′jI (t
k,j
2 )(Sk+1,j,I − Sk,j,I )2

)
≤ c7

( n∑
l=1

(||1vk,Rl ||
2
+ ||1vk,Il ||

2)+ ||1uk,R||2

+ ||1uk,I ||2
)
, (60)

where tk,j1 ∈ R1 is a constant between Sk+1,j,R and Sk,j,R, and
tk,j2 ∈ R1 is a constant between Sk+1,j,I and Sk,j,I .

Proof: For (54)-(56), (59) and (60), the results is almost
the same as the [22, Lemma 5.2], and the detail of the proof
is omitted.
Because of the properties of the scalar product, δ1 can be

deduced as below:

δ1 =

J∑
j=1

(
f ′jR(S

k,j,R)
(
1uk,R

−1uk,I

)
·

(
Hk,j,R

Hk,j,I

)
+ f ′jI (S

k,j,I )
(
1uk,I

1uk,R

)
·

(
Hk,j,R

Hk,j,I

))
=

J∑
j=1

(
f ′jR(S

k,j,R)H k,j,R
1 + f ′jI (S

k,j,I )H k,j,I
1

)
1uk,R1

+ . . .

+

J∑
j=1

(
f ′jR(S

k,j,R)H k,j,R
n + f ′jI (S

k,j,I )H k,j,I
n

)
1uk,Rn

+

J∑
j=1

(
−f ′jR(S

k,j,R)H k,j,I
1 + f ′jI (S

k,j,I )H k,j,R
1

)
1uk,I1

+ · · · +

J∑
j=1

(
−f ′jR(S

k,j,R)H k,j,I
n + f ′jI (S

k,j,I )H k,j,R
n

)
×1uk,In . (61)
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It is easy to find that there is a close relationship
between the two factors of each item. For example,
f ′jR(S

k,j,R)H k,j,R
1 + f ′jI (S

k,j,I )H k,j,I
1 is a part of 1uk,R1 in first

item.
Next, for avoiding the situation that numerator equals 0

during the calculation, we will divide the value of δ1 into two
situations.

Case 1. If for all (uk,Rl −c)
1−α
6= 0, (uk,Il −c)

1−α
6= 0. l =

1, · · · , n. Substituting (30), (35) and (49), (50) into (61) and
according to (A2), we have

δ1 = −
1
η
(1uk,R1 )2(1− α)0(1− α)(uk,R1 − c)

α−1

− · · · −
1
η
(1uk,Rn )2(1− α)0(1− α)(uk,Rn − c)

α−1

−
1
η
(1uk,I1 )2(1− α)0(1− α)(uk,I1 − c)

α−1

− · · · −
1
η
(1uk,In )2(1− α)0(1− α)(uk,In − c)

α−1

≤ −
1
η
(1− α)0(1− α)(c2 − c)α−1

×

(
n∑
l=1

(1uk,Rl )2 +
n∑
l=1

(1uk,Il )2
)

= −
1
η
(1− α)0(1− α)(c2 − c)α−1

×

(
‖1uk,R‖2 + ‖1uk,I‖2

)
. (62)

Case 2. If there exists (ukl − c)1−α = 0, l = 1, . . . , n.
Without loss of generality, we assume that (uk,R1 −c)

1−α
= 0 .

By (30) and (49), it is easy to prove that cDαuk,R1
E(w) = 0

and 1uk,R1 = 0 are valid. Hence, (61) is induced as
follows

δ1 = 0−
1
η
(1uk,R2 )2(1− α)0(1− α)(uk,R2 − c)

α−1

− · · · −
1
η
(1uk,Rn )2(1− α)0(1− α)(uk,Rn − c)

α−1

−
1
η
(1uk,I1 )2(1− α)0(1− α)(uk,I1 − c)

α−1

− · · · −
1
η
(1uk,In )2(1− α)0(1− α)(uk,In − c)

α−1

≤ −
1
η
(1− α)0(1− α)(c2 − c)α−1

×

(
n∑
l=1

(1uk,Rl )2 +
n∑
l=1

(1uk,Il )2
)

= −
1
η
(1− α)0(1− α)(c2 − c)α−1

×

(
‖1uk,R‖2 + ‖1uk,I‖2

)
. (63)

Consequently, we can reach the the upper bound of δ1
following by the above Case 1 and Case 2

δ1 ≤ −
1
η
(1− α)0(1− α)(c2 − c)α−1

×

(
‖1uk,R‖2 + ‖1uk,I‖2

)
. (64)

δ2 =

J∑
j=1

(
f ′jR(S

k,j,R)
(

uk,R

−uk,I

)
·

(
ψk,j,R

ψk,j,I

)

+ f ′jI (S
k,j,I )

(
uk,I

uk,R

)
·

(
ψk,j,R

ψk,j,I

))
=

J∑
j=1

n∑
l=1

(
f ′jR(S

k,j,R)uk,Rl (H k+1,j,R
l − H k,j,R

l )

− f ′jR(S
k,j,R)uk,Il (H k+1,j,I

l − H k,j,I
l )

+ f ′jI (S
k,j,I )uk,Il (H k+1,j,R

l − H k,j,R
l )

+ f ′jI (S
k,j,I )uk,Rl (H k+1,j,I

l − H k,j,I
l )

)
=

J∑
j=1

n∑
l=1

(
f ′jR(S

k,j,R)uk,Rl g′(θk,j,Rl )

(
1vk,Rl
−1vk,Il

)
·

(
xj

yj

)

− f ′jR(S
k,j,R)uk,Il g′(θk,j,Il )

(
1vk,Il
1vk,Rl

)
·

(
xj

yj

)

+f ′jI (S
k,j,I )uk,Il g′(θk,j,Rl )

(
1vk,Rl
−1vk,Il

)
·

(
xj

yj

)

+ f ′jI (S
k,j,I )uk,Rl g′(θk,j,Il )

(
1vk,Il
1vk,Rl

)
·

(
xj

yj

))
+ γ

= ς + γ. (65)

The reason of the third equation in (65) establishes is the
virtue of the Taylor expansion. For convenience, we note the
first item as ς in the last equation, and

γ =
1
2

J∑
j=1

n∑
l=1

×

f ′jR(Sk,j,R)uk,Rl g′′(tk,j,Rl )

((
1vk,Rl
−1vk,Il

)
·

(
xj

yj

))2

−f ′jR(S
k,j,R)uk,Il g′′(tk,j,Il )

((
1vk,Il
1vk,Rl

)
·

(
xj

yj

))2

+f ′jI (S
k,j,I )uk,Il g′′(tk,j,Rl )

((
1vk,Rl
−1vk,Il

)
·

(
xj

yj

))2

+f ′jI (S
k,j,I )uk,Rl g′′(tk,j,Il )

((
1vk,Il
1vk,Rl

)
·

(
xj

yj

))2
.
(66)

Firstly, we will discuss the first part of the right hand side
of (65). Based on the properties of the scalar product and
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similar terms, ς can be inferred as follows

ς =

n∑
l=1

J∑
j=1

[
f ′jR(S

k,j,R)
(
uk,Rl g′(θk,j,Rl )x j1−u

k,I
l g′(θk,j,Il )

yj1
)
+ f ′jI (S

k,j,I )
(
uk,Il g′(θk,j,Rl )x j1+u

k,R
l g′(θk,j,Il )yj1

) ]
1vk,Rl1 + . . .

+

n∑
l=1

J∑
j=1

[
f ′jR(S

k,j,R)
(
uk,Rl g′(θk,j,Rl )x jp−u

k,I
l g′(θk,j,Il )

yjp
)
+ f ′jI (S

k,j,I )
(
uk,Il g′(θk,j,Rl )x jp+u

k,R
l g′(θk,j,Il )yjp

) ]
1vk,Rlp

+

n∑
l=1

J∑
j=1

[
f ′jR(S

k,j,R)
(
− uk,Rl g′(θk,j,Rl )yj1−u

k,I
l g′(θk,j,Il )

x j1
)
+ f ′jI (S

k,j,I )
(
−uk,Il g′(θk,j,Rl )yj1+u

k,R
l g′(θk,j,Il )x j1

) ]
1vk,Il1 + . . .

+

n∑
l=1

J∑
j=1

[
f ′jR(S

k,j,R)
(
− uk,Rl g′(θk,j,Rl )yjp−u

k,I
l g′(θk,j,Il )

x jp
)
+ f ′jI (S

k,j,I )
(
−uk,Il g′(θk,j,Rl )yjp+u

k,R
l g′(θk,j,Il )x jp

) ]
1vk,Ilp . (67)

It is easy to find that there is a close relationship between the
two factors of each item. For example,

f ′jR(S
k,j,R)

(
uk,Rl g′(θk,j,Rl )x j1 − u

k,I
l g′(θk,j,Il )yj1

)
+ f ′jI (S

k,j,I )
(
uk,Il g′(θk,j,Rl )x j1 + u

k,R
l g′(θk,j,Il )yj1

)
is a part of 1vk,Rl1 in first item.
Similarly as the reason of δ1, We will divide the value of ς

into two situations .
Case 3. If for all (vk,Rlm −c)

1−α
6= 0, (uk,Ilm −c)

1−α
6= 0, l =

1, . . . , n;m = 1, . . . , p. Substituting (41), (46) and (51), (52)
into (65) and according to (A2), we have

δ2 =

n∑
l=1

(
−
1
η
(1− α)0(1− α)(vk,Rl1 − c)

α−1(1vk,Rl1 )2

− · · · −
1
η
(1− α)0(1− α)(vk,Rlp − c)

α−1(1vk,Rlp )2

−
1
η
(1− α)0(1− α)(vk,Il1 − c)

α−1(1vk,Il1 )2

− · · · −
1
η
(1− α)0(1− α)(vk,Ilp − c)

α−1(1vk,Ilp )2
)
+γ

≤ −
1
η
(1− α)0(1− α)(c2 − c)α−1

×

(
n∑
l=1

p∑
m=1

(1vk,Rlm )2 +
n∑
l=1

p∑
m=1

(1vk,Ilm )2
)
+ γ

= −
1
η
(1− α)0(1− α)(c2 − c)α−1

n∑
l=1

×

(
‖1vk,Rl ‖

2
+ ‖1vk,Il ‖

2
)
+ γ. (68)

Case 4. If there exists (vklm − c)1−α = 0, l = 1, . . . , n.
Without loss of generality, we assume that (vk,Rl1 −c)

1−α
= 0.

By (41) and (51), it is easy to prove that cDαvk,Rl1
E(w) = 0 and

1vk,Rl1 = 0 are valid. Hence, (65) is induced as follows

δ2 =

n∑
l=1

(
0−

1
η
(1− α)0(1− α)(vk,Rl2 − c)

α−1(1vk,Rl2 )2

− · · · −
1
η
(1− α)0(1− α)(vk,Rlp − c)

α−1(1vk,Rlp )2

−
1
η
(1− α)0(1− α)(vk,Il1 − c)

α−1(1vk,Il1 )2

− · · · −
1
η
(1− α)0(1− α)(vk,Ilp − c)

α−1(1vk,Ilp )2
)
+γ

≤ −
1
η
(1− α)0(1− α)(c2 − c)α−1

×

(
n∑
l=1

p∑
m=1

(1vk,Rlm )2 +
n∑
l=1

p∑
m=1

(1vk,Ilm )2
)
+ γ

= −
1
η
(1− α)0(1− α)(c2 − c)α−1

×

n∑
l=1

(
‖1vk,Rl ‖

2
+ ‖1vk,Il ‖

2
)
+ γ. (69)

From Case 3 and Case 4, we obtain that

ς ≤
1
η
(1− α)0(1− α)(c2 − c)α−1

×

n∑
l=1

(||1vk,Rl ||
2
+ ||1vk,Il ||

2). (70)

Then we will discuss the second part of the right hand side
of (65). On the basis of Cauchy-Schwarz inequality, (VI) can
be deduced that

γ ≤
1
2

J∑
j=1

n∑
l=1

(
4c3c2c1

(
‖1vk,Rl ‖

2
‖xj‖2+‖1vk,Il ‖

2
‖yj‖2

)
+ 4c3c2c1

(
‖1vk,Il ‖

2
‖xj‖2 + ‖1vk,Rl ‖

2
‖yj‖2

))
≤ 2c1c2c3J max

1≤j≤J
{‖xj‖2 + ‖yj‖2}

×

n∑
l=1

(
‖1vk,Rl ‖

2
+ ‖1vk,Il ‖

2
)

= c5
n∑
l=1

(
‖1vk,Rl ‖

2
+ ‖1vk,Il ‖

2
)
, (71)

where c5 = 2c1c2c3J max
1≤j≤J
{‖xj‖2 + ‖yj‖2}.

Substituting (70) and (71) into (65), we have

δ2 ≤

(
c5 −

1
η
(1− α)0(1− α)(c2 − c)α−1

)
×

n∑
l=1

(
||1vk,Rl ||

2
+ ||1vk,Il ||

2
)
. (72)

Therefore, we get the the upper bound of δ2. This completes
the proof of Lemma 1.
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Proof to (i) of Theorem 1: By the error function (14),
we have

E(wk+1) =
J∑
j=1

[
fjR(Sk+1,j,R)+ fjI (Sk+1,j,I )

]
,

E(wk ) =
J∑
j=1

[
fjR(Sk,j,R)+ fjI (Sk,j,I )

]
. (73)

By using the Taylor mean value theorem with Lagrange
remainder, we have the following estimation

E(wk+1)− E(wk )

=

J∑
j=1

[
fjR(Sk+1,j,R)− fjR(Sk,j,R)

+ fjI (Sk+1,j,I )− fjI (Sk,j,I )
]

=

J∑
j=1

[
f ′jR(S

k,j,R)(Sk+1,j,R − Sk,j,R)

+ f ′jI (S
k,j,I )(Sk+1,j,I − Sk,j,I )

+
1
2
f ′′jR(t

k,j
1 )(Sk+1,j,R − Sk,j,R)2

+
1
2
f ′′jI (t

k,j
2 )(Sk+1,j,I − Sk,j,I )2

]
=

J∑
j=1

(
f ′jR(S

k,j,R)
(
1uk,R

−1uk,I

)
·

(
Hk,j,R

Hk,j,I

)

+f ′jI (S
k,j,I )

(
1uk,I

1uk,R

)
·

(
Hk,j,R

Hk,j,I

)

+ f ′jR(S
k,j,R)

(
uk,R

−uk,I

)
·

(
ψk,j,R

ψk,j,I

)

+f ′jI (S
k,j,I )

(
uk,I

uk,R

)
·

(
ψk,j,R

ψk,j,I

)

+f ′jR(S
k,j,R)

(
1uk,R

−1uk,I

)
·

(
ψk,j,R

ψk,j,I

)

+ f ′jI (S
k,j,I )

(
1uk,I

1uk,R

)
·

(
ψk,j,R

ψk,j,I

)

+
1
2
f ′′jR(t

k,j
1 )(Sk+1,j,R − Sk,j,R)2

+
1
2
f ′′jI (t

k,j
2 )(Sk+1,j,I − Sk,j,I )2

)
= δ1 + δ2 + δ3 + δ4, (74)

The third equation in (74) is evaluated according to (49),
(50) and (53).

In terms of Lemma 1, we can conclude that

E(wk+1)− E(wk )

≤ −
1
η
(1− α)0(1− α)(c2 − c)α−1

(
‖1uk,R‖2+‖1uk,I‖2

)
+

(
c5 −

1
η
(1− α)0(1− α)(c2 − c)α−1

) n∑
l=1

(
‖1vk,Rl ‖

2

+‖1vk,Il ‖
2
)

+ c6

( n∑
l=1

(||1vk,Rl ||
2
+ ||1vk,Il ||

2)+ ||1uk,R||2

+ ||1uk,I ||2
)

+ c7

( n∑
l=1

(||1vk,Rl ||
2
+ ||1vk,Il ||

2)+ ||1uk,R||2

+ ||1uk,I ||2
)

≤ (c8 −
1
η
c9)
( n∑

l=1

(||1vk,Rl ||
2
+ ||1vk,Il ||

2)+ ||1uk,R||2

+ ||1uk,I ||2
)
, (75)

where c8 = c5 + c6 + c7, c9 = (1− α)0(1− α)(c2 − c)α−1.
If the learning rate η satisfies that 0 < η <

c9
c8
, we get

E(wk+1) ≤ E(wk ), k = 0, 1, · · · . (76)

Proof to (ii) of Theorem 1: From the above analysis of (i),
we learn E(wk+1) ≤ E(wk ) , along with E(wk ) ≥ 0. So, we
derive that E(wk ) is convergent. Namely, there exists E∗ ≥ 0
such that

lim
k→∞

E(wk ) = E∗. (77)

Proof to (iii) of Theorem 1:
n∑
l=1

(||1vk,Rl ||
2
+ ||1vk,Il ||

2)

+ ||1uk,R||2 + ||1uk,I ||2

=

n∑
l=1

p∑
m=1

((1vk,Rlm )2 + (1vk,Ilm )2)

+

n∑
l=1

(
(1uk,Rl )2 + (1uk,Il )2

)
= η2

n∑
l=1

( p∑
m=1

(
(cDαvRlm

E(wk ))2 + (cDαvIlm
E(wk ))2

)
+ (cDαuRl

E(wk ))2 + (cDαuIl
E(wk ))2

)
. (78)
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So, (76) can be writen

E(wk+1) ≤ E(wk )− α
( n∑

l=1

p∑
m=1

(
(cDαvRlm

E(wk ))2

+ (cDαvIlm
E(wk ))2

)
+

n∑
l=1

(cDαuRl
E(wk ))2

+ (cDαuIl
E(wk ))2

)
. . .

≤ E(w0)− α
k∑

q=0

( n∑
l=1

p∑
m=1

(
(cDαvRlm

E(wq))2

+ (cDαvIlm
E(wq))2

)
+

n∑
l=1

(cDαuRl
E(wq))2

+ (cDαuIl
E(wq))2

)
, (79)

where α = c8η2 − c9η. Since E(wk+1) ≥ 0. There holds
that

α

k∑
q=0

(
n∑
l=1

p∑
m=1

(
(cDαvRlm

E(wq))2 + (cDαvIlm
E(wq))2

)

+

n∑
l=1

(cDαuRl
E(wq))2 + (cDαuIl

E(wq))2
)

≤ E(w0). (80)

Let k →∞,then

α

∞∑
q=0

(
n∑
l=1

p∑
m=1

(
(cDαvRlm

E(wq))2 + (cDαvIlm
E(wq))2

)

+

n∑
l=1

(cDαuRl
E(wq))2 + (cDαuIl

E(wq))2
)

≤ E(w0) <∞. (81)

So there holds that

lim
k→∞

(
n∑
l=1

p∑
m=1

(
(cDαvRlm

E(wk ))2 + (cDαvIlm
E(wk ))2

)
+

n∑
i=1

(cDαuRl
E(wk ))2 + (cDαuIl

E(wk ))2
)
= 0, (82)

which implies that

lim
k→∞

Dα
vRlm
E(wk ) = 0, lim

k→∞
Dα
vIlm
E(wk ) = 0, (83)

lim
k→∞

Dα
uRl
E(wk ) = 0, lim

k→∞
Dα
uIl
E(wk ) = 0, (84)

where k ∈ N; l = 1, 2, · · · , n; m = 1, 2, · · · , p. This then
completes the proof of (iii) of 1.
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