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ABSTRACT Content caching at base stations is a promising solution to address the large demands for mobile
data services over cellular networks. Content caching is a challenging problem as it requires predicting the
future popularity of the content and the operating characteristics of the cellular networks. In this paper,
we focus on constructing an algorithm that improves the users’ quality of experience (QoE) and reduces
network traffic. The algorithm accounts for users’ behavior and properties of the cellular network (e.g.
cache size, bandwidth, and load). The constructed content and network aware adaptive caching scheme
uses an extreme-learning machine neural network to estimate the popularity of content, and mixed-integer
linear programming to compute where to place the content and select the physical cache sizes in the
network. The proposed caching scheme simultaneously performs efficient cache deployment and content
caching. Additionally, a simultaneous perturbation stochastic approximation method is developed to reduce
the number of neurons in the extreme-learning machine method while ensuring a sufficient predictive
performance is maintained. Using real-world data from YouTube and a NS-3 simulator, we demonstrate how
the caching scheme improves the QoE of users and network performance compared with industry standard
caching schemes.

INDEX TERMS Content caching, cellular network, extreme learning machines, mixed-integer linear
programming, popularity prediction, feature selection, YouTube.

I. INTRODUCTION
Cellular networks are experiencing substantial growth in data
traffic as a consequence of increasing demand for rich multi-
media content via mobile devices. However, it is challeng-
ing for cellular network operators to maintain users’ QoE
while keeping up with this massive growth in mobile data
traffic. The expected data traffic served by cellular networks
is expected to reach 30.6 exabytes (1018) per month by
the year 2020, an eightfold increase compared to 2015 [1].
Content caching in cellular networks is a potential solu-
tion to address the large demands for mobile data services
over cellular networks [2]–[4]. Examples include caching at
eNodeB [5] and caching at home eNodeB [6]. Caching in
cellular networks is an attractive solution as data storage is
inexpensive compared with increasing the bandwidth of a
cellular network. It has been illustrated that almost 60% of the
mobile data traffic results from video traffic [1]. Additionally,
the increased traffic typically results for multiple requests for
a few highly popular video content [7]. By only caching the
highly popular content at the base stations (BS), user demand

for the same content can be served locally. This reduces
the overall network traffic and improves the QoE for users
requesting content.

The literature on content caching in cellular networks has
grown in recent years [8]–[10]. Caching methods roughly
fall into two categories: i) designing new content caching
methods with different objectives e.g., minimizing down-
loading delay, energy consumption, network congestions or
maximizing users’ QoE while assuming content popularity
is known; and ii) developing new methods for predicting
content popularity and caching the most popular content. For
instance, [6] presents content caching methods for BSs to
minimize content downloading delay. The proposed coded
content caching optimization problem in [6] is convex and
involves the solution to a linear program. In [9], a multicast-
aware caching method is developed that minimizes energy
consumption in the network while the method described
in [5] improves users’ QoE. A cooperative content caching
policy is proposed in [7] to improve network performance
and users’ QoE. The presented content caching problem is
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formulated as an integer linear programming and subopti-
mal solutions are devised using the hierarchical primal-dual
decomposition method.

A limitation with the caching methods [6], [7], [9] is that
they assume knowledge of the content popularity in advance,
and assume that the content popularity follows a Zipf
distribution. In reality, content popularity must be esti-
mated [11], [12]. In [13]–[15], content popularity is esti-
mated using the request statistics of the content.1 The content
is then cached based on the estimated content popularity.
In [16] and [17], collaborative filtering methods are used to
cluster users with similar content preferences, and then cache
the content based on the number of users in each cluster. For
new users, their social network characteristics can be used
to estimate their content preferences and cluster association.
The combination of collaborative filtering with social net-
work information is used in [18] and [19] to mitigate the cold
start and data sparseness issues associated with collaborative
filtering. There are two main issues with employing these
methods for caching content. The first is that these methods
are highly intrusive as the methods require knowing the user’s
content requests and social network information–for exam-
ple, these methods can not be employed in countries such
as Canada without user consent as it would violate privacy
laws.2 The second issue is that content popularity is estimated
using the content request statistics. Therefore, these methods
can not be used to cache new content which have no user
request statistics.

In this paper, we construct an adaptive caching scheme that
accounts for users’ behavior and properties of the cellular
network (e.g. cache size, bandwidth, and load). The scheme
does not require specific user’s content requests and/or social
network information. Instead, the popularity of the content
is predicted using features of the content. This allows the
caching of popular content without the need for directly
observing user requests for the content. Additionally, since
the popularity of the content is predicted, the content caching
can be performed when the network load is minimal reducing
in the overall energy usage of the network. A schematic of the
adaptive caching scheme proposed in this paper is displayed
in Fig. 1. The main contributions of this paper include:

• A machine learning algorithm, based on the extreme
learning machine (ELM) [20], to estimate the pop-
ularity of content based on the features of the
content. A simultaneous perturbation stochastic approx-
imation algorithm is also constructed to perform feature-
selection and design parameter selection to improve the
performance of the machine learning algorithm.

• The features in the ELM are constructed using a combi-
nation of human perception models and network param-
eters. For YouTube content, which contains text and
images, the human perception model is used to compute
the brightness and contrast as perceived by a human.

1In this paper content refers to YouTube video files.
2https://www.loc.gov/law/help/online-privacy-law/canada.php

FIGURE 1. Schematic of the caching scheme. Improving the quality of
experience (QoE) involves ensuring a higher cache hit ratio for requested
content and reduced downloading delay.

Additionally for text, the sentiment and subjectivity3 of
the text are computed using a human perception model.

• A mixed-integer linear program (MILP) is constructed
to perform cache initialization that accounts for the pre-
dicted content popularity and properties of the cellular
network.

• An adaptive caching scheme which uses the MILP for
cache initialization, and the S3LRU (Segmented Least
Recently Used with three segments) cache replacement
scheme for dynamically adjusting the cache based on the
requests from users. The combination of these schemes
increases the overall performance of the cellular
network.

• The performance of the adaptive caching scheme is
illustrated using real-world data from YouTube and a
NS-3 simulator. The results illustrated that the adap-
tive caching scheme improves network performance and
users’ QoE compared with industry standard caching
schemes [6], [17], [21].

The paper is organized as follows. The system model and
problem formulation are presented in Sec.II. The content and
network aware adaptive caching scheme, which accounts for
the parameters of the content popularity and technological
network, is presented in Sec.III. In Sec.IV we describe how
ELMs can be used to efficiently estimate content popular-
ity using both content features and the request statistics of
users as they become available. The performance of ELM
for caching, and content and network aware adaptive caching
scheme are illustrated in Sec.V using real-world data from
YouTube.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a heterogeneous cellular network in a geograph-
ical region where base stations (BSs), such as eNodeB and
home eNodeB, are deployed and equipped with a physical
storage/cache capacity. The network shown in Fig. 2 can be
represented by a graph, G = (V, E). The set of vertices V is
used to denote the set of cache enabled BSs which comprises

3Sentiment is a measure of how humans feel about a piece of writing
typically measured on the scale of positive, neutral, or negative. Subjectivity
is related to identifying if the written text is factual (subjective) or an
expression of an opinion (objective).
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TABLE 1. Glossary of parameters.

FIGURE 2. A typical network architecture. Base stations (BSs) are
connected with each other and with the cache manager (CM) via
heterogeneous communication links. Cache manager is connected to the
content server via high speed dedicated link.

of V BSs and indexed by i ∈ V = {1, 2, . . . ,V }. The set of
edges E denotes communication links among BSs. BSs can
communicate with each other andwith a cachemanager (CM)
via Xn interface [22], [23]. CM is connected to a content
server such as a telco content delivery network (CDN) via
a high-speed dedicated link and is responsible for:
i) retrieving unavailable content from the content server;
ii) maintaining a lookup table that stores cached content
location in the network;
iii) forwarding content request to the neighbouring BS which
has the content;
iv) gathering information from BSs about the content are
being requested;
v) making decision when to refresh entire cache of the BSs
which can be done either specific intervals or when content
popularity changes significantly;
vi) performing computations for adaptive caching.
Mobile users are connected to the BSs according to a

cellular network protocol. Connected BS is responsible for
serving users’ content requests. If a requested content is in

the cache of the connected BS, the request is served instantly.
In this case, the content downloading delay is lower, and
hence, improves user’s QoE. In addition, no additional load
is put on the back-haul connection which reduces network
traffic. On the other hand, when a requested content is not
available at the connected BS, the request is forwarded to the
CM. The CM checks the lookup table whether the requested
content is available in the network. If the content is available
in the network, CM performs all the required signaling to
fetch the content from the neighbour BS. Content served by
the neighbour BSs incur lower downloading delay and reduce
network traffic. Finally, CM fetches content from the content
server when requested content is unavailable in the network
or when retrieving content from neighbour BSs incurs higher
delay than the content server.

The content that can be cached is indexed by J =

{1, 2, . . . , J}. Let fj denote the size of the j-th content. The
initial file transferring cost via the CM to a BS i is denoted
by dgi (second per byte), and the latency between BS i and
BS l is denoted by d il where l ∈ V . dgi and d il both
depends on the network topology, communication link, and
routing strategy. The network topology may vary over time
and routing strategy can be adjusted according to the network
traffic. dgi and d il also depends on channel quality when
BSs are communicating with one another via a wireless link.
A glossary of the parameters used throughout the paper is
provided in Table 1.

III. CONTENT AND NETWORK AWARE ADAPTIVE
CACHING SCHEME FOR CELLULAR BASE STATIONS
Our proposed content and network aware adaptive caching
scheme proceeds as follows. Given the estimated content
popularity, network topology, link capacity, routing strategy
and cache deployment budget/energy usage budget in the
network, the adaptive caching scheme prescribes individual
BSs which content to cache and adapts its prescriptions as
the preferences of users (content popularity) evolves over
time. The caching scheme utilizes popularity estimation to
account for the users content request characteristics. The
benefit of using popularity estimators in the caching decision
is that it allows caching decisions to be made–that is when
the network is not being heavily utilized, popular content can
be transferred between BSs without hindering the quality of
service of the network.

The rest of this section is organized as follows: Sec.III-A
formulates the caching scheme as a mixed-integer linear
programming (MILP) while Sec.III-B provides implementa-
tion considerations of the proposed caching scheme.

A. MIXED-INTEGER LINEAR PROGRAM FORMULATION
The adaptive caching scheme takes into account content
popularity, link capacity, network topology, cache size, and
network operating costs. The network operating costs include
storage read/write costs and the cost of data transmission in
the network. In this paper, energy usage to read/write files
from hardware units are considered as cache deployment cost.
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Hardware units draw energy when they are active due to
read/write of the cached content. On the other hand, hardware
units do not cache content when they are in sleep/idle mode
and draw a negligible amount of energy. Therefore, higher
active hardware units mean higher storage/cache size for
caching at a higher energy cost to operate. Network operators
allow BSs to activate a certain number of hardware unit(s) for
caching. The flexible cache size facilitates network operators
to provide physical storage at different BSs according to their
content popularity distribution and network parameters such
as link capacity and network topology while maintaining a
target cache deployment cost in the network at a given time.

In the network, each BS can select a maximum of R possi-
ble hardware units (e.g. physical cache storage sizes) where
each hardware unit has a storage size of s0. Each BS can
only use r i ∈ {1, . . . ,R} active hardware unit(s) due to the
cache deployment cost constraint. Each hardware unit that is
activated has an associated cost defined by z0. The maximum
physical storage size that can be used in the network at
any given time to maintain target cache deployment cost is
denoted by S. The parameter µ̂ij(t) ∈ [0, 1] represents the
estimated popularity of content j at BS i ∈ V for time index
t ∈ {1, · · · ,T }. The parameter µ̂ij(t) is computed by:

µ̂ij(t) =
v̂ij(t)∑

j∈J
v̂ij(t)

, (1)

where v̂ij(t) is total views of content j at BS i for time index t .
In Sec.IV we provide a method to estimate the popularity of
content based on the features of the content.

The MILP is formulated in (2) which minimizes the con-
tent downloading delay, taking into account initial file trans-
ferring cost, and cache deployment cost in the network while
maintaining total cache deployment cost. There are three
decision variables in the MILP:
i) r i ∈ {1, . . . ,R} denotes the number of memory units used
at BS i. The total size of the physical cache used at BS i is
equal to r is0 where s0 is the physical size of the memory units
(e.g. one hardware unit may represent 200 GB of physical
memory);
ii) aij ∈ {0, 1}which is equal to 1 if content j is cached by BS i;
iii) bilj which represents the fraction of content j served by BS
i to BS l. Note that bllj = 1 means that BS l caches the content
j and serves the request itself. Note, the time index t is omitted
for brevity in the content popularity and decision variables.

min
bilj ,a

i
j,r

i

(
w1

∑
j∈J

∑
i∈V
l∈V

fjµ̂ljd
ilbilj + w2

∑
j∈J

∑
i∈V

fjdgiaij

+w3

∑
i∈V

r iz0
)

(2)

subject to constraints∑
i∈V

bilj = 1 ∀j ∈ J , l ∈ V (3)

bilj ≤ a
i
j ∀j ∈ J , i ∈ V, l ∈ V (4)

∑
j∈J

fjaij ≤ r
is0 ∀i ∈ V (5)

∑
i∈V

r is0 ≤ S (6)

bilj ≥ 0 ∀j ∈ J , i ∈ V, l ∈ V (7)

aij ∈ {0, 1} ∀j ∈ J , i ∈ V (8)

r i ∈ {1, 2, · · · ,R} ∀i ∈ V. (9)

The first term of the objective function in the MILP (2)
accounts for the content downloading delay in the network.
The second term of equation (2) represents the initial con-
tent transferring cost in the network. The third term reflects
cache deployment cost in the network. w1 and w2 are the
weight of real-time latency/downloading delay cost and ini-
tial file transferring cost in the objective function, respec-
tively. w3 reflects the weight of cache deployment cost in the
objective function. Constraint (3) ensures that total fraction
of j-th content is equal to 1. Constraint (4) represents the
fact that BS i can serve other BSs’ request only when it
caches the requested content. Constraint (5) ensures that each
BS i fully uses the available cache where fj is the size of the
j-th content, s0 is the size per unit of physical storage, and r i

is the number of units of storage. Constraint (6) maintains the
cache deployment budget in the network.

B. IMPLEMENTATION CONSIDERATIONS
1) MILP SOLUTION
The MILP (2) is NP-hard [24], [25]. Due to the size of the
problem such as the number of available content and the
number of network nodes, it is intractable to find optimal
solutions in real-time. However, several numerical methods
exist for estimating the solution to (2) which include: Branch-
and-bound, cutting planes, branch-and-cut, branch-and-price
are popular heuristic approaches to solve MILP via linear
relaxation [13], [26]–[29]. In this paper, individual videos are
grouped into clusters c ∈ C where C = {1, · · · ,C} repre-
sents the set of cluster/category of videos. Machine learning
methods can be used to estimate the optimal clusters, how-
ever, in the YouTube network a suitable clustering method
is to cluster the YouTube videos based on their associated
category. Examples of categories of YouTube videos include
‘‘Entertainment’’, ‘‘Music’’, ‘‘News’’, ‘‘Sports’’, ‘‘Howto’’.
The set of content in category c ∈ C is denoted by J c ⊆ J .
The popularity associated with each category c ∈ C at base
station i ∈ V is given by:

µ̂ic(t) =
∑
j∈J c

µ̂ij(t) (10)

where µ̂ij(t) is computed using (1). Given the categorical
content popularity (10), the MILP can be used to optimally
select where to cache these content.

2) CACHE UPDATE FREQUENCY
In the adaptive caching scheme there are two content caching
schemes used. The first is the MILP which performs the
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FIGURE 3. A schematic of the adaptive caching scheme. Initially the MILP
uses the estimated content popularity µ̂ic (t0) (10) and network
parameters to compute the physical cache size r i (t0)s0 to be used at
base station i ∈ V , and ai

j (t0) ∈ {0,1} indicating if content j ∈ J is to be
cached at base station i ∈ V initially. t0 indicates when the solution of
the MILP is used to update the base station cache. Then, the S3LRU uses
the content requests from users to compute ai

j (t) ∈ {0,1} at times t > t0.

FIGURE 4. A schematic of the segmented least recently used (S3LRU)
cache replacement scheme with three levels denoted by Level-3, Level-2,
and Level-1. The S3LRU is used to control the cache content at each base
station after the cache is initialized. Level-3 has the content with the
highest popularity, and Level-1 has the content with the lowest
popularity. In each Level, the most popular content is placed in the
head H of the level, and the least popular content is placed in the tail T
of the level. If the requested content is not currently in the cache, then
the requested content is transferred from the cache manager (CM) to the
head segment of the Level-1 cache. If the requested content is currently
in the cache, then the content is moved to the head of the next level with
all other content shifted down by one with the content in the tail of
Level-1 removed from the cache.

cache initialization, and the second caching scheme which
uses users’ request statistics to dynamically cache content.
An important design parameter to consider when using the
MILP (2) for cache initialization is when to replace the
currently cached content. Given that the MILP may replace
a significant portion of the cached content, typically the
solution of the MILP will only be used when the network
traffic flow is minimal. Fig. 3 provides a schematic of the
adaptive caching scheme.

The BSs initialize their physical cache size and content to
cache based on the results of theMILP. Then, the S3LRU [30]
is used to select the content to cache based on the users’
requests. In the S3LRU caching scheme, the physical cache of
each BS is composed of three segments as illustrated in Fig. 4.
The segments are defined by Level-3, Level-2, and Level-1 in
which Level-3 has the content with the largest popularity, and
Level-1 has the content with the lowest popularity. Each of
the Levels is composed of a head segment and a tail segment
where the head segment contains the most popular content,
and the tail segment contains the least popular content in the
associated level. The dynamics how the content is cached in

the S3LRU is illustrated in Fig. 4. If the requested content is
currently in the cache, then the content is moved to the head of
the next level with all other content shifted down by one. Note
that in Level-1, the content in the tail segment is evicted from
the cache (that is, it no longer resides in the cached content).
If the requested content is not currently in the cache, then
the requested content from the cache manager is placed in
the head segment of Level-1 of the cache. This replacement
policy ensures that the popular content resides in Level-3 of
the cache, and the least requested content resides in Level-1
of the cache.

IV. EXTREME LEARNING MACHINE (ELM) FOR
POPULARITY PREDICTION
The adaptive caching scheme in Sec.III requires the future
popularity of the content to be known. In this section we
use ELMs [31], [32] to estimate the popularity of content
given the content features and previous request statistics of
the content. Additionally, we provide methods to optimize
the number of neurons of the extreme learning machine
and select the optimal features to perform the popularity
prediction. As an illustrative example, we focus on predict-
ing the popularity of videos in YouTube. The prediction of
popular content in YouTube is challenging as the features
of YouTube video contains significant noise. Therefore the
machine learning algorithms usedmust be able to address this
challenging problem ofmapping from these type of noisy fea-
tures to the associated popularity of a video. Of the machine
learning methods tested we found that the ELM [31], [32]
provides sufficient performance to estimate the popularity of
YouTube videos. Though the results presented in this section
are focused on the use of ELM, the constructed features,
neuron selection algorithm, and feature selection algorithm
are general and can be used with other machine learning
techniques.

A. PREDICTING CONTENT POPULARITY WITH EXTREME
LEARNING MACHINES
Consider a dataset D =

{
{xj, vj(t)} : j ∈ J = {1, . . . , J}, t ∈

{1, . . . ,T }
}
of features x ∈ RM , and total views vj(t) on day t

for content j ∈ J . The aim is to construct a model that relates
the features x to the total views v based on the dataset D. For
example, single hidden-layer feed-forward neural networks
can be used for estimating the functional relationship vj(t) and
the features xj. However, in practice the selection of themodel
and training method is complex requiring consideration of
the universal approximation ability of the model, sequen-
tial learning ability, efficiency, parallel implementation, and
hardware implementation. Recently, based on the Rosenblatt
perceptron [33], ELMs [20] have been introduced for learning
the functional relationship between inputs xj and output vj(t).
The ELM which satisfies the universal approximation condi-
tion [34], [35], can be implemented in parallel [31], can be
trained sequentially for large datasets or as new training data
becomes available [36], [37], and can be efficiently imple-
mented on field-programmable gate array devices as well as
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complex programmable logic devices [32]. The ELM is a
single hidden-layer feed-forward neural network in which the
parameters of the hidden-layer are randomly generated by a
distribution, and the subsequent output weights are computed
by minimizing the error between the computed output vj(t)
and the measured output from the dataset D. Each hidden-
layer neuron can have a unique transfer function. Popular
transfer functions include the sigmoid, hyperbolic tangent,
and Gaussian however any non-linear piecewise continuous
function can be utilized.

The classic extreme learning machine, presented in [38], is
given by:

v̂j(t) =
L∑
k=1

βkhk (xj; θk ) (11)

withβ1, β2, . . . , βL theweights of each neuron, h1(xj), h2(xj),
. . . , hL(xj) the associated transfer function of each neuron,
and v̂j(t) the estimated total views of the video content j
at time t . Given D, how can the ELM model parameters
βk , θk , and L in (11) be selected? For fixed number of hidden
neurons L, the ELM trains βk and θk in two steps. First,
the hidden layer parameters θk are randomly initialized. Any
continuous probability distribution can be used to initialize
the parameters θk . Second, the parameters βk are selected to
minimize the square error between the model output and the
measured output from D. Formally,

β∗ ∈ argmax
β∈RL

{
||Hβ − Y ||22

}
(12)

with H the hidden-layer output matrix with entries Hkj =
hk (xj; θk ) for k ∈ {1, 2, . . . ,L} and j ∈ J , and Y the target
output with entries Y = [y1, y2, . . . , yJ ]. The solution of
(12) is given by β∗ = H+Y where H+ denotes the Moore-
Penrose generalized inverse of H . Several efficient methods
can be used to compute β∗ (refer to Golub and Van Loan,
2012). The benefit of using the ELM, (11) and (12), is that
the training only requires randomly generating parameters θk ;
the parameters βk are computed as the solution of a linear
algebraic system of equations.

B. FEATURE CONSTRUCTION FOR POPULARITY
PREDICTION
Here we describe how the features of YouTube videos are
constructed using the YouTube Application Programming
Interface.4

The meta-data of each YouTube video contains four pri-
mary components: Thumbnail, Title, Keywords (also known
as tags), and Description. Additionally, each YouTube video
is associated with a Channel that contains features such as
the number of subscribers. The viewcount of a video is sen-
sitive to the features of the Thumbnail, Title, Keywords, and
Channel. However, features associated with the description
appear not to significantly impact the viewcount of a video.

4Specific details on how to interact with the YouTube API are provided at
https://developers.google.com/youtube/v3/docs/.

This may result because when performing video searched
on YouTube, only a subset of the description is provided
to the users. In this paper we focus on how features of the
Thumbnail, Title, Keywords, and Channel can be used to
estimate the the viewcount of a YouTube video. Note that our
analysis does not include the video or audio quality, and the
description of the YouTube video. These features will impact
the dynamics of users subscribing to a channel, and rating the
video, however, they do not directly impact the viewcount of
a specific video.

For the Thumbnail, 19 features are computed which
include: the blurriness (CannyEdge, Laplace Frequency),
brightness, contrast, overexposure, and entropy of the thumb-
nail. All image analysis is performed using the OpenCV
(Open Source Computer Vision) library.5 To compute the
brightness ηw of each video thumbnail, we first import the
thumbnail in RGB color format. Let us denote Xue as a pixel
in the thumbnail image, andR(Xue) ∈ [0, 255] as the red light,
G(Xue) ∈ [0, 255] as the green light, and B(Xue) ∈ [0, 255]
as the blue light associated with pixel Xue. The total size
of the thumbnail is given by NXNY with u ∈ {1, . . . ,NX }
and e ∈ {1, . . . ,NY }. The brightness of the image is then
computed using:

ηw(Xue) = 0.299R(Xue)+ 0.587G(Xue)+ 0.114B(Xue)

ηw =
1

765NXNY

NX∑
u=1

NY∑
e=1

ηw(Xue). (13)

Typically humans’ perceived brightness for color are most
sensitive to variations in green light, less to red, and least
to blue. The coefficients in (13) are associated with the
perceived brightness for color, and the specific values are
obtained from the OpenCV software. The contrast of each
thumbnail ζw is computed using the RMS Contrast given by:

ζw =

√√√√ 1
765NXNY

NX∑
u=1

NY∑
e=1

(
ηw(Xue)− ηw

)2
. (14)

As we illustrate, the brightness ηw and contrast ζw of a videos
Thumbnail provide important information that can be used to
estimate the viewcount of a YouTube video.

For the Title, 23 features are computed which include:
word count, punctuation count, character count, Google hits
(e.g. if the title is entered into the Google search engine,
how many results are found), and the Sentiment/Subjectivity
of the title computed using Vader [39], and TextBlob.6 For
the Keywords, 7 features are computed which include: the
number of keywords, and keyword length. In addition, to the
above 49 features, we also include auxiliary video and chan-
nel features including: the number of subscribers, resolution
of the thumbnail used, category of the video, the length of the
video, and the first-day viewcount.

In total 54 features are computed for each video. The
complete dataset used for the sensitivity analysis is given by

5http://opencv.org/
6http://textblob.readthedocs.io/en/dev/
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D = {(xj, vj)}j∈J , with xj ∈ R54 the computed features for
video j ∈ J , vj the viewcount t = 14 days after the video
is published, and J the total number of videos used for the
sensitivity analysis.

C. OPTIMIZING THE NUMBER OF NEURONS IN THE
EXTREME LEARNING MACHINE
For online applications of caching where millions of videos
may be cached, it is critical to consider the computational cost
of evaluating the popularity of the content. In this section
we consider how to select the number of neurons L in the
ELM while still ensuring a sufficient predictive performance
is maintained.

Several methods exist for selecting the number of neurons
L (11) in the extreme learning machine [34], [40], [41].
In [41] a multiresponse sparse regression is utilized to order
the neurons from best to worst. Then using the leave-one-
out generalization metric the optimal number of neurons can
be selected. Another method is to incrementally increase L
until the desired accuracy or maximum number of neurons is
reached [34]. In [40] neurons are added incrementally until
the output of the ELM negligibly effected as measured using
a non-parametric noise estimator known as the delta test. The
main idea in [40] is that if the increase in accuracy of the ELM
is above the estimated variance of the ELM then a neuron is
added.

The predictive performance (e.g. probability of Type-I and
Type-II errors) of the ELM, as a function of the number
of neurons L, is a random variable as a result of how each
ELM is initialized. Given the desired predictive performance,
instead of having to estimate the mean of the ELM for each
L and then using a gradient decent method, one could instead
employ the stochastic perturbation simultaneous approxima-
tion (SPSA) [42] method to compute the optimal number of
neurons. The ELM parameter L is adapted to estimate:

argmin
L∈{1,2,... }

A(L)=E
[
P(Type-I error)+P(Type-II error)+gτ

]
(15)

where τ is the training time of the ELM, and g is a design
parameter. Here E denotes the expectation with respect to
the random variable θ defined in (11), and P denotes the
probability. Since the probability of Type-I errors, Type-II
errors, and the training time τ is not known explicitly, (15) is
a simulation based stochastic optimization problem. To deter-
mine a local minimum value ofA(L), several types of stochas-
tic optimization algorithms can be used [42]. In this paper we
use the following SPSA algorithm (Algorithm 1):

The SPSA is a gradient based stochastic optimization algo-
rithm where the gradient is estimated numerically by random
perturbation(17). The nice property of the SPSA algorithm is
that estimating the gradient ∇LAn(Ln) in (17) requires only
two measurements of the cost function (16) corrupted by
noise per iteration. See [42] for a tutorial exposition of the
SPSA algorithm. For decreasing step size ψ = 1/n, the
SPSA algorithm converges with probability one to a local

Algorithm 1 SPSA Neuron Selection
Step 1: Choose initial ELM parameters L0 by generating

each from the distribution N (0, 1), and define the
video popularity threshold as lth.

Step 2: For iterations n = 1, 2, 3, . . .
· Estimate the Type-I and Type-II error probabilities

of the ELM with Ln neurons using

FP =
|J |∑
j=1

1{(v̂j ≥ lth) ∩ (vj < lth)},

TP =
|J |∑
j=1

1{(v̂j ≥ lth) ∩ (vj ≥ lth)},

FN =
|J |∑
j=1

1{(v̂j < lth) ∩ (vj ≥ lth)},

TN =
|J |∑
j=1

1{(v̂j < lth) ∩ (vj < lth)},

P(Type-I error) ≈ FP/(TP+ FN ),

P(Type-II error) ≈ FN/(TN + FP), (16)

where 1{·} is the indicator function and ∩ denotes
the logical and operator. Given (16), compute the
cost Ân(Ln) by substituting (16) into (15).

· Compute the gradient estimate ∇̂L Ân(Ln):

∇̂L Ân(Ln) =
Ân(Ln +1nω)− Ân(Ln −1nω)

2ω1n

1n(j) =

{
−1 with probability 0.5
+1 with probability 0.5

(17)

with gradient step size ω > 0.
· Update the number of neurons Ln of the ELMat step

n with step size ψ > 0:

Ln+1 = Ln − ψ∇̂L Ân(Ln).

stationary point. For constant step sizeψ , it converges weakly
(in probability) to a local stationary point.

D. STOCHASTIC FEATURE SELECTION
Feature selection algorithms are geared towards selecting the
minimum number of features such that a sufficiently accurate
prediction is possible. If the feature set is too large then the
generalization error of the predictor will be large. Though
several feature selection algorithms exist [43], [44], only the
ELM feature selection method presented in [45] has utilized
feature selection to improve the performance of the ELM.
In this section we construct a feature selection algorithm,
Algorithm 2, which relies on computing the optimal features
based on themodel sensitivity to variations in the features and
an estimate of the generalization error of the model. Features
are removed sequentially while ensuring the generalization
error is sufficiently low.
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The main idea of the sequential feature selection
algorithm (Algorithm 2) is to sequentially remove the least
useful features while ensuring that the performance of the
ELM is sufficiently high. This is performed by computing
the output of the ELM with all features, then computing the
output with one of the features held constant at its mean
(i.e. the null ELM model). If the output from the ELM and
null ELM are similar under some metric then the feature
held constant does not contribute significantly to the pre-
dictive performance of the ELM and should be removed.
This process is repeated sequentially in Algorithm 2 until a
performance threshold is reached.

Algorithm 2 Sequential Wrapper Feature Selection

Step 0: Collect the dataset D =
{
{xj, vj} : j ∈ J =

{1, . . . , J}
}
of features xj ∈ RM and video view

count vj for videos. Select the desired similarity
metric F(·) (e.g. R2 coefficient of determination).

Step 1: Train the ELM (11) using the dataset D and (12).
Denote the predicted viewcount from the ELM by
v̂D.

Step 2: For m ∈ {1, 2, . . . ,M}, train the ELM using
the dataset Dm where Dm is the dataset D with
the feature xj(m) held at its mean for all j ∈ J .
Denote the predicted output from each of the m ∈
{1, 2, . . . ,M} ELMs by v̂mD.

Step 3: Compute the feature index m with maximum sim-
ilarity between v̂D from Step 1 and v̂mD from Step 2:

m∗ ∈ argmax
m∈{1,...,M}

{F(v̂D, v̂
m
D)} (18)

where F(·) denotes the selected similarity metric
from Step 0.

Step 4: Compute the metrics of performance (Type-I and
Type-II error probabilities) using the ELM trained
using the dataset D∗ where the feature m∗ from
Step 3 has been removed. If the metrics of perfor-
mance are too high then stop. Otherwise return to
Step 1 using the dataset D← D∗.

V. NUMERICAL EXAMPLE OF CONTENT AND NETWORK
AWARE ADAPTIVE CACHING USING REAL-WORLD
YouTube DATA
This section provides a numerical example to illustrate
the performance of the adaptive caching using real-
world YouTube dataset. Sec.V-A describes simulation setup.
Performance of extreme learning machine for caching is
presented in Sec.V-B. We use results obtained from Sec.V-B,
to evaluate the performance of the adaptive caching presented
in Sec.V-C.

A. SIMULATION SETUP
The real-world YouTube data was collected using the
YouTube API between the years 2013 to 2015 and consists
of J = 12, 500 YouTube videos. In the collected dataset,

the viewcounts range from 102 to above 107. Therefore,
to prevent the machine learning algorithms from biasing their
prediction to only the videos with the highest viewcount,
we scale the viewcount vj to be on the log scale (i.e. if a
video has 106 views then vj = 6). All the content features
are scaled to satisfy x(m) ∈ [0, 1] for m ∈ {1, . . . ,M}. Note
that we also collect the category c ∈ C of each YouTube
video (e.g. ‘‘Entertainment’’, ‘‘Music’’, etc.), however, this
information is not included into the feature set used to train
the ELMs. In total there are 17 YouTube categories in the
collected dataset. Each ELM is trained using an identical
10-fold cross validation method using the datasetD, or in the
case of the feature selection method D∗. The trained ELMs
are then used to compute both the video popularity µ̂ij(t) (1),
and categorical popularity µ̂ic(t) (10).

TABLE 2. Number of files in each YouTube category in the collected
dataset.

For evaluating the performance of the adaptive caching
scheme we require the network parameters, a method to
generate user requests, and the cache initialization time of
the MILP. Initially, the content is cached via the solution
of the MILP (2) at simulation time slot p = 1 with the
parameters w1 = 1, w2 = 0.005, w3 = 1, and z0 = 0.1. The
topology of the network is provided in Fig. 5, and the param-
eters of the network are given by: S = 9 TB, fj = 500 MB,
s0 = 200 GB, ri ∈ {1, 2}, and Table 2 provides the size of
all content in each video category. To generate user requests
based on the real-world YouTube data, we use the following
stochastic simulation.

λi ∼ U[1, 10] i ∈ V

N i
p ∼ Poisson(λi) p ∈ {1, . . . , 50, 000}

F iq ∼ Cat(µ(t)) q ∈ {1, . . . ,N i
p} (19)

where N i
p is the total number of requests at BS i at simulation

time slot p, F iq is the video content that is requested at BS
i at simulation time slot p by the q-th request. The categorical
distribution Cat(µ(t)) is defined by the video popularity vec-
tor µ(t) = [µ1(t), µ2(t), . . . , µJ (t)] where µij(t) is defined
in (1). The parameter µ(t) is computed using the viewcount
on day t = 4 (v̂ij(4)). The content popularity is assumed to
be equal at each BS. With the parameters in (19), each BS
i ∈ V will receive on average between 50, 000 to 500, 000
content requests per day. To compute the latency parameters,
d il and dgi of equation (2) we use the ndnSIM2.0 (an NS-3
based simulator) software [46]. ndnSIM’s Best Route strategy
is used to transfer content between BSs.
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FIGURE 5. Schematic of the network. The circles with a solid black
outline and light gray fill represent base stations having 400 GB storage
size. Other base stations have 200 GB storage size. The associated
communication links between the base stations are denoted by the
connected arrows. CM is the content manager.

B. PERFORMANCE OF EXTREME LEARNING MACHINE
FOR CACHING
In this section, using the real-world data from YouTube, we
illustrate how the number of neurons of the ELM (11) and
features can be selected using Algorithm 1 and Algorithm 2.
Additionally we will illustrate how the ELM can be used to
both predict the popularity of new videos, and estimate the
popularity of published videos.

Fig. 6 illustrates the mean and variance of the specificity,
false negative rate, false positive rate, sensitivity, and Gmean
computed using 600 independently trained ELMs for each
number of neurons. Using the SPSA (Algorithm 1) we found
that an ELM with L = 300 provides sufficient accuracy for
performing the content popularity estimation.

Having computed the optimal number of neurons, the next
task is to select the video features which are most impor-
tant for estimating the video viewcount. The performance
of Algorithm 2 for selecting the YouTube features of the
ELM is illustrated in Fig. 7(a) and 7(b). When using R2, only
3 features are required tomaintain a high level of performance
for the ELM. These 3 features are the number of subscribers,
contrast of the video thumbnail, and the overexposure of the
video thumbnail. This illustrates that the title and keywords

FIGURE 6. Performance of the ELM (11) for estimating YouTube video
content popularity as a function of the number of neurons L in the ELM.
The dataset used for this analysis is presented in Sec.IV-B. CM represents
the cache manager which has the access to all the video files, and the
other nodes represent the base stations used to serve user requests.
(a) Hidden neurons L. (b) Hidden neurons L.

FIGURE 7. Performance of the feature selection Algorithm 2 when the
R2 coefficient of determination (Fig. 7(a) and 7(b)) are used as the
similarity metric. (a) Feature index. (b) Feature selection iteration.

contribute negligibly to the popularity of YouTube videos in
the dataset analysed when using the ELM.

Having optimized both the number of neurons of the ELM
and the important features required for performing the pop-
ularity estimation, we now illustrate the performance of the
ELM compared to several other machine learning methods.
Fig. 8(a) provides a schematic of the ELM that can perform
both prediction of new and published videos. The meta-data
for a video is presented to the feature selection algorithm
which constructs the video features xj ∈ R4 which is com-
posed of subscribers, contrast, overexposure, and previous
day viewcount. Notice that xj(t) evolves per day t after the
video is posted as new request statistics become available.
The predicted viewcount on day t from the ELM is given
by v̂j(t).
As expected, with no request statistics available, the pre-

dicted viewcount from the ELM has a large variance as
illustrated in Fig. 8(b) for vj(1). However in typical caching
applications we are only interested in the top 10% of content
in which case we can construct a binary popularity estimator
using the output from the ELM by thresholding. For a video
popularity threshold of lth = 104.5 views there are 1379 pop-
ular videos and 11,121 unpopular videos. Table 3 provides
the performance of the Binary ELM classifier and several
other machine learning classifiers. Note that all classifiers
were trained using the same dataset and on a standard desktop
computer. As seen, the ELM has comparable performance to
several popular classifiers and can be evaluated efficiently.
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FIGURE 8. Real-World viewcount vj (t) (black dots) and numerically
predicted viewcounts v̂j (t) (grey dots) computed using the ELM (11). The
ELM is trained using the YouTube dataset D as described in Sec.V.
(a) Schematic of the Extreme Learning Machine for estimating the
viewcount vj (t) of video j ∈ J . xj (0) ∈ RM is the initial set of features of
video j ∈ J , xj (t) ∈ R4 are the features used by the ELM to estimate the
video viewcount v̂j (t) on day t . (b) Viewcount on day 1. (c) Viewcount on
day 4.

As the request statistics arrive the ELM can be used to
make an accurate prediction of the viewcount dynamics as
illustrated in Fig. 8(c) for the viewcount on day 4 (i.e. vj(4)).
Therefore a course estimate of the popularity of videos can be
made using the ELM initially, then as request statistics arrive
the ELM can be used to provide a high accuracy estimate of
the next day popularity of videos.

C. PERFORMANCE OF THE CONTENT AND NETWORK
AWARE CACHING SCHEME
This section illustrates the performance of the adaptive
caching scheme presented in Sec.III. Specifically, the content
downloading delay and cache hit ratio from the adaptive

TABLE 3. ELM performance comparison: TP (true positive), TN (true
negative), and training times.

caching scheme are compared with the most popular and
random cache deployment schemes.

In the most popular caching scheme, each BS caches the
most popular estimated categories (computed using request
statistics) of the content until each base station’s cache is
full [6], [17]. The random cache deployment scheme accounts
for content popularity (computed using content request statis-
tics) and network parameters using an MILP which does
not account for changes in the physical cache sizes at the
BSs [21]. Additionally, the method in [21] incorporates a
cache replacement scheme using the LRU (Least-Recently-
Used) scheme. In this section, we compare the performance
of the adaptive caching scheme with the schemes in [6], [17],
and [21], with the predicted popularity from the ELM used in
place of the request statistics, and the S3LRU used in place
of the LRU cache replacement scheme.

To compute the optimal size of caches for the BSs, we
solve the MILP problem (2). The results of the MILP are
provided in Fig. 5 where the circles with a solid black outline
and light gray fill represent BSs allocated with a 400 GB
cache storage size. Other BSs are allocated with a 200 GB
cache storage size. As seen in Fig. 5, the physical cache sizes
in the network are heterogeneous. The MILP, based on the
network topology, link capacity, routing strategy, and content
popularity, optimally selects the physical cache sizes to use
to reduce network energy consumption.

Fig. 9 shows the cumulative content downloading delay
in the network vs. the simulation time. From Fig. 9, the
adaptive caching scheme has the smallest cumulative content
downloading delay compared with the most popular and
random cache deployment schemes. This allows the adaptive
caching scheme to increase the users’ QoE in the network
compared to these other caching schemes. The main reason
the adaptive caching scheme outperforms the most popular
and random cache deployment schemes is that the adap-
tive caching scheme considers adjacent BSs physical cache
sizes and cached content to improve network performance.
Comparing the performance of the most popular caching
scheme and random cache deployment scheme, it is clear that
methods which account for network parameters whilemaking
caching decisions will improve the users’ QoE.

Fig. 10 plots the cumulative average cache hit ratio in
the network vs. the simulation time. As seen in Fig. 10, the
adaptive caching scheme performs better than the other two
caching schemes. This performance improvement is due to
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FIGURE 9. Cumulative average content downloading delay vs. simulation
time. The figure illustrates that lower content downloading delay
improves users’ QoE.

FIGURE 10. Cumulative average cache hit ratio in the network vs.
simulation time. The figure illustrates that a higher cache hit ratio reduces
the overall network traffic since fewer requests are served by transferring
the content from the cache manager to the BS where the request
originated.

the fact that the adaptive caching scheme takes into account
network topology, content popularity and cache deployment
in the formulation. Here, higher cache hit ratio in the network
means, a higher number of requests are being served by the
connected BSs or by the neighbour BSs. As can be seen
from Fig. 10, cache hit ratio for adaptive caching scheme is
0.9. That means only 10% of the content requests are served
by the content server while random cache deployment and
most popular caching schemes account for 15% and 25%,
respectively for the given simulation setup. Therefore, the
adaptive caching scheme reduces network traffic since fewer
requests are served from the content server.

VI. CONCLUSION
In this paper an adaptive caching scheme is presented that
takes into account users’ behavior and operating characteris-
tics of the cellular network. The caching scheme uses an opti-
mized extreme learning machine to estimate the popularity
of content based on users’ behaviour, features of the content,
and request statistics from users as they become available.
The features of the content are computed using a combination

of human perception models and network parameters. The
estimates are used in a mixed-integer linear program which
takes into account the cellular network parameters (e.g., net-
work topology, communication link, and routing strategy)
to select where to cache content and also to provide stor-
age recommendations to the network operator. The scheme
is validated using real-world data from YouTube and the
NS-3 simulator. In future work, we will consider how to opti-
mize the update times of performing popularity estimation
and cache updating based on both the content popularity and
the technological network parameters.
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fromHuawei Technologies Canada Co. Ltd. for useful insight
and expertise that greatly assisted in the research of this paper.

REFERENCES
[1] Cisco Visual Networking Index: ‘‘Global Mobile Data Traffic Forecast

Update 2015–2020,’’ 2016.
[2] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, ‘‘Cache

in the air: Exploiting content caching and delivery techniques for 5G
systems,’’ IEEE Commun. Mag., vol. 52, no. 2, pp. 131–139, Feb. 2014.

[3] M. Gregori, J. Gómez-Vilardebó, J. Matamoros, and D. Gündüz, ‘‘Wireless
content caching for small cell and D2D networks,’’ IEEE J. Sel. Areas
Commun., vol. 34, no. 5, pp. 1222–1234, May 2016.

[4] N. Zhao, X. Liu, F. R. Yu, M. Li, and V. C. Leung, ‘‘Communications,
caching, and computing oriented small cell networks with interference
alignment,’’ IEEE Commun. Mag., vol. 54, no. 9, pp. 29–35, Sep. 2016.

[5] H. Ahlehagh and S. Dey, ‘‘Video-aware scheduling and caching in the radio
access network,’’ IEEE/ACM Trans. Netw., vol. 22, no. 5, pp. 1444–1462,
Oct. 2014.

[6] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, ‘‘FemtoCaching: Wireless content delivery through dis-
tributed caching helpers,’’ IEEE Trans. Inf. Theory, vol. 59, no. 12,
pp. 8402–8413, Dec. 2013.

[7] W. Jiang, G. Feng, and S. Qin, ‘‘Optimal cooperative content caching and
delivery policy for heterogeneous cellular networks,’’ IEEE Trans. Mobile
Comput., to be published.

[8] S. Andreev et al., ‘‘Exploring synergy between communications, caching,
and computing in 5G-grade deployments,’’ IEEE Commun. Mag., vol. 54,
no. 8, pp. 60–69, Mar. 2016.

[9] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, ‘‘Exploiting
caching and multicast for 5G wireless networks,’’ IEEE Trans. Wireless
Commun., vol. 15, no. 4, pp. 2995–3007, Jun. 2016.

[10] K. Poularakis, G. Iosifidis, and L. Tassiulas, ‘‘Approximation algorithms
for mobile data caching in small cell networks,’’ IEEE Trans. Commun.,
vol. 62, no. 10, pp. 3665–3677, Jul. 2014.

[11] B. Bharath, K. Nagananda, and H. V. Poor, ‘‘A learning-based approach
to caching in heterogenous small cell networks,’’ IEEE Trans. Commun.,
vol. 64, no. 4, pp. 1674–1686, Oct. 2016.

[12] S. Müller, O. Atan, M. van der Schaar, and A. Klein, ‘‘Context-aware
proactive content caching with service differentiation in wireless net-
works,’’ IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 1024–1036,
Mar. 2017.

[13] P. Blasco and D. Gunduz, ‘‘Learning-based optimization of cache content
in a small cell base station,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
Jul. 2014, pp. 1897–1903.

[14] A. Sengupta, S. Amuru, R. Tandon, R. M. Buehrer, and T. C. Clancy,
‘‘Learning distributed caching strategies in small cell networks,’’ in Proc.
11th Int. Symp. Wireless Commun. Syst. (ISWCS), 2014, pp. 917–921.
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