IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 14, 2017, accepted March 2, 2017, date of publication March 8, 2017, date of current version April 24, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2679338

CARED-SOA: A Context-Aware Event-Driven
Service-Oriented Architecture

ALFONSO GARCIA DE PRADO', GUADALUPE ORTIZ2, AND JUAN BOUBETA-PUIG?

'UCASE Software Engineering Research Group, Department of Computer Technology and Architecture, School of Engineering, University of Cadiz, Avda. de la
Universidad de Céadiz 10, 11519 Puerto Real, Cadiz, Spain

2UCASE Software Engineering Research Group, Department of Computer Science and Engineering, School of Engineering, University of Cddiz, Avda. de la
Universidad de Cadiz 10, 11519 Puerto Real, Cadiz, Spain

Corresponding author: A. Garcia de Prado (alfonso.garciadeprado@uca.es)

This work was supported in part by the Spanish Ministry of Science and Innovation and the European Union FEDER Funds under
Project TIN2015-65845-C3-3-R and in part by the University of Cadiz under Project UCA PR2016-032.

ABSTRACT Currently, context awareness has become essential in software applications and services owing
to the high demand by users, especially for mobile computing applications. This need to provide context
awareness requires a software infrastructure not only to receive context information but also to make use of
it so that it provides advantageous services that may be customized according to user needs. In this paper,
we provide an event-driven service-oriented architecture supported by an enterprise service bus, which will
facilitate the incorporation of Internet of Things data and provide real-time context-aware services. The
result, which has been validated through a real-world case study, is a scalable context-aware architecture
which can be applied in a wide spectrum of domains.

INDEX TERMS Service-oriented architecture, context awareness, complex event processing, Internet of

Things.

I. INTRODUCTION

Context awareness has become a fundamental requirement
for software engineering, since nowadays it takes part of
citizens’ day-to-day life. People leave their homes expecting
the lights, which they left on, to be turned off automatically;
also that their mobile device will warn them if there is traffic
congestion on their way to work; that windscreen wipers
automatically turn on if it is raining; that their office heater
sets itself to their favorite temperature when they go in; that
the mobile device will tell them if there is a friend close
by, and a long list of additional expected context awareness
issues that are taken for granted nowadays. However, there
is a limited amount of context-aware services that users can
benefit from; there are still many offered services which are
not context-aware. Citizens expect to be able to make use
of such services easily and intuitively; besides, they expect
the service to be adapted to his particular context and that it
will warn him about any relevant information concerning his
particular circumstances. Furthermore, they expect service
context awareness to be carried out here and now, when
things happen, without delays which might be detrimental to
him. This need for having the context under control, being
aware of what happens at every instant, requires a software
infrastructure, not only for receiving the context information

but also to make use of it to provide advantageous services
which can be customized according to user needs.

We have to bear in mind that currently the strategy for
software development oriented to citizens, as well as to other
agents, is mainly based on services [1], [2], since Service
Oriented Architectures (SOAs) are platform-independent and
loosely coupled, essential requirements when trying to reach
a high number of users. Besides, Representational State
Transfer (REST) services [3] have become very successful
since they are light services which can be easily consumed
by any third-party client [4].

On the other hand, the impressive evolution of the Inter-
net of Things (IoT) over the last years has strongly favored
the provision of information by multiple sensors and other
devices connected to the Internet. IoT platforms capture these
data and transform them to a light format that other software
applications can easily consume. The amount of generated
data is huge and the term Big Data is coined: Big Data refers
to a large amount of heterogeneous data which flow along
the information systems and are stored and analyzed with the
aim of improving decision making in the domain in question.
However, the amount of data generated in the scope of the
IoT is so huge, and it is generated so fast, that a constant
streaming processing is required so as to obtain real-time data

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

4646 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 5, 2017

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

IEEE Access

for our business decision-making. New technologies, such as
Complex Event Processing (CEP), rise in order to provide
this constant data processing in streaming; with CEP, we
can analyze and correlate huge amounts of data which flow
through information systems in real time.

Therefore, we are facing a scenario in which we have a
lot of information from diverse sources that could be offered
to citizens and particularized to their context, we have the
means to analyze the data, by using CEP, and we have the
chance to reach the citizens easily, by using SOAs; but we
do not have a wide spectrum architecture which facilitates
the integration of all these elements so that they provide
the required context-aware services in the scope of the IoT.
Indeed, the European Union identifies, among the Horizon
2020 challenges, research and development for context-aware
IoT computation. According to Xu et al. [5] the challenge
should be faced by designing a SOA (1) which facilitates the
incorporation of data coming from devices connected to the
IoT, (2) which makes data transport among system agents
easier and (3) which can process these data and (4) offers
services to the user.

The main aim of this paper is to provide a software archi-
tecture to face this challenge: CARED-SOA. First of all, as
it could not be otherwise in this scope, CARED-SOA is an
Event-Driven SOA (ED-SOA) supported by an Enterprise
Service Bus (ESB) which (1) will facilitate the incorpo-
ration of data coming from devices connected to the IoT
through several connectors and (2) will facilitate communica-
tions among all involved agents (IoT devices, data analyzers,
context broker, users, et cetera). Besides, the architecture
(3) will also provide real-time stream data processing through
the integration of CEP technology and (4) will offer REST
services to the users, which will be context-aware.

Besides, the paper also provides the implementation of a
real-world case study based on the proposal, which permits
the evaluation of the architecture.

The rest of the paper is organized as follows: Section II
presents the background required for understanding the tech-
nologies and paradigms used in the paper. Then, Section III
explains the design of the proposed context-aware ED-SOA;
afterwards, how the architecture is implemented by specific
technologies is explained in Section IV. The case study
description follows in Section V and its evaluation can be
found in Section VI. Finally, related work is examined in
Section VII and conclusions are summarized in section VIIIL.

Il. BACKGROUND

In this section, we introduce the most relevant technolo-
gies and knowledge in order to understand the paper: SOA,
ED-SOA, context awareness and IoT.

A. SERVICE ORIENTED ARCHITECTURE

SOA consists of a paradigm for the design and implemen-
tation of loosely coupled distributed systems which make
use of services for their implementation. These architectures
easily integrate third-party systems in a flexible and loosely

VOLUME 5, 2017

coupled way, so that the focus can remain on the business
process rather than on the technologies. This way, system
maintenance and evolution are facilitated when the system
requires changes and costs are reduced [1].

Therefore, the service orientation concept is based on the
idea of offering a well-defined interface which provides com-
munications based on a standard protocol, where currently
the provider and the consumer are completely decoupled.
Decoupling is obtained thanks to technology independence.

One of the most common ways to implement SOAs are web
services. Web services are self-descriptive software modules
which can be accessed through a net and which develop
a task facilitating machine to machine interoperability [1].
REST web services emerged as an alternative to more tra-
ditional SOAP web services. REST is an architectural style
for distributed hypermedia systems where services provide
resources identified by URLs [3]. Communications between
REST services and their clients take place using HTTP main
operations, mainly GET, POST, PUT and DELETE.

With the growth of service components and processes in
service oriented applications, a new service infrastructure
is required for maintaining applications in a flexible way.
This infrastructure must support well-known web service
standards and provide support for a message middleware [1].
These requirements are fulfilled by an ESB. An ESB pro-
vides services to complex architectures through a messaging
system [1], supplying interoperability among diverse applica-
tions and components through standard interfaces; that allows
applications to be offered as services in the ESB.

B. EVENT-DRIVEN SERVICE ORIENTED ARCHITECTURE
ED-SOA, or SOA 2.0., evolves from traditional SOA.
In SOA 2.0., communication between users, applications and
services is carried out by events, rather than using remote
procedure calls [6]. To facilitate this paradigm, a software
abstraction layer is required to integrate diverse heteroge-
neous data sources and distributed invocations [7]. These
functionalities are offered by an ESB, which permits inter-
operability among several communication protocols and het-
erogeneous data sources and targets.

Despite all the advantages provided by SOA 2.0, this type
of architecture might not be ideal to analyze and correlate big
amounts of data in terms of events. To meet this requirement,
it is necessary to integrate CEP [6], which is a technology
that allows the capturing, analyzing and correlating of a large
amount of heterogeneous data with the aim of detecting rele-
vant situations in a particular domain [8]. Event patterns spec-
ify the conditions to be met in order to detect such situations.
These situations are named complex events and managed by a
CEP engine, the software capable of analyzing the data in real
time. It is important to highlight that when talking about real
time throughout this paper, we refer to quasi real time. This
term differs from the strict traditional definition of real-time
computation, where real-time responses are expected to be
received in the order of milliseconds or even microseconds.
Generally, the term quasi real time refers to a short-time

4647

IEEE Access

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

response from a system according to its needs, it might be in
the order of milliseconds or maybe in seconds. For instance,
as we will later see in the case study, if we need to warn
a citizen about current air quality, a millisecond or even a
second difference in the response time is not relevant (an hour
delay would). Therefore, such systems respond rapidly to the
occurring events but do not require strict under millisecond
response.

In these types of architecture where large amounts of
events are received and have to be processed, a message
broker can be of great use. Message brokers implement an
asynchronous mechanism which allows source and target
messages to be completely decoupled, as well as permitting
storing the messages in the broker until they can be pro-
cessed by the target element. These brokers may use standard
message queues or be combined with a publish/subscribe
mechanism.

C. CONTEXT AWARENESS

Dey et al.’s context definition in [9] is specially well-known—
page 3, section 2.2: “Context is any information that can
be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to
the interaction between a user and an application, including
the user and applications themselves” . One of the particular
features of context information is that it is specific to each
system, so that one specific type of information can be con-
sidered as part of the context in a given system but not in a
different one.

The term context awareness supports the fact that the con-
text information provided by the client, or taken from the
environment, is properly used by the system so as to improve
its quality; that is, using information such as location, social
attributes and other information to foresee its necessities so
that we can offer more personalized systems. Therefore, a
system is context-aware if it uses the context to provide rele-
vant information or services to the user, adapting the system
behavior to the particular needs of a specific user [10].

Context has been faced from several perspectives: classi-
fication, frameworks, middlewares, et cetera; but the main
drawback is the difficulty of providing a wide spectrum
proposal due to the particularities of context in every dif-
ferent scope. This also implies great difficulty to establish
a standard definition or classification for contexts and their
characteristics [11]; therefore, this leads to several classifi-
cations. For instance in COIVA [12], context is subdivided
in users, devices, environment and services; in MoDAS [13],
however, seven different types are defined. These are only two
of multiple examples which can be given.

D. INTERNET OF THINGS

IoT is defined as a network formed by interconnected phys-
ical objects uniquely identified [14] and implies integration,
transfer and analysis of the data coming from such objects.
Currently, several algorithms, tools, technologies and best
practices enable IoT applications and architectures for a

4648

variety of application domains [15]. IoT architectures must
provide a set of essential elements such as sensors, offered
services, communication networks and event context process-
ing. One key requirement is interoperability, so that standard
interfaces must be provided to facilitate information submis-
sion from the devices. Reliability and scalability are also
essential [15].

There are multiple IoT platforms where we can obtain
real-time data. It is important to be aware of the importance
that IoT is gaining: in the near future, the economic impact
expected from IoT applications is 11% of the worldwide
economy [15].

IIl. DESIGN OF CONTEXT-AWARE EVENT-DRIVEN
SERVICE ORIENTED ARCHITECTURE

When designing an architecture for the IoT, we have to
bear in mind that any stream data processing architec-
ture has to include a set of key elements to cover all the
stages of data processing, from their capture to final user
consumption [15]:

o A system to collect data from diverse sources and to
add them into a unique channel. In the scope of IoT, we
currently have distributed stream data which comes from
diverse sources in heterogeneous formats.

« A messaging and storing system that behaves as a mes-
sage broker and permits the combination of messages
coming from different sources.

« A system for non-stop data processing to detect relevant
information for the domain in question.

« A presentation system, through which the final user can
benefit from the processed data.

« A storing system crosscutting all the remaining elements
so that it maintains historic data and is able to query
relevant domain data.

Taking into account such requirements, in this section
we explain the components which will compose CARED-
SOA—the context-aware proposed architecture—, we
describe how these components are integrated altogether and
what the communication among them is like, and then we pay
special attention to the proposed context broker.

A. CARED-SOA COMPONENTS

To comply with the established requirements, we designed
and implemented the architecture in Fig. 1 which is composed
of the following elements:

1) ENTERPRISE SERVICE BUS

An ESB is in charge of routing and facilitating communica-
tions in a SOA. In the proposed architecture, the bus channels
the following communications: simple event detection, event
transformation and routing to the CEP engine and database,
complex event reception of the events notified by the CEP
engine, complex event routing to the context broker, user
database query and notification submission based on their
subscriptions and contexts.

VOLUME 5, 2017

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

IEEE Access

CARED-SOA: Context-Aware Event-Driven

Service Oriented Architecture

Enterprise Service Bus

Domain

LData Receiving Module

Push Data

Pull Data

' IoT
Platforms

Data Transformation

Context Broker

Context Knowledge
Manager

Context-Based

Adviser
1
> Context 1N Queue Message
Reasoner I Broker Mobile

L S— App

Domain
DB

[Contex
DB
A

FIGURE 1. CARED-SOA architecture.

2) DATA TRANSFORMATION

Several data transformation procedures are followed in the
bus; these allow us to obtain data from heterogeneous sources
and to adapt them to a common format to be sent to the
databases and the CEP engine, as appropriate.

3) RECEIVING MODULE

The receiving module is composed of two independent ele-
ments to be able to obtain events data both following the push
and pull models. The ideal system is a push model, where
sensor data are sent to the system. In this case, we have a
message queue managed by the ESB which receives and man-
ages the messages to ensure correct delivery into the system.
However, we may wish to integrate sensor information which
is published in another platforms into the system. In this case
we have to follow a pull model and retrieve the data from
the platforms. In particular, our system retrieves information
from ThingSpeak.

4) DOMAIN DB

This database stores all domain-specific information, partic-
ularly all the data reaching the system and all the required
information related to the sources from where data are
obtained.

5) DOMAIN REST WEB SERVICE

This service provides the functionality for querying the infor-
mation about the domain events. The REST service is pro-
vided in order to facilitate the use of the data stored in the
domain database in a transparent manner for the final user.

6) CEP ENGINE

It is a specific software capable of analyzing the data coming
in form of events in real time. The patterns to detect relevant
alerts in the domain in question are deployed in this engine.

VOLUME 5, 2017

7) CONTEXT BROKER

The context broker will be in charge of managing the prospec-
tive clients which may receive notifications, as well as sub-
mitting such notifications in real time. The context broker
is composed of three modules which are explained in
Section III.C. These modules interact with other elements
which are distributed along the architecture: the context and
subscriptions database, the context and notification service
and the message broker which manages the notification of
relevant complex events.

8) CONTEXT DB
This database stores user personal data and their context as
well as data about the alerts available in the system.

9) CONTEXT AND NOTIFICATION REST WEB SERVICE

This service permits checking available notifications and
storing user context data as well as the notifications the user
would like to subscribe to.

10) COMPLEX EVENT NOTIFICATION MESSAGE BROKER
Complex events which are associated to a notification (that
is, events which are really relevant in the domain in question)
are sent to one or more message queues whose messages
will then be managed for the corresponding notification to
be sent. Even though the queue message broker is outside
the bus, it is part of our proposed architecture and it is
where we are going to publish all the relevant complex events
to which our system subscribes in order to send notifica-
tions. The purpose of sending these events to the context
broker is to improve system performance, so that the noti-
fication module can be completely decoupled should it be
necessary.

Fig. 1 also shows the external implemented elements inter-
acting with the architecture:

4649

IEEE Access

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

11) DOMAIN DATA
Domain data is expected to be obtained, according to the push
model, from a message topic in a message broker.

12) loT

From the ESB we pursue regular queries to the IoT data
provider to obtain sensor data of the domain in question.
In particular, we query the API offered by ThingSpeak to
obtain channels data.

13) MOBILE APP

A mobile application can be used to send context information
to the system and to receive domain notifications.

B. COMPONENTS INTEGRATION AND COMMUNICATION
As previously explained, the ESB is in charge of routing all
communications.

1. First of all, the bus communicates with the CEP engine
through the component developed by
Boubeta-Puig et al. in [16].

a. On the one hand, patterns are deployed in the
CEP engine through the use of an initial load file.
Additional patterns can be added to the engine
with additional load files at any time. In both
cases, the bus manages the load file and deploys
the patterns in the CEP engine.

b. Afterwards, when data reach the system they are
adapted to the suitable event format to be sent to
the CEP engine and the bus routes them to the
latter.

c. Finally, when the CEP engine detects that a
pattern has been matched, it returns such com-
plex event to the ESB, where it is managed as
appropriate.

2. REST services have to be deployed in the ESB and
are offered to prospective external clients through an
HTTP listener. They can be invoked from a mobile
application or from any other implemented client (own
or from a third party). REST services communicate
with the databases, which store and update contextual,
notification and subscription data as well as events
received and detected in the system.

3. Databases receive queries from the bus flows as well
as from the REST services. We have used relational
databases. Even though No-SQL databases are well
considered in the scope of the IoT, we prioritized speed-
ing up the database reading through the use of relational
ones, so as to obtain event information and statistics
with low latency.

4. The bus sends data requests to the IoT platform through
HTTP. The domain database keeps information about
the ThingSpeak channels to be queried and about the
data from these channels of interest for the domain.
With this data a periodic call is sent to the named
channels.

4650

I’ i ’ —\/ = PERGCTS
\ ’)"\ [S 4\)")—~\
d AS = Y ~{aw
=1 Context Knowledge ,\ J,‘ - s(-7 |
] Manager 1 I,', g L P 4 =~y
\ / e N SO
Cént:‘ ~ A I/ < ¥ Ty- ~{
i > E 1
~ > @ U :.l Federated Context-Based I‘i‘
Ve R 4 k Adviser N
b /
™
X 17 {
~— f 41
\ Matter 7
7’ ‘7“\ Message ’ /
Ia“ -\..._\ Queue Fo4
f Context Reasoner L | ’
Subscriptions S \ -

¢

I P s
3 Q .<' Notifications

FIGURE 2. CARED-SOA context broker.

5. In order to receive additional domain events, the bus
receives data from the topic in the message broker to
which it is subscribed.

6. The bus sends the detected relevant complex events
to the system message broker, which manages one or
more message queues according to one or more types
of complex events which implies notification.

7. The bus is subscribed to the complex events message
queue to proceed with the notifications.

C. CARED-SOA CONTEXT BROKER
As previously explained, the context broker is in charge of
managing everything related to the context: the users which
may receive notifications and their context, as well as the
notifications to be sent in real time.

The context broker is composed of three main modules:
the context knowledge manager, the context reasoner and a
federation of context-based advisers, as represented in Fig. 2.

1) CONTEXT KNOWLEDGE MANAGER

The context knowledge manager keeps the subscribed users’
context up to date. Such manager is composed of the REST
service which receives the user context data and stores them
in the context database.

Context data may be static (users do not require a constant
update in the system) or dynamic, which may require con-
stant update in the system [15]. For example, static context
for a user could be his age, a disease, a hobby, et cetera;
dynamic contexts could be the user’s location, the activity he
is carrying out, weather conditions, et cetera. It is important
to remember that the relevant context is particular for the
domain in question. A user, when registering to the system,
provides his static context data (which may be modified at
any time); data from dynamic contexts are sent to the sys-
tem whenever they change. It is worth mentioning that the
extraction and submission of the context should be done by
the software client (invoking the context REST service) and
it is out of the scope of this paper.

VOLUME 5, 2017

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

IEEE Access

2) CONTEXT REASONER

The context reasoner will match the notifications which a user
is subscribed to with his context. It makes use of the context
REST service, which allows him to check and subscribe to
notifications of the domain in question and to access the
database for storing the notifications to which every user
subscribes.

When a user requests which type of notifications he may
subscribe to, the context reasoner suggests relevant ones
depending on his particular context, which would have been
previously checked in the database.

On the other hand, the context reasoner, when receiving
a relevant complex event, will resubmit it to the notification
message queue according to the type of complex event and its
subsequent notification.

3) CONTEXT-BASED ADVISER

Then, the context-based adviser receives such complex events
from the notification message queue, accesses the database
which keeps the notifications corresponding to such complex
events and sends them to the users according to the type of
notification and to their context and preferences.

In order to facilitate system scalability and agility for noti-
fications, the architecture provides the opportunity of divid-
ing the notification system depending on the type of complex
event detected. That is, if a system can detect relevant A,
B and C complex events, we could have a context-based
adviser federation, with three advisers (for types A, B and C).
Each adviser would have a distributed database with the
users subscribed to the type of event in question, A, B or C,
respectively.

Depending on domain application and system magni-
tude, the developer implementing the architecture must
take a decision with regards to granularity, choosing the
most appropriate adviser federation for the system in ques-
tion. When having an adviser federation, only the informa-
tion needed for user notifications is replicated in the local
databases.

IV. CARED-SOA IMPLEMENTATION
In this section, we describe the implementation of our
proposed architecture.

A. TECHNOLOGIES AND FLOWS

We have used the following technologies for our implemen-
tation, which are represented in a schematic way in Fig. 3 and
explained below:

o Mule [17]. It is an ESB with a wide functionality and
good support from the community.

o Esper and Esper Event Processing Language (EPL).
Esper is a recognized CEP engine, which provides Esper
EPL for event pattern implementation.

« MySQL [18]. Relational databases have been imple-
mented using MySQL, since it is a popular open source
database manager.

VOLUME 5, 2017

REST WS
(Jersey)

CEP Engine
(Esper)

loT Platform
(ThingSpeak)

JMS Queue
(ActiveMQ)

L [T T T

Mobile Notification
ESB }—I (Firebase)
(Mule) -
eMail
. (SMTP)

FIGURE 3. CARED-SOA technologies schematic view.

o ActiveMQ [19]. This Apache message broker facilitates
queue and topic message dealing with diverse messaging
models.

o ThingSpeak [20]. It is a free use highly scalable and
well documented platform, which provides a RESTful
API for manipulating data in JSON, CSV and XML
formats.

o Jersey [21]. Jersey in an Oracle library that implements
JAX-RS API and provides utilities for JAX-RS REST
web service implementation.

o Simple Mail Transfer Protocol (SMTP) [22]. SMTP is
the de facto standard message protocol for electronic
mail.

« Firebase. Firebase is a platform recently presented by
Google which improves Android applications signifi-
cantly [23]. Among other utilities, it facilitates noti-
fications to mobile devices through a manager in the
cloud.

Mule ESB uses flows as its main control structure in order
to manage the messages and communications among the dif-
ferent elements connected to the bus. Currently, Mule appli-
cation starts processing a message received by an inbound
endpoint and a set of processing and routing actions are
implemented in the flow [24]. In order to provide the SOA,
a Mule application with the flows explained below has been
implemented. Flows have been enumerated for clarity pur-
poses, but they all run in parallel, even though some of them
are loosely coupled: Flow 3 and 4 outputs are sent to Flow 5;
and Flow 6 receives the complex event detected by the CEP
engine, that receives simple events from Flow 5. The flows
are continuously running independently.

1) FLOW 1. PATTERN DEPLOYMENT IN THE CEP ENGINE

As we can see in Fig. 4, in this flow the EPL patterns are read
from a file where they are separated by commas; then they are
deployed in the CEP engine through the use of the connector
implemented by Boubeta-Puig et al. [16].

4651

IEEE Access

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

EventPatternAdditionToEsper_Flow

@) —{) —{)

New EPL File to String Divide File in
EventPattern Patterns

For Each

1
O
1
Add EventPattern
to Esper Engine

» Error handling

FIGURE 4. CARED-SOA Flow 1: Pattern deployment in the CEP engine.

RestServices_Flow

(e)-()

HTTP REST
» Error handling

FIGURE 5. CARED-SOA Flow 2: Access to REST services.

AcquiringloTData_Flow

O

ThingSpeak
Providers

Poll For Each

_,@?,)

HTTP ThingSpeak

o

JSON To Java Class Main_SbFlw

» Error handling

FIGURE 6. CARED-SOA Flow 3: Querying data through the pull model.

2) FLOW 2. ACCESS TO REST SERVICES
Through the invocation of an HTTP listener, the bus can
invoke the REST services, as shown in Fig. 5.

3) FLOW 3. QUERYING DATA FROM THE INTERNET

OF THINGS (PULL MODEL)

As shown in Fig. 6, first of all, this flow queries the database
where we have the IoT channels of interest. Then, it makes
a request to the IoT platform for each selected channel,
it transforms the obtained JSON data into a class instance
which will be later used for database storage and CEP
submission and it submits such class instance to the main
flow.

4) FLOW 4. MESSAGE BROKER DATA

RECEPTION (PUSH MODEL)

As shown in Fig. 7, this flow receives the message broker
data through a message topic. As done in the previous flow, it
transforms the obtained JSON data into a class instance which
will be later used for database storage and CEP submission
and it submits such class instance to the main flow.

5) FLOW 5. MAIN FLOW

As shown in Fig. 8, this flow receives the class instances from
flow 3 and 4 and transforms the data to store them in the
database and submit them to the CEP engine, which is done
in parallel.

4652

AcquiringMessageBrokerData_Flow

&= —®

Queue JSON To Java Class Main_SbFlw

» Error handling

FIGURE 7. CARED-SOA Flow 4: Obtaining data through the push model.

Main_SbFlw

e

—

Payload For Send Event To
ComplexEvent Esper

_,@>

Update DomainDB

@2

Scatter-Gather

var_MainFlow

Payload For
DBUpdate

FIGURE 8. CARED-SOA Flow 5: Storing and processing events.

ComplexE R ionAnd Publication_Flow

& ¥ (@

Message Enricher

® —E

Complex Event Complex Event Adding Send To Matter
Consumer Filter CurrentTime e
» Error handling

FIGURE 9. CARED-SOA Flow 6: Event filtering and notification.

6) FLOW 6. EVENT FILTERING AND ENRICHMENT

Fig. 9 shows that the complex events received from the CEP
engine are filtered according to their relevance. Once those
which do not require notification have been discarded, the
remaining ones are enriched with the current timestamp (to be
aware of when the event was detected) and sent to the message
queue of the corresponding notification flow.

7) FLOW 7. NOTIFICATION
We receive the events which imply notification through the
message broker. These are filtered to ensure that only relevant
events are processed for notification, as shown in Fig. 10.
Then, data are formatted and the database is queried in
order to obtain the users’ information for their notification.
Afterwards, in parallel, (1) we store complex events in the
database and (2) we notify the user via email or mobile
notification according to his preferences. We also store the
notification timestamp in the database to be able to follow
user preferences with regards to notification regularity. Please
be reminded that, according to the federation of context-
based advisers, we may have one or more notification flows
depending of the requirements of the domain in question. All
flows follow the same design that has just been explained.

VOLUME 5, 2017

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

IEEE Access

Notification_Flow

Data Formatting

-
o) —Ae)
S

)
N/

Insert Historical

For Each

@—D—O—@—2

Data Formatting Select Users-Alerts

Scatter-Gather

Matter Queue Messages Filter

» Error handling

FIGURE 10. CARED-SOA Flow 7: Notification.

B. CARED-SOA FUNCTIONALITY
In a summarized way, this is the behavior of our proposed
architecture:

« Initially, event patterns are deployed in the system
through flow number 1 (Fig. 4). Additional patterns can
be deployed at any time.

o At any time, users can invoke the context REST ser-
vices in flow 2 in order to register in the system, to
provide context data, update their subscriptions, et cetera
(Fig. 5). The context broker is in charge of (1) reasoning
about the user context and recommending which notifi-
cations to subscribe for and (2) updating the user context
and his subscriptions as they change.

o Equally, users can access the system to check domain
event information invoking the domain REST service.

« Simple events reach the system along its lifecycle
through the implementation of both the pull and push
model:

o Through the pull model (Fig. 6): Flow 3 checks
the channels from which the information has to
be obtained, requests are sent to the channels in
question and data are obtained.

o Through the pull model (Fig. 7): data messages
enter the system through the subscription to a mes-
sage topic in the message broker, as shown in
Flow 4.

o Then, data obtained from ThingSpeak and the message
broker are filtered (according to the events of interest)
in Flow 5. Besides, filtered data are transformed into the
suitable data for their storage in the database and their
submission to the CEP engine (Fig. 8).

o Afterwards, data are stored in the database and sent
to the CEP engine. The latter processes all received
events; when a pattern is matched it is sent to Flow 6
(Fig. 9). In this flow, relevant events are enriched with
the timestamp (included for evaluation purposes) and
sent to the relevant notification queue.

VOLUME 5, 2017

— @&

Data
— Q —)G\P
w =)

Update Last-
Access

Data Formatting

o - S~
—(¥)—{®) —{E) —{(=)
</ N A Neger?
UserId RCBtier-Cother eMail var email dest Mail Formatting sMTP
N » ~
— (Y)-%./E\ 4></® b
J _/ Ner’

FireBase Body Formatting HTTP Firebase

« When a new message reaches the notification flow,
Flow 7 in Fig. 10, not relevant events are filtered and data
is formatted to query the database in order to obtain the
users to be notified; then, notifications are sent, and both
the event and sent notification are stored in the database.

V. CASE STUDY

IoT applications for health care are taking great relevance
nowadays [25]; in this regard, air quality is one of the key
topics in the focus of IoT applications. Indeed, air quality
deserves special attention since it plays an essential role for
citizens nowadays. Year after year, the world altogether is
increasingly more conscious and worried about air pollution
and how it can affect their daily lives. Among other conse-
quences, air pollution can seriously affect citizens’ health;
particularly, it may worsen and favor certain illnesses or even
cause death to specific risk groups [26]. This is why the whole
society is becoming more interested in this topic, paying extra
attention to air quality. Indeed, air quality monitoring is a fun-
damental issue to be tackled by the whole society in general,
and a representative sample of citizens (such as elders and
children, people doing physical exercise outside and those
who have certain types of lung disease) in particular.

The fact is that due to this worldwide concern, several IoT
systems for air quality monitoring have been created over the
last years. Nevertheless, the problem is that monitoring alone
is not enough; we need to guarantee that citizens can easily
be made aware of this information and that this information
is kept updated in real time. Furthermore, if we want the
risk groups to be aware of their particular dangers and how
they should act according to the different risk levels, we
should provide them with the information and vehemently
encourage users to act upon it. We should not forget that
physical exercise being done also increases the risk of being
affected by unsuitable air quality.

We firmly believe that our proposed context-aware archi-
tecture provides a solution to this scenario, as we will explain

4653

IEEE Access

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

in the following subsections, where we examine the case
study requirements, we explain how air quality is measured
by organizations, define the specific context for the case study
and explain how the architecture —named Air4People for this
scope— is particularized for this case study.

A. AIR4PEOPLE REQUIREMENTS

For air monitoring and notification systems to be effective
concerning the use citizens make of such information, these
systems have to fulfill the following requirements: (1) air
quality information and alerts have to be updated in real time;
(2) the information has to be actively provided to citizens in
a clear and user-friendly way; (3) the information provided
to users, in particular to risks groups, needs to be adapted to
their specific characteristics and (4) the system should also
take into account the type of activity the user is going to be
engaged in and adapt notifications accordingly.

On the other hand, for the system to be technologically
efficient it should ensure it meets the needs that follow:
(1) the system should be able to tackle a big amount of data
coming from several sensors in order to be able to cover as
much territory as possible; (2) it should be able to process
data coming from sources which might belong to third parties
so that we again can cover the largest possible area; (3) the
system must be aware of citizens’ particular characteristics
and physical activities if it is to provide appropriate infor-
mation and notifications, not relying on end-user devices for
this task; and (4) the information and notifications have to
be provided to end users in a way that is not hugely time or
battery consuming.

To fulfil these goals we have analyzed the needs for
the system to be effective and efficient and we have
focused on ensuring that the architecture meets the following
requirements:

1. First of all, the system must be able to read air pol-
lutant concentrations from diverse heterogeneous data
sources. The dataset should be extensible and user-
adjustable. This is key for any IoT system to remain
in time [27].

2. Secondly, it must have up to date information about
which quality of air levels are to a greater or lesser
extent harmful for the general public and for specific
risk groups.

3. Thirdly, the system, based on the incoming pollutant
concentration data, must detect the air quality levels
according to a standard in real time, and has to generate
and notify the resulting alerts immediately.

4. Besides, it must allow users interested in real-time air
quality information to register in order to be notified in
case of danger to their health.

5. Furthermore, the system must be aware of user context,
based on location, type of physical activity and personal
characteristics.

6. In addition, personalized notifications must be sent to
users based on their context.

4654

7. Finally, it also has to let users check historical data
about pollutant concentration levels for any required
purpose: statistics, medical information, environmental
issues, et cetera.

B. AIR QUALITY MEASURING

Since there is a lack of an internationally recognized standard
for measuring air quality levels, several indexes have been
created over the last years for reporting air quality. These
provide us with information about how polluted or clean the
air is in a particular area and which related effects on citizens’
health might be a concern.

In order to calculate the current air quality level for a partic-
ular location, each index requires the most relevant pollutants
to be measured: Particulate Matter (PM2, s and PMp), Carbon
Monoxide (CO), Ozone (O3), Nitrogen Dioxide (NO;) and
Sulphur Dioxide (SO). Each air quality level belongs to
a value range, for instance, the US AQI [28] establishes a
51-200 range for moderate air quality level. However, a dif-
ferent range for the same level is set by other indexes, such
as a 4-6 range in the UK DAQI [29].

Although Air4People could be used in conjunction with
any of these ranges, for illustration and comprehension pur-
poses we have decided to use the one provided by the US
Environmental Protection Agency (EPA) as our air quality
level classification [28], [30]. In the referenced documents,
we can find the categorization about general air quality based
on a parameter calculated for the Air Quality Index (AQI),
its influence on the public, as well as recommendations. The
AQI general air quality level will be determined by the highest
level given by a single pollutant. That is, if O3, CO, NO3,
PM; 5 and PM g show, for example, levels lower than 4 (we
have enumerated them for convenience), but SO, level is 4;
then the general air quality level is regarded as 4 (Unhealthy).
For example, AQI level 4 information is shown in Table 1.

TABLE 1. AQI Categorization [28].

AQI Levels of Health Concerns Action to Protect
Values health your health
concerns
Level 4 Unhealthy Everyone may The following groups
(151 to begin to should avoid
200) experience health prolonged or heavy
effects. exertion:
Members of * People with heart or

sensitive groups
may experience
more serious
health effects.

lung disease.

* Children and older
adults.

Everyone else should
reduce prolonged or
heavy exertion.

Nevertheless, restricting our approach to the general AQI
index would be a poor approximation. We therefore pro-
pose to follow the control of every air pollutant whose
concentration is relevant to citizen health. Depending on
the concentration of each pollutant, citizen health might be
affected in a different way. Table 2 shows, as an illustration,

VOLUME 5, 2017

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

IEEE Access

TABLE 2. AQI reference for Ozone values in 8-hour periods [30].

TABLE 3. Types of context supported in Air4People.

AQI Ozone Values and Health Concerns
Values (ppm) [8
hours]
Level 4 — Values 0.096-0.115
Unhealthy Health Greater likelihood of respiratory
(151-200) Concerns symptoms and breathing in people with

lung disease (such as asthma), children,
older adults, people who are active
outdoors (including outdoor workers),
people with certain genetic variants, and
people with diets limited in certain
nutrients; possible respiratory effects in
general population.

level 4 Ozone values in 8-hour periods and how they affect
several risk groups as well as the general public [30].

C. AIR4PEOPLE CONTEXT DEFINITION

As mentioned in the background section, depending on the
scope the context may embrace different sets of characteris-
tics [11]. The context for Air4People will be the particular
location, personal characteristics and physical activity of the
user in question. This context will be used with the aim of
personalizing the alerts submitted to users. Let us explain the
three types in detail.

1) LOCATION CONTEXT

When the user registers on the system, he does it for a partic-
ular location (for instance, the city where he lives and works,
if this is the case). Besides, he may choose for his location
to be monitored: using the GPS, the mobile device will know
the user’s location and will be continuously sending it to the
system, which will update it in the database. The user will be
made aware that this option consumes more battery (we plan
to include low battery consuming alternatives in the future).

2) PHYSICAL CONTEXT

On the other hand, the user might be interested in adapting
the notifications to his current activity. We have mentioned in
Section 2.3 that poor air quality affects people doing physical
exercise outside more seriously. Therefore, it would be impor-
tant to know if the user is, for instance, running or making
some sort of effort (for instance, a construction worker would
be doing physical activity most of his workday). For this pur-
pose, the system provides two ways of adapting notifications
to physical behavior:

e One way would be detecting the speed of the user.
Depending of the speed we can guess if (a) the user is
motionless or walking calmly, (b) he is running or biking
or (c) he is on a public transport. Only for option (b)
would notifications reach a higher level.

« The second alternative would be to establish a fixed
timetable: an hourly schedule is provided by the user for
every day in the week, so that he can register his routines
in it. For instance, from 8 to 9, running outside (effort);
from 9 to 17, at the office (no effort); from 17 to 19,
shopping (no effort); from 19 on, at home (no effort). In

VOLUME 5, 2017

Type of Location Personal Physical
Context Context Context Context
Static Provided during Age, lung and Schedule

registration or heart diseases, provided when

updated through genetic variants registering or

the mobile app. and limited diet. updated through

the mobile app.

Dynamic Obtained through - Speed obtained

the mobile GPS. from the mobile

GPS.

the case of the construction worker, he would mark effort
during his work hours. This option is very convenient for
people with fixed habits since it saves a lot of battery too.

3) PERSONAL CONTEXT
This type of context would consist of the following personal
characteristics:

« Lung disease: right now we consider all lung diseases to
be the same, but we will categorize them in the future
depending on their severity and exacerbation due to
poor air quality levels. We are currently working with
a pulmonologist on this issue.

o Heart disease: right now we place all heart conditions
within the same category, but we will categorize them in
the future depending on their severity and exacerbation
due to poor air quality levels.

o Children (including teenagers): we will regard every-
body younger than 19 years old as being included in this
category [31].

o Older people: we will regard everybody older than 60
years old as being included in this category [32].

o Genetic variants: there are several articles which link
genetic variants and poor air quality exposures to an
increase in certain illnesses (such as [33]). AQI index
provides information for genetic variants in general and
so does Air4People.

o Diets limited in Omega-3 and vitamins. Even though
AQI only specifies “diets limited in certain nutrients”,
according to several studies it seems significant that
Omega-3 and certain vitamins are key for preventing
health risks derived from air pollution [34]. We should
bear in mind that diet specifications can be varied in
the systems at any time according to current health
recommendations.

Table 3 summarizes the current contexts supported by
AirdPeople, classified according to whether they are static
(it needs not be continuously monitored and therefore the
user sends it to the system during registration or occasionally
updates his data) or dynamic (they might require continuous
monitoring).

D. PARTICULARIZATION OF CARED-SOA

FOR THE CASE STUDY

CARED-SOA was particularized for the case study as
follows:

4655

IEEE Access

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

1) DATABASES

Domain databases store information about air quality sta-
tions, their sensors and pollutant concentrations detected in
the sensors, as well as detected air quality levels.

o With this database we can identify every air quality
station, and for each station which type of sensors it has,
as well as the data required to connect to the station data
source.

o It also provides a mechanism to identify the same
type of sensors with several synonyms; for instance,
Temperature could be found with the following iden-
tifiers: temperatura (in Spanish), temp, t, or any other
word chosen by the data provider. The system will man-
age all these identifiers as a unique one, transparently to
the final user as well as to the data provider.

« Besides, it stores all the information about each reading
including the timestamp, as well as detected air quality
levels.

Context and notification information are also stored in a

database. We store:

o The registration details (user, password, et cetera).

o The information related to personal context, physical
context and location: static location and physical context
can coexist with dynamic ones. The former are stored at
registration and modified occasionally and the latter are
updated continuously when the user has activated this
option. In such cases, only dynamic information is taken
into account for context awareness; otherwise the static
one is.

« All types of notification which the users can register
to, as well as the corresponding health warnings and
suggestions.

2) REST WEB SERVICES

Context web service provides operations to read the infor-
mation about available subscription alerts and to post and
update information about users, their context and their sub-
scription. In particular, personal context, fixed location and
fixed physical schedule are provided during registration and
monitored location and activity is provided constantly based
on a predefined period of time.

Domain web service provides operations to be able to read
all the available information about every air quality station,
sensor and measurement (historical data). This is used by the
system to check which channels have to be queried, which
information we obtain from each air quality station and the
last reading from the station. Besides, it is also used by the
mobile application to obtain information about the stations
and their sensors and about the current or historical air quality
in a given location.

3) DATA SOURCES

In this case, we have used an emulator for the pull model; the
emulator sends data to ThingSpeak and the system reads the
data from it. For push models we have used the data coming
from the Andalusian government which is obtained from

4656

a message queue as well as an emulator data for pursuing
performance tests.

4) COMPLEX EVENT PATTERNS

As previously mentioned, the CEP engine analyzes the data
coming from the air quality stations and detects poor air qual-
ity thanks to a set of predefined and pre-deployed patterns.
For pattern definition, we have followed air quality indexes
defined by the EPA [28], [30].

We have defined patterns for each level in which health
might be affected. For instance, for Ozone, in eight-hour
periods we have defined the patterns for levels 2, 3,4, 5 and 6
with the ranges indicated for each level by the EPA (see [30]).
Please note that level 1 depicts good air quality and therefore
there is no need to send any alert for such a condition and
thus no need for the corresponding pattern to be defined. For
every pollutant, the patterns from levels 2 or 3 to level 6 have
been defined (ranges and levels can be consulted in detail in
the EPA documents).

For the sake of illustration, code listing 1 shows a pattern
for Level 2 Ozone in eight-hour periods.

Code Listing 1. EPL code for a pattern detecting Ozone
Level 2 in eight-hour periods.

(1) @Name("Ozone2")

(2) insert into AQILevels

(3) select

(4) 1 as alertKind, 2 as alertLevel,

(®)] e.Channelld as Channelld, e.ChannelName as
ChannelName,

(6) e.timestamp as timestamp,

@) e.ChannelLat as ChannellLat, e.ChannelLong as
ChannelLong,

(8) eTasT, eRHasRH,e.CO2as CO2,

(9) e.03as 03, e.PM25 as PM25, e.PM10 as PM10,

(10) e.CO as CO, e.SO2 as SO2, e.NO2 as NO2

(11) from

(12) pattern [every-distinct (e.Channelld)e = AirEvent(

(13) (O3 >= 0.060 and O3 <= 0.075))].win:time
(8 hour)

Line 1 assigns a name to the pattern; line 2 inserts in a
flow, called AQILevels, the new complex event created from
the single events; lines 3 to 10 establish the values for the
type and level of alert, and also save channel, timestamp and
pollutant values from the single events in the complex event;
lines 11 to 13 describe the condition to be met to match the
event pattern. It is noteworthy that even though patterns can
be manually coded by computer scientists, this can also be
accomplished by air quality experts using the multi-domain
graphical editor provided in [35].

Once a pattern is matched, the air quality level detected
is stored in the domain database and notified to the context
reasoner.

5) CONTEXT KNOWLEDGE MANAGER
As explained, the context database has been particularized
with the required fields for the case study and the operations

VOLUME 5, 2017

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

IEEE Access

offered in the REST service allows us to introduce the context
and notifications’ information.

6) CONTEXT REASONER

We defined a Java class which establishes the relations
between the types and values of context and suitable notifica-
tions based on the detected air quality level. For instance, for
O3 in level 4, outdoor workers will be advised to subscribe to
this notification event if they do not have any lung condition.

7) CONTEXT-BASED ADVISER

As previously mentioned, whenever an unsuitable air quality
level is detected in the CEP engine, it is managed by the
context-based adviser. The latter will have to check:

o Which users are subscribed to this type of notification.

o Which users are in the location where the alert was
detected.

« What type of notification the user subscribed to: e-mail
or mobile notification.

For this case study, we will have a federation of context-
based advisers where each level of each pollutant has its own
adviser (and therefore we have a notification queue for each
of them).

8) SOFTWARE CLIENTS
Regarding the software clients, we have developed a mobile
app for testing purposes from which current and historical air
quality data can be consulted and where mobile notifications
can be selected and received.

Additional clients (apps, websites or other application
types) can be built without restrictions; they would only have
to invoke the REST service operations.

VI. EVALUATION

We have conducted different validation procedures in order
to test all the relevant characteristics of the system. As
explained in the following subsections, we have used an
emulator to send data to ThingSpeak in order to test the
pull model. In addition, we have tested the system with real
data coming from the sensor motes deployed all over the
Andalusian territory and we have also used the emulator
to submit several simulated third parties through the pull
model.

In all cases the architecture was deployed in a workstation
with i3-540 (4M cache, 3.6 Ghz), 8GB of RAM memory and
SATA?2 hard drive. The notification queues were located in a
virtual machine with 8GB of RAM memory and a hard drive
of 22GB. Communications between both computers were
fulfilled thorough a virtual private network belonging to the
University of Cédiz. For testing purposes, the user database
was populated with 150 users with different contexts, that
is, different personal characteristics, locations and schedules
and we tested physical and location monitoring with an aver-
age mobile device (Android 4.1.2). The alert database (to
which users may subscribe) is populated with the previously

VOLUME 5, 2017

explained alert types defined by the EPA. The mote database
is populated with the characteristics and sensors of the motes
we are going to simulate with the emulator.

A. TESTING THE PULL MODEL WITH AN EMULATOR
We tested the system with both a physical mote providing the
sensors in question and third-party sensors, but due to the lack
of possible scenarios using current public values of air quality
we decided to create an emulator which allows us to test the
system with several random situations as well as manually
specified particular ones.

Some of the main characteristics of the emulator' are
described as follows:

« It can generate pseudorandom values for several motes
and sensors related to air quality and send it to different
channels in ThingSpeak.

o When the emulator is launched, we can add as many
motes as we wish.

« A new mote is created with a set of predefined default
sensors, which can be modified as required.

« At any point in time, we can activate or deactivate data
submission to ThingSpeak, as well as Save and Load a
mote configuration.

o We can also manually introduce data at any time, in case
we want to test a particular situation.

We tested several random situations as well as some par-
ticular ones manually using the emulator. As previously
explained, we sent the data to ThingSpeak to emulate third-
party data. A capture of some of these data in ThingSpeak is
shown in Fig. 11.

The implemented event patterns for detecting air quality
levels, whose syntax was previously checked using the Esper
EPL Online tool [36], were correctly detected by AirdPeople
and their corresponding notifications were received by e-mail
and through our mobile application.

B. TESTING THE SYSTEM WITH REAL DATA
FROM THIRD PARTIES
The system was also tested with real data coming from 95 sen-
sor stations the Andalusian regional government has all over
its territory. These stations provide a total of 708 sensors with
89600 data registers per day. On average, this is translated
into receiving around 62 sensor measurement per minute
in the message queue (stations submit data in 10 minute
intervals approximately). The system perfectly supported this
load of events and responded in less than a millisecond with
corresponding complex events detected as well as their cor-
responding notifications.

Real and simulated data were checked through the ESB
console and database updates, so that it was confirmed that
the notifications were sent according to the events entering

! Additional information showing the potential of the emulator
to generate multiple sensors, motes and situations can be found at
http://hdl.handle.net/10498/18582. We have not included it in the paper
since we did not consider it relevant for the paper objectives.

4657

IEEE Access

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

CJThingSpeak channeis- Apps Blog Support -

Private View

w0

Channel Stat

o
7]

63 Entries

Field 1 Chart o/ =x

Mote 2

Y

Date

Temp

Field 4 Chart 0/ =x

Mote 2

Date

PM2.S

FIGURE 11. ThingSpeak emulated channels.

into the system and database user contexts. Thanks to the
timestamp stores, we could also verify how fast the complex
event was detected after the simple event was received in the
system.

In addition, dynamic physical and location contexts
were tested with one mobile device. The alerts were
received according to the context detected. Static contexts
were tested modifying the data in the database. In all
cases, the alerts were received according to the context
detected.

C. TESTING THE PULL MODEL WITH THE EMULATOR

If we plan to extend the system for all government air quality
stations around Spain, we calculated an average number of
500 sensor measurements per minute. The load test was
conducted with 1000 simulated measurements per minute.
The system continued working perfectly.

In order to see how the system responds depending on
several variable parameters, we have made a set of perfor-
mance and stress tests with the different configurations. The
configurations tested are included in Table 4 and consist of
(a) storing or not the simple events in the database, (b) using
the defined patterns for all pollutants (47 patterns) or only
for one (the 7 patterns defined for NOy), (c) using sliding
windows versus batch ones and (d) having a notification

4658

TABLE 4. Configurations tested in Air4People.

Configuration DB Patterns Windows Queues
Conf. 1 No 7 Sliding 1
Conf. 2 No All Sliding All
Conf. 3 No All Sliding 1
Conf. 4 No All Batch All
Conf. 5 Yes All Sliding All
TABLE 5. Air4People performance test results.
Configuration Test Set 1 2 3
Conf. 1 Total events submitted 959023 1872412 3800751
Events per minute submitted 13700 26749 54296
Relevant events detected 115105 205170 509098
Conf. 2 Total events submitted 324519 636130 958991
Events per minute submitted 5003 9087 13700
Relevant events detected 277327 543624 814221
Conf. 3 Total events submitted 959000 1400001 1862474
Events per minute submitted 13700 20000 26607
Relevant events detected 112171 163753 229746
Conf. 4 Total events submitted 959017 1882588 3748064
Events per minute submitted 13700 26894 53543
Relevant events detected 2198 2448 3805
Conf. 5 Total events submitted 355019 626255 959035
Events per minute submitted 5000 8820,7 13700
Relevant events detected 312239 550791 806696

queue for every level in every pollutant or a single one for
one particular level of a pollutant (discarding the remaining
notifications). It is important to clarify that batch windows
have been set with reduced times —15 minutes— to test the
system with a high number of detected complex events (if we
set them to 1 hour or more, the cadence for detected events
would be very low).

Performance tests have been carried out according to
these configurations; these have been performed over
70 minutes —enough time to see the effect of 1 hour
windows— with an estimated number of events per minute
to find the system’s limit.

Each configuration has been tested with several rates of
events per minute sent to the system and the latter’s behavior
was observed for each test. If the system responded properly,
then the test was performed with a higher speed, searching
the highest speed at which the system still responds appro-
priately. For illustration purposes, we have selected three
different representative speeds of events per minute sent to the
system (test sets 1, 2 and 3). Such selected tests represent two
speeds at which the system responds properly (sets 1 and 2),
to see the amount of events increase, and a third speed where
the system still responds but close to the speed where the
system starts becoming deteriorated. Table 5 and charts in
Fig. 12 show the values of the total number of events submit-
ted to the system in the 70 minutes the test lasted, the received
events per minute and the number of complex events detected.
Please remember that the events submitted to the system are
the simple events that the emulator generates, which entry the
system and are processed by the CEP engine; and the relevant
events are complex events detected in the CEP engine which
provide valuable information in the scope of the case study.
This information is shown for each configuration for the
three test sets.

VOLUME 5, 2017

Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

IEEE Access

)
4,00E+06 —_— gggggj ‘é s SUbMitted
1 3,00E+06 — 400E+04 E Events
$ 2,00E+06 — 3,00E+04 5 Relevant Events
@ 1 00E+06 — = 2,00E404 & Detected
/ = — — 1006404 £ Events per
0,00E+00 — _— — 0,00e+00 & ;
1 5 3 o minute
Test set (see table 5)
(a) Performance test for configuration 1
1,20E+06 1,50E+04 % —— Submitted
1,00E+06 c
g — = Events
£ 8,00E+05 — 1,00E+04 € Rel e
S 6.00E+05 = — 5 elevant Events
& 4,00E+05 — = 5,00E403 & Detected
2,00E+05 E E E £ Evgnts per
0,00E+00 0,00E+00 ‘%’ Minute
1 2 3
Test set (see table 5)
(b) Performance test for configuration 2
)
2/008+06 — ;'gg?gi 2 Submitted
= ,50E+04
P 1,50E+06 E 2,00E404 E Events
§ 1,00E+06 — — 1,50E+04 & RDe‘te‘/at”;EVE”‘S
— - %) etecte
* 5,00E405 == = 1,00E+04 2
— — 5,00E+03 g Events per
0,00E+00 = = = 0,00E+00 © Minute
1 2 3
Test set (see Table 5)
() Performance test for configuration 3
4,00E+06 6700E+04 % e SUbMIttEd
= 5,00E+04 £
= 2 £ E
@ 3,00E+06 — 200£+04 E vents
& 2,00E+06 = — 3.00E+04 g RElevan;Events
> — — Detecte
@ — — 2,00E+04 o
1,00€+06 — — — 1,00E404 ¢ Events per
0,00E+00 == == — 0,00E+00 2 Minute
1 2 3
Test set (see Table 5)
(d) Performance test for configuration 4
1,20E+06 1,50E+04 £
1,00E+06 g = Submitted
£ 8,00E+05 — 1,00E+04 € Events
§ 6,00E+05 p— 9] Relevant Events
w ‘;gg:gg = — 5,00E+03 ; Detected
’ f— f— c
0,00E+00 — — 0,00E400 & Events per
i Minute

-
~
w

Test set (see Table 5)
(e) Performance test for configuration 5

FIGURE 12. Air4People performance tests results. (a) Performance test
for configuration 1. (b) Performance test for configuration 2.

(c) Performance test for configuration 3. (d) Performance test for
configuration 4. (e) Performance test for configuration 5.

In configuration 1, we can see how the system still
responds at 54,296 events per minute, in configuration 2 at
13,700 events per minute, in configuration 3 at 26,607 events
per minute, in configuration 4 at 53,543 events per minute
and in configuration 5 at 13,700 events per minute. We can
observe that the system admits a higher speed for config-
urations 1 and 4. The main reason, on the one hand, is
that we have reduced the number of patterns to a sixth in
configuration 1, so the system’s resources needed to keep the
pattern matching procedure by the Esper engine is consider-
ably reduced. On the other hand, patterns in configuration 4
have been defined with batch windows with the objective
of validating how this type of windows might improve the
performance versus sliding ones. Configurations 2 and 5 stop
working properly earlier since they are tested with all the
patterns and notification queues, therefore having to deal with
a higher number of complex events. Finally, configuration 3
has an intermediate limit since, even though all the patterns

VOLUME 5, 2017

6,00E+04

5,00E+04 55000
£ 4,00E+04
g
£
5 3,00E+04
2‘ 30000
S 2,00E+04
= 20000,

1,00E+04

*
0,00E+00
Configuration (see Table 4)
Conf. 1 Conf. 2 Conf. 3 H Conf. 4 Conf. 5

FIGURE 13. Estimated limit for events per minute entering Air4People.

are deployed in the CEP engine, only one queue is managed
for notification (which implies one sixth of notifications
approximately versus configurations 2 and 5).

We also performed stress tests: the chart in Fig. 13 rep-
resents the estimated limit load for the system for every
configuration based on the stress tests results. We have called
the limit of the system to refer to the entering speed of events
per minute with which the system collapses and cannot attend
such amount of entering data. With such an entrance of events
per minute, we can estimate that the system will not respond
appropriately, suffering delays and probably losing data due
to bottlenecks. In configuration 4, we could not find a limit
when using batch windows.

We have also analyzed the average response time and
number of relevant events detected at one speed accepted
by all configurations during 70 minutes: 13,700 events per
minute; results are shown in Table 6.

TABLE 6. Air4People response to an entrance of 13,700 events per
minute during 70 minutes.

Configuration Average response time (seconds) Relevant Events Detected

Conf. 1 0 112171
Conf. 2 0.002 814221
Conf. 3 0.001 112171
Conf. 4 57 2198
Conf. 5 186 806696

At this speed, we can see in Table 6 that configuration 1
detects events in less than 1 millisecond, configuration 2 in
2 milliseconds, configuration 3 in 1 millisecond, configu-
ration 4 in 57 seconds and configuration 5 in 186 seconds.
These response times are acceptable for the current case
study; times for configurations 1, 2 and 3 are clearly accept-
able; the response time for configuration 4 is not relevant
since batch windows imply that even though the event takes
place before the end of the window, such event is not notified
until the window is closed; that is, if we have a 1-hour batch
window and the event takes place at minute 15, it will not be
notified until 1 hour has gone by. Finally, response time for
configuration 5 is notably higher for this event speed, but still
acceptable for this case study.

Comparing all the configurations, we can conclude that
when we introduce all the patterns the system support a lower

4659

IEEE Access

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

load of events per minute, since the sliding windows overhead
the system. This is why the developer must choose carefully
the patterns for the domain in question and follow Esper
performance recommendations [37].

In Table 6 we can also see the total number of rele-
vant events detected per configuration with an entrance of
13,700 events per minute and a test over 70 minutes: con-
figurations 2 and 5 are those which detect a higher number of
events (since they have all the patterns and queues); configu-
rations 1 and 3 detect much fewer events (given that they only
detect events related to one pollutant); configuration 4, since
it is using batch windows, detects an insignificant number of
events compared to the others.

D. RESULTS DISCUSSION

As a limitation of the proposed approach, we have seen that
at a certain amount of events per minute entering the system,
the architecture might collapse. The threshold for such a
bottleneck will depend on the particular case study and, as
we have seen, on the system’s particular configuration. It
is important to highlight that the emulator has been pro-
grammed to foster a high number of event detections, which
most probably would not happen easily in the case study with
real data: the objective was to search for the system’s limit,
and we would expect the system to perform better in real
situations. Therefore, due to the results obtained in the tests
we consider that CARED-SOA is highly scalable, moreover
bearing in mind that we can follow a set of actions to improve
its performance and scalability if the domain required it, such
as:

« Distributing diverse components of the system in differ-
ent machines (such as databases, notification modules,
et cetera).

« We can also distribute patterns in different machines,
either patterns working with different data, or through a
hierarchy of events (where a machine can perform initial
filtering).

« Using high-speed communication networks, depending
on the response times required.

o Of course, if we think of scaling the system, for instance,
to Europe more powerful machines could be used.

« Equally, it would be more appropriate to use Enterprise
distributions of the software (ESB and CEP engine),
rather than Community ones, since they guarantee better
performance results.

Of course, distributing the different components of the sys-
tem in several machines will imply further communications
with their consequent security and reliability issues. Besides,
distributed databases involve the consequent consistency and
partition tolerance issues. The software engineer will have to
balance the processing requirements versus the distribution of
the databases or other architecture components according to
the particular system’s available resources and requirements.

To conclude, we could test and validate that (1) the system
responds in real time to the incoming sensor data; (2) third-

4660

party data (as those coming from the Andalusian regional
government) were perfectly integrated into the system;
(3) the mobile application was receiving the notifications
in due time; (4) the push model is very appropriate for
the architecture and was used to integrate the Andalusian
regional government data; (5) alert levels were launched
when the sensors data were in the specified interval dur-
ing the corresponding time windows, as well as risk groups
being alerted in those cases; (6) REST API is currently
providing all the data received and detected in the system
as well as providing the user the chance to subscribe to
the alerts; (7) dynamic physical and location contexts were
properly received in the system, though consuming more
battery than expected (tackling this issue is part of our
future work).

VII. RELATED WORK

There are multiple approaches for context adaptation in
different computer science domains [38]: middleware and
platform solutions, ontology-based solutions, rule-based rea-
soning, model-driven approaches, et cetera. These techniques
are not exclusive and a developer could opt for combining
several of them in order to deal with context. In the following
paragraphs, some outstanding approaches related to the most
relevant techniques are presented.

Some prominent frameworks and middlewares for con-
text awareness can be mentioned: CoWSAMI is a mid-
dleware which gives support to context, supplied by
Athanasopoulos et al. [39]. It provides a Context Manager
in order to deal with context sources. Services here are only
used as interfaces to collect information. CAS-Mine is a
framework presented by Baralis e al. [40], which focuses
on discovering relevant relationships between user context
data and invoked services. CAS-Mine extracts generalized
association rules, which provide a high-level abstraction of
both user habits and service characteristics, depending on
the context. However, it does not provide an adaptation to
context mechanism. The ESCAPE framework and the inCon-
text project deserve a special mention. Both are proposed by
Truong et al., in [41] and [42], respectively, and deal with a
service-based context-management system for team collabo-
ration. Even though the concepts provided for exchanging and
making use of context information in a service-based scope
are high quality ones, the narrow scope of their main focus
(collaboration teams) weaken the value of this proposal for
the scope of this paper.

The paper from Gilman et al. [43] also deserves special
attention. They provide a framework for context-aware perva-
sive services to context through a complex architecture com-
posed of several components, among them a context reasoner,
context discoverer and observers, handlers and managers.
Their framework implies that context providers and actuators
are designed specifically for their low level context ontol-
ogy and suffer from communication delays. The paper from
Li et al. [44] is also of interest: they provide a framework for
context provisioning, which can include new context provi-

VOLUME 5, 2017

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

IEEE Access

sioning schemas dynamically. They have also defined a DSL
to facilitate the definition of new context schemas for addi-
tional application domains. There are two aspect-oriented
approaches which can also be mentioned: Yahyaoui et al.
focus on adaptable web services, providing a new Web Ser-
vice Policy Language for context specification and with the
main aim of using it for BPEL compositions [45]; Yu et. AL
present PerCAS, a model-driven approach which enables web
service adaptation to user personal context preferences or user
personalization [46]. In any case, none of these works take
advantage of the use of the ESB and CEP, which leverages
the context-aware system’s usability and maintenance.

Some works integrate CEP and SOA or use ESBs to follow
some adaptation or provide context awareness. For instance,
Taher et al. [47] propose the adaptation of interactions of web
service messages between incompatible interfaces. In this
regard, they develop an architecture that integrates a CEP
engine and input/output adapters for SOAP messages. Input
adapters receive messages sent by web services, transform
them into the appropriate representation to be manipulated by
the CEP engine and send them to the latter. Similarly, output
adapters receive events from the engine, transform them to
SOAP messages and then they are sent to web services.
CA-ESB is presented by Chanda ef al. as a context-aware
ESB [48]; in fact, it is a bus which deals with service com-
position based on client location; that is, services register
in the system with a location and when pursuing a service
orchestration the closest services are selected.

Most of these proposals are focused on a unique aspect
of context awareness: some of them on the modeling phase,
other on context provisioning; others on adaptation code, et
cetera; but none of them presents a holistic architecture which
permits dealing with context awareness in SOAs, providing
the means for context dealing from reception to delivery of
personalized context-aware services.

If we pay special attention to the case study presented in
the paper and therefore to particular approaches for air quality
notification, there are a few that could be mentioned; we have
selected three relevant ones. CITI-SENSE [49] is one of the
most thorough EU projects for monitoring air quality in sev-
eral cities (Barcelona, Belgrade, Edinburgh, Haifa, Ljubljana,
Ostrava, Oslo, Vienna and Vitoria). Mainly, it consists of a
solution that integrates different components as follows: (1) a
web portal that provides an access point to all its sensors and
apps, tools and questionnaires; (2) a personal air monitoring
toolkit that allows us to assess air quality, monitoring only
three gases (NO,, NO and O3); (3) a city air smartphone
app that allows us to share our perception of air quality and
(4) an on-line air quality perception questionnaire to be used
in campaigns to assess citizens’ perception of air quality so
as to obtain feedback. OpenSense [50] is a research project
with the purpose of monitoring air pollution by using wireless
sensor network technology. Sensors have been deployed in
public transportation (trams in Ziirich and buses in Lausanne)
to measure CO, CO,, NO;, O3, fine particles, temperature
and humidity. OpenSense II [51] is an improved version

VOLUME 5, 2017

of the project OpenSense in which sensor nodes have been
updated with GSM, GPS and UFP and deployed in electric
cars and bicycles. In this new version, citizens can con-
tribute data collected or generated from their mobile devices.
SmartSantander [52] is a EU project that proposes a huge
infrastructure with around 20,000 sensors deployed in public
transportation vehicles to monitor air pollutants CO, CO; and
NO, as well as temperature and humidity in different cities:
Liibeck, Guildford, Belgrade and Santander. This platform
includes a REST API that allows developers to query the last
air-pollutant-related observation from any node in the infras-
tructure equipped with air pollutant sensors, all air-pollutant-
related observations within the boundaries of selected dates,
and within a particular range of kilometers from a given
position between the boundaries of the selected dates.

In the context of air quality monitoring, we summarize
the most relevant features required in the proposed systems;
we will then examine if the mentioned proposals fulfill these
features:

o Real Time: the system provides real-time monitoring of

air quality.

o Third Party: the system allows the integration of third-
party sensors easily.

o Push: the system provides a mechanism to receive noti-
fications without the user having to check the system
constantly.

o Alert Levels: the system distinguishes among several
alert levels according to pollutant concentrations.

o Risk Groups: the system distinguishes among several
alert levels according to the risk group the user belongs
to.

o REST API: the system offers a REST API so that any-
body can use it to obtain information about air quality in
his own software client.

o Physical Context: the system takes into account the
activity the user is carrying out when notifying the
unsuitable air quality detected.

Most of the presented proposals provide real time infor-
mation and even push notification, but they lack some other
features. Firstly, in CITI-SENSE platform there is no pos-
sibility of easily integrating air quality data with third-party
services since there is no REST API available for users; data
have to be downloaded in CSV format or directly into an
Excel spreadsheet. Another limitation of this project is that
air quality alerts are displayed as an APIN (Air Pollution
Indicator) value that, although related to EU CAQI (Common
Air Quality Index), it cannot be directly compared to this
EU index. In addition, this information is not particularized
according to risk groups. Secondly, in OpenSense air quality
notifications are not customized based on risk groups and
the documentation and resources on the website are limited,
and it is not clear how to integrate it with third-party appli-
cations and how to access/monitor air quality data. Finally,
SmartSantander, as we have already mentioned, includes a
REST API; however, air quality levels and air quality notifi-
cations are neither calculated nor sent to risk groups. Thus,

4661

IEEE Access

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

personalized health recommendations are not provided to
citizens.

Regardless of other differences with our presented
approach, the most remarkable issue is that none of these
approaches, which are relevant European projects in the
domain in question, takes into account the context of the user
which is key when notifying him; therefore, their notifica-
tions are not customized based on risk groups and personal-
ized health recommendations are not given, what is key in this
domain.

VIil. CONCLUSION

In this paper, we have proposed an event-driven SOA which
provides context awareness in the scope of IoT. The archi-
tecture benefits from key elements to cover all stages of data
processing [15]: it collects and adds data from heterogeneous
sources; agent communications are facilitated thanks to the
use of message queues and brokers; IoT received data are
stored in the databases and processed by a CEP engine; users
can benefit from the processed data through the invocation
of REST services or through the subscription to notifications.
Therefore, this is a holistic architecture which permits dealing
with context awareness in SOAs, providing the means for
context dealing from reception to delivery of personalized
context-aware services.

In our future work, we plan to extend our architecture for
collaborative scopes, where several nodes in the architec-
ture can exchange relevant contextual information based on
detected complex events.

ACKNOWLEDGMENT

The authors would like to thank companies 4gotas.com,
Novayre Solutions, and Homeria Open Solutions for their
interest and support, as well as the personal support offered by
Puerto Real Hospital pulmonologist C. Maza. They are also
grateful to researchers W. Lamersdorf and S. Reiff-Marganiec
for their interest in our ongoing research projects.

REFERENCES

[11 M. Papazoglou, Web Services and SOA: Principles and Technology,
2nd ed. New York, NY, USA: Pearson Education, 2012.

[2] T. Exl, Service-Oriented Architecture: A Field Guide to Integrating XML
and Web Services. Upper Saddle River, NJ, USA: Prentice-Hall, 2004.

[3] F. R. Thomas, Architectural Styles and the Design of Network-based
Software Architectures. Irvine, CA, USA: Univ. California, 2000.

[4] L. Richardson and S. Ruby, RESTful Web Services. Farnham, UK.:
O’Reilly, 2007.

[5] L. Da Xu, W. He, and S. Li, “Internet of Things in industries: A survey,”
IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233-2243, Nov. 2014.

[6] D.C.Luckham, Event Processing for Business: Organizing the Real-Time
Enterprise. Hoboken, NJ, USA: Wiley, 2012.

[71 M. P. Papazoglou and W. V. D. Heuvel, “Service-oriented design and
development methodology,” Int. J. Web Eng. Technol., vol. 2, no. 4,
pp. 412-442, Jul. 2006.

[8] C.Inzinger, W. Hummer, B. Satzger, P. Leitner, and S. Dustdar, *“Generic
event-based monitoring and adaptation methodology for heterogeneous
distributed systems: Event-based monitoring and adptation for distributed
systems,” Softw. Pract. Exp., vol. 44, no. 7, pp. 805-822, Jul. 2014.

[9]1 A. K. Dey, “Understanding and Using Context,” Pers. Ubiquitous Com-
put., vol. 5, no. 1, pp. 4-7, Jan. 2001.

4662

(10]

(11]

(12]

(13]

(14]
(15]

[16]

(17]
(18]
(19]
(20]
(21]
[22]
(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

G.D. Abowd, A. K. Dey, P.J. Brown, N. Davies, M. Smith, and P. Steggles,
“Towards a better understanding of context and context-awareness,” pre-
sented at the 1st Int. Symp. Handheld Ubiquitous Comput., Karlsruhe,
Germany, 1999, pp. 304-307.

U. Alegre, J. C. Augusto, and T. Clark, “Engineering context-aware sys-
tems and applications: A survey,” J. Syst. Softw., vol. 117, pp. 55-83,
Jul. 2016.

R. Hervds and J. Bravo, “COIVA: Context-aware and ontology-powered
information visualization architecture,” Softw. Pract. Exp., vol. 41, no. 4,
pp. 403-426, Apr. 2011.

S. Peinado, G. Ortiz, and J. M. Dodero, ““A metamodel and taxonomy to
facilitate context-aware service adaptation,” Comput. Electr. Eng., vol. 44,
pp. 262-279, May 2015.

L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787-2805, Oct. 2010.

R. Buyya and A. V. Dastjerdi, Internet of Things: Principles and
Paradigms. San Mateo, CA, USA: Morgan Kaufmann, 2016.

J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo, “Approaching the Internet
of Things through integrating SOA and complex event processing,” in
Handbook of Research on Demand-Driven Web Services: Theory, Tech-
nologies, and Applications, Z. Sun, J. Yearwood, Eds. Hershey, PA, USA:
IGI Global, 2014, pp. 304-323.

MuleSoft. What is Mule ESB? accessed on Jan. 3, 2017. [Online]. Avail-
able: https://www.mulesoft.com/resources/esb/what-mule-esb

Oracle Corporation. MySQL, accessed on Jan. 3,2017. [Online]. Available:
https://www.mysql.com/

Apache Software Foundation. ActiveMQ, accessed on Jan. 3, 2017.
[Online]. Available: http://activemq.apache.org/

(2016). ThingSpeak, accessed on Jan. 3, 2017. [Online]. Available:
https://thingspeak.com/

Oracle Corporation. JERSEY. RESTful Web Services in Java, accessed on
Jan. 3, 2017. [Online]. Available: https:/jersey.java.net/

IETF Network Working Group. Simple Mail Transfer Protocol, accessed
on Jan. 3, 2017. [Online]. Available: https://tools.ietf.org/html/rfc5321
Google. Firebase, accessed on Jan. 3, 2017. [Online]. Available:
https://firebase.google.com/

MuleSoft. Flows and Sub-Flows, accessed on Jan. 3, 2017. [Online].
Available: https://docs.mulesoft.com/mule-user-guide/v/3.7/flows-and-
subflows

S. M. Riazul Islam, D. Kwak, M. Humaun Kabir, M. Hossain, and
K.-S. Kwak, “The Internet of Things for health care: A comprehensive
survey,” IEEE Access, vol. 3, pp. 678-708, Jun. 2015.

“Review of evidence on health aspects of air pollution—REVIHAAP
project,” World Health Organization, Copenhagen, Denmark, Tech. Rep.,
2013. [Online]. Available: http://www.euro.who.int/__data/assets/
pdf_file/0004/193108/REVIHA AP-Final-technical-report.pdf

M. Vogler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “AHAB: A cloud-
based distributed big data analytics framework for the Internet of Things,”
Softw. Pract. Exp., vol. 47, no. 3, pp. 443-454, 2016.

U.S. Environmental Protection Agency. (2014). “AQI Air Quality
Index. A Guide to Air Quality and Your Health,” accessed
on Jan. 17, 2017. [Online]. Available: https://www3.epa.gov/
airnow/aqi_brochure_02_14.pdf

UK Department for Environment Food and Rural Affairs. Daily Air
Quality Index, accessed on Jan. 17, 2017. [Online]. Available: https://uk-
air.defra.gov.uk/air-pollution/daqi

U.S. Environmental Protection Agency. Technical Assistance
Document for the Reporting of Daily Air Quality—the Air
Quality Index (AQI), accessed on Jan. 17, 2017. [Online].

Available: https://www3.epa.gov/airnow/aqi-technical-assistance-
document-may2016.pdf

World Health Organization. Definition of key Terms, accessed on
Jan. 17,2017. [Online]. Available: http://www.who.int/hiv/pub/guidelines/
arv2013/intro/keyterms/en/

World Health Organization. Ageing and Health, accessed on Jan. 17,2017.
[Online]. Available: http://www.who.int/mediacentre/factsheets/fs404/en/
A. Levinsson et al., “Interaction effects of long-term air pollution expo-
sure and variants in the GSTP1, GSTT1 and GSTCD genes on risk of
acute myocardial infarction and hypertension: A case-control study,” PLoS
ONE, vol. 9, no. 6, p. €99043, Jun. 2014.

S. Péter et al., “Nutritional solutions to reduce risks of negative health
impacts of air pollution,” Nutrients, vol. 7, no. 12, pp. 10398-10416,
Dec. 2015.

VOLUME 5, 2017

A. Garcia de Prado et al.: CARED-SOA: Context-Aware Event-Driven Service-Oriented Architecture

IEEE Access

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]
[51]

[52]

J. Boubeta-Puig, G. Ortiz, and 1. Medina-Bulo, “MEdit4CEP: A model-
driven solution for real-time decision making in SOA 2.0,”” Knowl.-Based
Syst., vol. 89, pp. 97-112, Nov. 2015.

EsperTech. Esper EPL Online, accessed on Jan. 17, 2017. [Online]. Avail-
able: http://www.esper-epl-tryout.appspot.com/epltryout/index.html
EsperTech Inc. Esper Reference Documentation. Performance, accessed
on Jan. 17, 2017. [Online]. Available: http://www.espertech.com/esper/
release-5.3.0/esper-reference/html/performance.html

G. M. Kapitsaki, G. N. Prezerakos, N. D. Tselikas, and I. S. Venieris,
“Context-aware service engineering: A survey,” J. Syst. Softw., vol. 82,
no. 8, pp. 1285-1297, 2009.

D. Athanasopoulos, A. V. Zarras, V. Issarny, E. Pitoura, and P. Vassiliadis,
“CoWSAMI: Interface-aware context gathering in ambient intelligence
environments,” Pervas. Mobile Comput., vol. 4, no. 3, pp. 360-389,
Jun. 2008.

E. Baralis, L. Cagliero, T. Cerquitelli, P. Garza, and M. Marchetti, “CAS-
Mine: Providing personalized services in context-aware applications by
means of generalized rules,” Knowl. Inf. Syst., vol. 28, no. 2, pp. 283-310,
Nov. 2010.

H. Truong, L. Juszczyk, A. Manzoor, and S. Dustdar, ‘“Escape—An adap-
tive framework for managing and providing context information in emer-
gency situations,” presented at the 2nd Eur. Conf., (EuroSSC), Kendal,
U.K., 2007, pp. 207-222.

H.-L. Truong et al., “inContext: A pervasive and collaborative working
environment for emerging team forms,” in Proc. Int. Symp. Appl. Internet,
Turku, Finland, Aug. 2008, pp. 118-125.

E. Gilman, X. Su, O. Davidyuk, J. Zhou, and J. Riekki, ‘Perception
framework for supporting development of context-aware web services,”
Int. J. Pervas. Comput. Commun., vol. 7, no. 4, pp. 339-364, Nov. 2011.
F. Li, S. Sehic, and S. Dustdar, “COPAL: An adaptive approach to context
provisioning,” presented at the IEEE 6th Int. Conf. Wireless Mobile Com-
put., Netw. Commun., (WiMob), Niagara Falls, ON, Canada, Mar. 2010,
pp. 286-293.

H. Yahyaoui, A. Mourad, M. Almulla, L. Yao, and Q. Z. Sheng, ““A synergy
between context-aware policies and AOP to achieve highly adaptable Web
services,” Service Oriented Comput. Appl., vol. 6, no. 4, pp. 379-392,
Jun. 2012.

J. Yu, J. Han, Q. Z. Sheng, and S. O. Gunarso, “PerCAS: An approach
to enabling dynamic and personalized adaptation for context-aware ser-
vices,” in Service-Oriented Computing (Lecture Notes in Computer Sci-
ence), vol. 7636, C. Liu, H. Ludwig, F. Toumani, and Q. Yu, Eds. Berlin,
Germany: Springer, 2012, pp. 173-190.

Y. Taher, M.-C. Fauvet, M. Dumas, and D. Benslimane, ‘“Using CEP
technology to adapt messages exchanged by web services,” presented at
the Proc. 17th Int. Conf. World Wide Web, Beijing, China, Jun. 2008,
pp. 1231-1232.

J. Chanda, S. Sengupta, A. Kanjilal, and K. India, “CA-ESB: Context
aware enterprise service bus,” Int. J. Comput. Appl., vol. 30, no. 3, pp. 1-8,
2011.

(2016). CITI-SENSE, accessed on Jan. 17, 2017. [Online]. Available:
http://www.citi-sense.eu/

(2016). OpenSense, accessed on Jan. 17, 2017. [Online]. Available:
http://www.opensense.ethz.ch/trac/

(2016). OpenSense 1I, accessed on Jan. 17, 2017. [Online]. Available:
http://opensense.epfl.ch/wiki/index.php/OpenSense_2

(2014). SmartSantander, accessed on Jan. 17, 2017.[Online]. Available:
http://www.smartsantander.eu/

VOLUME 5, 2017

ALFONSO GARCIiA DE PRADO received the
Ph.D. degree in computer science from the Uni-
versity of Cadiz, Spain, in 2017. For several years,
he has been a Programmer, an Analyst, and a Con-
sultant for various international industry partners,
focusing on software development, evolution, and
management for large sport events. Over the years,
he has paid special attention to research within
the scope of mobile devices and web services for
which he has analyzed the advantages of using
model-driven and aspect-oriented techniques for service context aware-
ness and published his findings in several journal papers. His research
focuses on trending topics, such as the complex event processing integration
in service-oriented architectures and context awareness in the Internet of
Things.

GUADALUPE ORTIZ received the Ph.D. degree
in computer science from the University of
Extremadura, Spain, in 2007. From 2001 to 2009,
she was an Assistant Professor and a Research
Engineer with the Computer Science Department,
University of Extremadura. In 2009, she joined
the Department of Computer Science and Engi-
neering, University of Cadiz, as an Associate Pro-
fessor. She has authored or co-authored numer-
ous peer-reviewed papers in international journals,
workshops, and conferences. Her research interests embrace aspect-oriented
techniques as a way to improve Web service development, with an emphasis
on model-driven extra-functional properties and quality of service, service
context awareness and their adaptation to mobile devices, and complex
event processing integration in service-oriented architectures. She has been
a member of various programs and organization committees of scientific
workshops and conferences over the years and is a Reviewer for several
journals.

JUAN BOUBETA-PUIG received the degree in
computer systems management and the B.Sc. and
Ph.D. degrees in computer science from the Uni-
versity of Cadiz (UCA), Spain, in 2007, 2010,
and 2014, respectively. Since 2009, he has been
an Assistant Professor with the Department of
Computer Science and Engineering, UCA. His
research focuses on the integration of complex
event processing in event-driven service-oriented
architectures, Internet of Things, and model-driven
development of advanced user interfaces. He received the Extraordinary
Ph.D. Award from UCA and the Best Ph.D. Thesis Award from the Spanish
Society of Software Engineering and Software Development Technologies.

4663

