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ABSTRACT The identification of influential nodes is essential to research regarding network attacks,
information dissemination, and epidemic spreading. Thus, techniques for identifying influential nodes in
complex networks have been the subject of increasing attention. During recent decades, many methods have
been proposed from various viewpoints, each with its own advantages and disadvantages. In this paper, an
efficient algorithm is proposed for identifying influential nodes, using weighted formal concept analysis
(WFCA), which is a typical computational intelligence technique. We call this a WFCA-based influential
nodes identification algorithm. The basic idea is to quantify the importance of nodes viaWFCA. Specifically,
this model converts the binary relationships between nodes in a given network into a knowledge hierarchy,
and employs WFCA to aggregate the nodes in terms of their attributes. The more nodes aggregated, the
more important each attribute becomes. WFCA not only works on undirected or directed networks, but is
also applicable to attributed networks. To evaluate the performance of WFCA, we employ the SIR model to
examine the spreading efficiency of each node, and compare the WFCA algorithm with PageRank, HITS,
K-shell, H-index, eigenvector centrality, closeness centrality, and betweenness centrality on several real-
world networks. Extensive experiments demonstrate that the WFCA algorithm ranks nodes effectively, and
outperforms several state-of-the-art algorithms.

INDEX TERMS Influential nodes, weighted formal concept analysis, complex networks, SIR model.

I. INTRODUCTION
During recent decades, complex network mining has been
the subject of significant attention [1]–[3]. This can help in
understanding complex network functions, as well as dis-
covering the regularity of the dynamic evolution of complex
networks and predicting their behavior [4]–[6]. In a complex
network, each node may have a different status or role and the
roles of different nodes in the structure and function may be
largely different. Some nodes affect the structure and function
of the network to a greater extent than others, and these are
called influential nodes [7]. The study of influential nodes has
important practical value. In the example of epidemic spread-
ing, if we know the influential nodes in a given network, this

may help to predict the spread of the disease, and to control
the disease before an epidemic outbreak occurs [8], [9]. In
the criminal networks, the importance of ranking in favor
of discriminating the ringleaders, backbone members and
followers, quickly locate the leader of criminal gangs [10].
Identifying influential nodes in networks also can do much
good to many applications such as effective vaccinations
strategies [11], saving human lives [12], and the resolution of
social dilemma [13], all these relying on proper identification
of influential nodes. In fact, identifying influential nodes has
played an important role in the analysis of social networks,
biological networks, information networks, and transporta-
tion systems [14]–[17]. Thus, techniques for identifying
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FIGURE 1. Toy example of WFCA. (a) A toy network G. (b) The formal context of the network G. (c) The concept lattices of the network G. WFCA
clusters objects by attributes. For example, the concept C4 clusters concepts C7,C8,C10, and C11, which have the common attribute {3#}. The
objects 1,2,4,5 are gathered to the concept C4. Therefore, the more objects that are aggregated, the more important the corresponding
attribute becomes.

influential nodes in complex networks have been the sub-
ject of increasing attention. So far, many methods for
identifying influential nodes have been proposed, such as
degree centrality [18], closeness centrality [19], between-
nesscentrality [20], PageRank [21], Leader Rank [22],
H-index [23], and HITS [24]. Although many algorithms
have been proposed, these methods all have their own advan-
tages and limitations. For example, degree centrality has a
comparatively low time complexity, but has a low accuracy.
The PageRank algorithm is stable in scale-free networks, but
it is sensitive to disturbances of randomnetworks [23]. Leader
Rank performs well in directed complex networks, but cannot
be applied in undirected complex networks.

In this paper, we propose a new method, called WFCA,
to identify influential nodes in complex networks. We con-
sider the problem of detecting influential nodes from the
new viewpoint of weighted formal concept analysis. This
takes into account the relationships of nodes in terms of
the overall structure of the network, and converts binary
relationships into a hierarchy structure. We will describe
WFCA in Section 3, but first let us elaborate on the basic
idea.

A. BASIC IDEAS
Formal concept analysis (FCA) [25] provides a powerful
approach to data mining and knowledge representation. The
concept of FCA consists of objects and attributes. FCA uses
binary object-attribute relations to construct a knowledge
hierarchy that reflects the intrinsic relationships between
objects and attributes. Here, we consider a given complex
network as a formal context. Nodes of the complex network
represent the objects and attributes of the formal context.
An edge between nodes denotes a binary relation, where an
attribute belongs to an object. When building upon the con-
cepts of FCA, the calculation of important nodes is involved
in three major steps. First, we construct the adjacency matrix
of a network as the formal context. Subsequently, we compute
the concepts of the formal context. Finally, we calculate the
weight of each node based on the concepts.

To further illustrate the basic idea, let us consider a
toy network as an example. Here, Fig. 1(a) illustrates a

network G that contains five nodes and six edges.
Fig. 1(b) presents the formal context of the network G, and
Fig. 1(c) shows the concept lattices of the formal context. The
method of calculating the concept lattice will be described in
Section 3.2. In Fig. 1(c), there are 12 concepts, denoted by
C1 to C12. The numbers (1, 2, 3, 4, 5) represent objects, and
(1#, 2#, 3#, 4#, 5#) denote attributes. Both of these represent
the nodes (1, 2, 3, 4, 5). Formal concept analysis aggregates
these objects by attributes to form a hierarchy, where C12
is located in the bottom, C7 − C11 are located in the first
layer, C2 − C6 are located in the second layer, and C1 is
located in the top layer. As the level increases, more objects
are added, while the attributes gradually reduce. The hier-
archy structure not only reflects the intrinsic links between
nodes, but also characterizes the generalization-instantiation
relationships between concepts. For example, because the
concepts C7,C8,C10, and C11 have the common attribute
{3#}, objects with this attribute will be gathered to form
the concept C4. In Fig. 1(c), we can observe that the more
objects are aggregated, the more important the corresponding
attribute becomes. The weights of the attributes in each
concept are obtained intuitively, by using the number of
objects divided by the number of attributes.

B. CONTRIBUTIONS
WFCA has several attractive benefits for identifying influen-
tial nodes in complex networks, most importantly:
• A new viewpoint: We consider the problem of detect-
ing influential nodes from a new viewpoint: weighted
formal concept analysis. This takes into account global
information regarding the network, and converts binary
relationships between nodes in a network into a hierar-
chy. This hierarchy not only reflects the intrinsic links
between nodes, but also characterizes the generalization-
instantiation relationships between concepts of nodes.
This allows the clustering of object nodes based on iden-
tical attributes nodes. Therefore, the more objects that
are aggregated, the more important the corresponding
attribute becomes (see Fig. 1(c)).

• High performance: Compared with several representa-
tives of influential node detection algorithms, theWFCA
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method is shown to be more effective (cf. Fig. 5-Fig. 7,
Table5, Table6 ).

• Flexibility: Our method can not only be used in undi-
rected or directed networks, but is also applicable to
attributed networks.

The remainder of this paper is organized as follows. In the
next section, we provide a brief overview of related work.
Section 3 describes themain idea ofWFCA, and then presents
the algorithm in detail. Section 4 compares WFCA with
several representative methods on eight real-world networks.
Finally, our conclusions are presented in Section 5.

II. RELATED WORK
In recent years, many approaches have been proposed for
identifying influential nodes (e.g., degree centrality [18],
K-shell [26], closeness centrality [19], betweenness central-
ity [20], eigenvector centrality [27], PageRank [21], Leader
Rank [22], H-index [23], and HITS [24]). Here, we only pro-
vide a brief survey regarding the identification of influential
nodes.

A. STRUCTURE-BASED APPROACHES
The influence of a node is significantly affected by the
network topology. In fact, the majority of approaches for
identifying influential nodes only consider structural infor-
mation. Existing Structure-based measures can be divided
into two categories: one is based on the neighborhood of
each node (such as the degree centrality, K-shell and H-index
methods), while the other is based on paths between nodes
(such as closeness centrality and betweenness centrality).
Degree centrality characterizes nodes with larger numbers of
neighbors as having a larger influence. Thus, it is the most
simple index for characterizing influential nodes. However,
although it is simple and easy to calculate, it suffers from
poor accuracy, owing to the lack of consideration of the
global network structure. K-shell determines the importance
of a node according to its location in the network. Although
it has a low time complexity, it is not suitable for some
specific types of networks, such as rule or BA networks [28],
and the sorting also results in coarse-graining. In contrast,
closeness centrality and betweenness centrality both have
high computational complexity, and so they are not suitable
for application to large-scale networks.

B. EIGENVECTOR-BASED APPROACHES
Methods of this type not only consider the number of neigh-
boring nodes, but also take into account their influences
(such as eigenvector centrality, PageRank, Leader Rank, and
HITS). Eigenvector centrality can be efficiently calculated
using a power iteration approach, but it may become trapped
in a zero status, because of the presence of many nodes with-
out in-degree [23]. PageRank is a famous ranking algorithm
that is used in the Google search engine, and it is a variant
of the eigenvector centrality method. It supposes that the
importance of a web page is determined by both the quantity

TABLE 1. Example of a formal context.

and the quality of the pages linked to it. PageRank performs
well in scale-free networks, and has been widely employed in
many fields. However, it is sensitive to disturbances of ran-
dom networks, and it exhibits topic drifts in special network
structures [23]. The HITS algorithm considers each node
in the network as performing two roles: authority and hub.
Similarly, HITS also exhibits a topic drift phenomenon [29].
Leader Rank performswell in directed complex networks, but
cannot be applied in undirected complex networks.

In general, each algorithm has its own advantages and
disadvantages. Effectively and efficiently identifying influ-
ential nodes remains a non-trivial task. Here, we provide an
effective method for identifying influential nodes, which can
not only be applied to directed or undirected networks, but is
also suitable for attributed networks.

III. IDENTIFICATION OF INFLUENTIAL NODES BASED
ON WFCA
A. PRELIMINARIES
In this section, we first introduce some basic concepts and
definitions concerning FCA. FCA is a powerful data anal-
ysis technique, and was first proposed by Rudolf Wille
in 1982 [25]. In the past several decades, FCA has been
widely applied in software engineering [30], text processing
[31], data mining [32], ontology engineering [33], and other
fields [34], [35]. FCA considers entities that consist of objects
and attributes, where objects have attributes, and attributes
belong to objects. The following are some definitions relating
to FCA.
Definition 1: A formal context is a triplet of sets K :=

(O,A, I ), where O is a set of objects, A is a set of attributes,
and I ⊆ O × A is a binary relation between O and A. The
object o is an element of the object set O, the attribute a is an
element of the attribute set A, and oIa or (o, a) ∈ I indicates
that the object o has the attribute a.
Table 1 presents a formal context. It can be represented as a

two-dimensional table (or matrix), where the rows represent
objects and the columns are attributes. The cross cell of a row
and column in the table represents the incidence relation I ,
and all relations between objects and attributes could be
written in a table. In Table 1, the symbol × indicates that an
object has the corresponding attribute. For example, object 2
has attributes (a,b,c,d,f).
Definition 2: For a set T of objects from O, denoted as

T ⊆ O, we define

T⇑ = {a ∈ A|∀o ∈ T , oIa}. (1)
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FIGURE 2. The concept lattice of the formal context in Table1.

Here, T⇑ denotes the set of attributes shared by all of the
objects in T . Similarly, we can define the set of objects shared
by all of the attributes inP asP⇓. Here, for a setP of attributes
from A, denoted as P ⊆ A, we define

P⇓ = {o ∈ O|∀a ∈ P, oIa}. (2)
Definition 3: A binary group (T ,P) is a formal concept of

a formal context K := (O,A, I ), with T ⊆ O, P ⊆ A, T⇑ =
P, and P⇓ = T . We call T and P the extent and the intent of
(T ,P), respectively. The collection of all formal concepts of
a formal context K is denoted asB(O,A, I ).
For example, ({1, 2, 3, 4, 5, 6}, {b, f }), ({1, 2, 3, 4}, {b, c, f }),
and ({4, 5}, {b, f , g}) are formal concepts in Table 1, while
({1, 2, 3, 4}, {b, c}) is not a formal concept. Although the
result of {b, c}⇓ is {1, 2, 3, 4}, the result of {1, 2, 3, 4}⇑

is {b, c, f }. Because {1, 2, 3, 4}⇑ 6= {b, c}, it follows
that ({1, 2, 3, 4}, {b, c}) is not a formal
concept.
Proposition 4: Let K := (O,A, I ) be a formal context,

where T ,T1,T2 ⊆ O are sets of objects and P,P1,P2 ⊆ A
are sets of attributes. Then, the following properties
hold:

1) T1 ⊆ T2 ⇒ T⇑2 ⊆ T⇑1
2) P1 ⊆ P2 ⇒ P⇓2 ⊆ P⇓1
3) T ⊆ T⇑⇓

4) P ⊆ P⇓⇑

5) T⇑ = T⇑⇓⇑

6) P⇓ = P⇓⇑⇓

7) T ⊆ P⇓ ⇔ P ⊆ T⇑ ⇔ T × P ⊆ I
Definition 5: If (T1,P1) and (T2,P2) are two concepts of

a formal context K, where T1 ⊆ T2 (which is equivalent to
P2 ⊆ P1 by property 1), then (T1,P1) is called a subconcept
of (T2,P2), and (T2,P2) is called a superconcept of (T1,P1).
This can be denoted by (T1,P1) ≤ (T2,P2).
The relation ≤ is called a hierarchical order of concept, and
represents a partial order. All of the concepts can be combined
using hierarchical ordering, with the result being called a

FIGURE 3. A synthetic network consisting of 15 nodes and 22 edges.

TABLE 2. A formal context of Fig. 3. The rows (1, 2, . . . , 15) and columns
(1#, 2#, . . . , 15#) represent the nodes (1, 2, . . . , 15).

concept lattice, which denoted by B(O,A, I ). A concept
lattice can be represented by a Hasse diagram. For example,
Fig. 2 presents the Hasse diagram of the concept lattice of
Table 1. All of the concepts are listed as follows:

1) ({1, 2, 3, 4, 5, 6}, {b, f })
2) ({4, 5}, {b, f , g})
3) ({1, 2, 3, 4}, {b, c, f })
4) ({3, 6}, {b, e, f })
5) ({4}, {b, c, f , g})
6) ({2}, {a, b, c, d, f })
7) ({3}, {b, c, e, f })
8) ({}, {a, b, c, d, e, f , g})

Definition 6: Let (O,A,W , I ) be a multi-valued formal
context. This is composed of sets O,A,W and a ternary
relation I (with I ⊆ O× A×W . Then,
(o, a,w) ∈ I and (o, a, v) ∈ I ⇒ w = v,

where (o, a,w) ∈ I can be understood to mean that
the attribute a of the object g has the value w. If w
has n elements, then (O,A,W , I ) is called an n-valued
context.
Definition 7: Let G = (V ,E) be a graph of a complex

network, where V is the set of nodes, E is the set of edges,
e = {u, v} denotes an edge from between the nodes u and v,
and e ⊆ E .
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FIGURE 4. Concept lattice of Table 2.

TABLE 3. The list is ranked by WFCA and several other algorithms, where the last two columns are ranked by the SIR model.

B. WEIGHTED FORMAL CONCEPT ANALYSIS
We consider the issue of detecting influential nodes from
the perspective of WFCA. From the graph G, we can obtain
the adjacency matrix. Let M = (mu,v) denote the adjacency
matrix, and let |V | be the number of vertices of G. For
example, let e be an edge linking the vertex u to the vertex v.
Then, if G is a directed graph, mu,v = 1 and mv,u = 0.
Otherwise, mu,v = 1 and mv,u = 1. Furthermore, if there
is no edge between u and v, then mu,v = 0 and mv,u = 0.
We consider the adjacency matrix as a formal context K,
where each row is an object and each column is an attribute.

Fig. 3 illustrates a synthetic network containing 15 nodes
and 22 edges. Now, based on the concepts and definitions

of WFCA, we can rank the nodes by importance. The
main idea of a node importance ranking using WFCA is
to first cluster nodes in a hierarchical tree, and then to
compute all concepts of the network. Finally, we calculate
the weight of each node, and rank the nodes by weight.
Specifically,
1) Construct the adjacency matrix of the graph G (directed

or undirected).
2) Convert the adjacency matrix into a formal context.
3) Compute all of the concepts of the formal context.
4) Calculate the weight of each node based on the concepts

Wi =
∑n

k=1
Oik
Aik

.
5) Rank the weights of the nodes.

VOLUME 5, 2017 3781



Z. Sun et al.: Identifying Influential Nodes in Complex Networks Based on WFCA

Algorithm 1 WFCA
Input:

G = (V ,E);
Output:

Ranked nodes;
1: //Initialize the formal context K and weightW , where n

is the number of nodes.
2: if G is attributed network then
3: s← PlainScaling(K );
4: else
5: s = n;
6: end if
7: K [n][s] = 0;
8: W [n] = 0;
9: //Construct a formal context K , which is a Boolean

matrix.
10: if G is an attributed network then
11: for each node v in V do
12: for each attribute a do
13: if attribute a belong to node v then
14: K [v][a] = 1;
15: end if
16: end for
17: end for
18: else
19: for each edge e = {u, v} ∈ E do
20: K [u][v] = 1;
21: if G is undirected then
22: K [v][u] = 1;
23: end if
24: end for
25: end if
26: // Compute all concepts C .
27: C ← In− Close();
28: //Calculate the weight of each node.
29: for each concept Ci in C do
30: Oi = countobject(Ci);
31: Ai = countattribute(Ci);
32: for each attribute node j in Ci do
33: W [j]+ = Oi

Ai
;

34: end for
35: end for
36: // Rank the weights of all nodes
37: return Rank(W );

To illustrate the procedure, we first construct the adjacency
matrix for the network in Fig. 3, as shown in Table 2, where
the rows (1, 2, . . . , 15) and the columns (1#, 2#, . . . , 15#)
represent the nodes (1, 2, . . . , 15). Each cell value is set as 1
or 0, where 1 indicates that an edge exists between two nodes,
and 0 signals the opposite.

Next, based on the Proposition 1 and Definition 4, we
can calculate all of the concepts of the formal context, as
illustrated in Section 3.3. Fig. 4 presents the Hasse diagram,

TABLE 4. Some statistical properties of eight real-world networks: node
number |V |, edge number |E |, average degree 〈k〉, maximum degree kmax
and clustering coefficient 〈C〉.

which contains all of the concepts of the formal context.
Finally, we can calculate the weight of each node based on
the concepts, where the weight of node i is denoted by Wi.
Formally, let Ci be a set of concepts (Ci1, Ci2, . . . , Cin) where
the attributes contain the node i. The attribute number of Ci1
is denoted as Ai1, and the object number of Ci1 is denoted by
Oi1. Then, the weight of node i (Wi) is computed as follows:

Wi =

n∑
k=1

Oik
Aik

. (3)

For example, we calculate the weight of node 1. Here,
1# can be considered as an attribute, and so 1# and
the node 1 represent the same node. In the collection
of all concepts of Fig. 4, there are three concepts con-
taining the attribute 1#: ({3, 6}, {1#, }), ({6}, {1#, 3#}), and
({3}, {1#, 2#, 4#, 5#, 6#, 7#}). According to formula (3), we
obtain W1 =

2
1 +

1
2 +

1
6 = 2.666. Similarly, we can also

calculate the weight of node 7#, as W7 =
5
1 +

1
6 +

2
2 +

2
2 +

2
2 +

1
4 +

1
3 +

1
4 +

1
3 = 9.333.

After calculating the weights of all nodes, we rank these
weights. Table 3 presents the results for several algorithms,
including PageRank, eigenvector centrality, closeness cen-
trality, betweeness centrality, HITS, K-shell and H-index,
which are all realized using Gephi and NetworkX. In Table 3,
the nodes 3, 7, 8, and 9 are found to be more important than
the others by all of the algorithms. PageRank and betweeness
determined node 3 to be the most important node, but eigen-
vector, closeness, HITS and H-index found the node 7 to be
the most important. From Fig. 3, we can see that the degree of
node 3 is six, and the degree of node 7 is five. Although node
3 has a larger degree than node 7, the neighborhood of node
3 looks less important than that of 7. This is because most
of the neighboring nodes of node 3 are leaf nodes. However,
those of node 7 are hub nodes. The WFCA method takes into
account global information regarding the network, instead of
local information, and identifies node 7 as themost influential
node. The SIR model is employed to examine the spreading
influence of each node. We set the infection rate of the SIR
model with a probability of λ = 0.1, and run this 1000 times.
The experiment results for the SIR model are presented in
the last two columns in Table 3. The rankings of the SIR
model are basically the same as for theWFCAmethod, which
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FIGURE 5. The value of Kendall’s tau τ is obtained by comparing the ranking lists which generated by the eight algorithms and the ranking list generated
by SIR model on eight real networks. The spreading probability λ varies from 0.01 to 0.10, and the results are obtained by averaging over 1000
independent runs. (a) Aviation. (b) Protein. (c) Blogs. (d) Powergrid. (e) Euroroad. (f) Friendships. (g) Ca-Astroph. (h) DBLP.

demonstrates that the WFCA approach identifies the influen-
tial nodes effectively.We will evaluate the performance of the
WFCA algorithm further for real-world complex networks in
Section 4.

C. THE WFCA ALGORITHM
In this section, we present theWFCA algorithm in detail. The
WFCA algorithm consists of the following three main steps.

1) Formal context initialization and construction. First,
we standardize the formal context K using the traditional
method, plain scaling [36] (see Algorithm 1), to transform
the multi-valued formal context into a one-valued formal
context. For attributed networks, the formal context is
denoted by K (G) = (V ,A, I ) (cf. Definition 1), where V
represents the objects of the formal context, A represents
the attributes, and I represents the binary relationships
between objects and attributes. For non-attributed net-
works,K is amodified adjacencymatrix, which is denoted
by K (G) = (V ,V , I ), where the first and second V s
represent the objects and attributes, respectively. Here,
we use a two-dimensional array structure to represent the
formal context.

2) Compute all concepts: C . Based on Definition 3, we
calculate all of the concepts of a formal context using a
combination of rows or columns. Over recent years, many
efficient algorithms have been proposed for constructing
the formal concept, including AddIntent [37], FastAddIn-
tent [38], and FCbO [39]. Here, we employ the In-Close
approach [40], which is an incremental algorithm that
uses a recursion to generate the combinations of attributes
or objects in lexicographical sequences, while avoiding
repeated generations of a concept.

3) Node weight calculation. Building upon the obtained
concepts, we compute the weights of nodes according
to the formula 3. First, we calculate the sub-weight (OiAi )

of each attribute of every concept. Finally, we obtain
the total weight of each attribute by summing over all
sub-weights.

D. RUNTIME COMPLEXITY
InWFCA algorithm, one of the important work is to compute
the concepts of the formal context. However, applying FCA
method to large formal context could bring many challenges,
because the concepts can grow exponentially in the worst
case and calculating all the concepts is an NP-complete
problem [41]. The high computational complexity is actually
the main weak point of FCA. However, we do not need to
generate all the concept lattices in the actual calculation.
So, we can use the lexicographic approach for implicitly
searching, prune the recursion and avoid generating a concept
repetitively. The time complexity of each step of WFCA is
estimated below, where n is the number of vertices, L is the
number of all concepts, and |a| is the number of attribute. The
time complexity of WFCA algorithm is mainly composed of
three parts, and we give our main argument about asymptotic
time complexity as follows.

1) The complexity of formal context initialization and
construction. The function PlainScaling(K ) [36] stan-
dardize the formal context K and the time complexity
is O(n|a|). The construction of formal context is imple-
mented in two loops. So, in attributed network the time
complexity is O(n|a|). Otherwise, the time complexity is
O(n2).

2) The complexity of computing concepts. The concepts
are calculated by In-Close [40]method and the complexity
is O(n2L).

3) The complexity of calculating node weight. To calculate
the node weight, there are two loops. The times of the
first loop is the length L of the concept lattice, and that
of second loop is the number of attribute whose the max

VOLUME 5, 2017 3783



Z. Sun et al.: Identifying Influential Nodes in Complex Networks Based on WFCA

TABLE 5. The ranking list is generated by the eight algorithms. Owing to space limitations, we only show the top-10 nodes of two networks, including
one directed network and one undirected network, where K-s, H-i denotes K-shell and H-index, respectively. (a) Aviation. (b) Euroroad.

FIGURE 6. The propagation influence of the ranking lists is generated by the eight algorithms, F(t) denotes the number of infected and recovered nodes
at time t (t=500), and ranked index represents the order of ranking list. (a) Aviation. (b) Protein. (c) Blogs. (d) Powergrid. (e) Euroroad. (f) Friendships.
(g) Ca-Astroph. (h) DBLP.

value is n. So, the complexity of calculating node weight
is O(nL).
In summary, the time complexity of WFCA algorithm is
the sum of the three parts, namely O(n2 + n2L + nL).

As we know, n2 ≤ n2L, nL ≤ n2L. Therefore,
the time complexity is O(n2L). We can see, the time
complexity of WFCA is not very low, but its accu-
racy is better than the other algorithms(cf. Fig. 5-7).
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TABLE 6. The influences F(t) is obtained by top-10 different nodes of ranking lists between WFCA and other algorithms in Aviation network.

In future work, we plan to extend WFCA as a paralleling
method.

IV. EXPERIMENTAL EVALUATION
A. DATA DESCRIPTION
In this section, we evaluate WFCA on eight representative
real-world networks selected from distinct fields, includ-
ing one transportation network (Aviation), one biological
network (Protein), one information network (Blogs), two
infrastructure networks (Powergird and Euroroad), one
social network (Friendships), two collaboration networks
(Ca-AstroPh and DBLP). In brief, Aviation is an air traffic
control network of USA’s FAA (Federal Aviation Adminis-
tration) and this is a directed network. Protein is a directed
network of interactions between proteins in Humans. Our
Blogs is a directed network which contains front-page hyper-
links between blogs in the context of the 2004 US election.
Our Powergird network contains information about the power
grid of the Western States of America and this is undi-
rected. Euroroad is the international E-road undirected net-
work which located mostly in Europe. Our Friendships is an
undirected network which contains friendships between users
of the website hamsterster.com. Ca-AstroPh is a collaboration
graph of authors of scientific papers from the arXiv’s Astro-
physics (astro-ph) section. And DBLP is an attributed net-
work of computer science bibliography. To extensively study
the performance of our algorithm, we compare WFCA with
several representative influential node detection algorithms,
namely PageRank (PR), HITS, eigenvector centrality (EC),
K-shell, H-index, closeness centrality (CC), and between-
ness centrality (BC). The statistics of the eight networks
datasets are presented in Table 4, and they are all publicly

available from KONECT (http://konect.uni-koblenz.de/) and
the DBLP dataset (http://dblp.uni-trier.de/).

B. MEASUREMENT
In this paper, we employ the SIR model [42] to investigate
the spreading influences of ranked nodes. There are three
components to such a system: (I) Susceptible (S) denotes the
susceptible individuals who are not yet infected; (II) Infected
(I) represents the infected individuals, who may spread the
disease to susceptible individuals; (III) Recovered (R) stands
for recovered individuals, who can never be infected again.
The SIRmodel begins with one or more seed nodes. Then, the
seed nodes infect adjacent nodes with a probability of λ. Next,
the infected nodes recover with a probability of µ. Finally,
the infected and recovered nodes are used to calculate the
spreading influences of seed nodes. Each loop of spreading is
regarded as a time step t . F(t) denotes the number of infected
and recovered nodes at time t , which is an indicator of the
node importance. Obviously, F(t) will gradually converge as
the time t evolves, trending towards to a certain level.

To evaluate the performances of different influential node
identification algorithms, Kendall [43] τ is introduced to
measure the correlation of the node spreading influence with
the eight methods. Kendall’s tau as a rank correlation coef-
ficient is usually used to measure the correlation between
two ranking list. We assume that two sequences associated
with the same number of nodes n, X = (x1, x2, . . . , xn) and
Y = (y1, y2, . . . , yn). Any pair of two-tuples (xi, yi) and
(xj, yj) (i 6= j) are said to be concordant if the ranks for both
elements agree, that is, if both xi > xj and yi > yj or if both
xi < xj and yi < yj. They are said to be discordant if xi > xj
and yi < yj or if xi < xj and yi > yj. If xi = xj or yi = yj, the
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FIGURE 7. The propagation influence of the top-10 different nodes of ranking lists between WFCA and other
algorithms, F(t) denotes the number of infected and recovered nodes at time t, and t varies from 1 to 25. Results are
obtained by averaging over 1000 implementations and the spreading probability λ = 0.1. (a) Aviation. (b) Protein.
(c) Blogs. (d) Powergrid. (e) Euroroad. (f) Friendships. (g) Ca-Astroph. (h) DBLP.
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pair is neither concordant nor discordant. The Kendall’s tau
coefficient is defined as

τ (X ,Y ) =
nc − nd

0.5n(n− 1)
(4)

In which nc and nd represent the number of concordant and
discordant pairs respectively. One can note that, τ ∈ [−1, 1]
is positively related to concordant of the ranking lists. The
higher τ value is, the more accurate the ranking list the
method could generate.

C. PERFORMANCE EVALUATION
In this experiment, to better distinguish the importance of
nodes, we use relatively small values of λ in SIR model,
namely λ ∈ [0.01, 0.1]. Because with a large λ, the spread-
ing would cover almost all the network [26]. Fig. 5 shows
Kendall’s τ of the WFCA method where the ranking lists
are generated by the PR, HITS, EC, K-shell, H-index, CC
and BC. As shown in Fig. 5c, the Kendall’s τ for the WFCA
is between 0.8 and 0.9 for λ ∈ [0.01, 0.1], indicating that
the ranking lists generated by the WFCA and the real SIR
spreading process are basically identical to each other. From
Fig. 5, we can see that there are different performances for
the different algorithms and the WFCA method performs
well on different types of networks. For instance, for directed
networks (Aviation, Protein andBlogs) and undirect networks
(Powergrid, Euroroad and Ca-AstroPh) WFCA performs the
best. For the Friendships network, EC and HITS have the
best performance, and the WFCA also has a better effect than
the others. In DBLP networks, the EC algorithm achieves the
best performance, the WFCA method still provides a com-
paratively good performance and performs better than other
algorithms. Note that the performances of K-shell, BC and
CC are not good in Aviation, Protein, Blogs and Powergrid
networks. Because, the K-shell algorithm is coarse-grained
on the network division, and the nodes of each layer are seen
as equally important, but in fact, they are not. Therefore,
for the network with small number of layers, the effect is
relatively poor. On the contrary, for multiple layers network,
the effect is better. For the BC method, there are many nodes
whose values are the same, because, these nodes have the
same number of shortest paths through them. And the cc
algorithm also has the same problem. The performance of
H-index method is also not good in directed networks (Avia-
tion, Protein and Blogs). As you can see, WFCA performs
well not only in undirected networks, but also in directed
networks.

To further compares the propagation performance of the
algorithms, we investigate the spreading influences of ranked
nodes in SIR model. Without loss of generality, we set the
infection probability λ = 0.1, recovery probability µ = 1
[44], [45], and time step t = 500. First, we compute the
influence of each node using the various algorithms, and rank
them in descending order. Table 5 presents the top-L ranked
nodes. Owing to space limitations, we only display the top-
10 nodes of two networks, including one directed network

Aviation and one undirected network Euroroad. We can see
that most nodes of top-10 of WFCA are presented in other
algorithms, so, the WFCA method has better accuracy than
other algorithms. For further evaluation, each ranked node is
considered as the seed node (with only one seed node for each
run). Finally, we calculate the number of infected nodes for
each seed node by averaging over 1000 implementations.

Fig. 6 illustrates the average numbers of infected nodes
ranked by the eight different algorithms. A good algorithm
should result in a downward slope from left to right; that
is, the number of infected nodes should decrease as L
increases. This is because the more important a node is, the
more infected nodes there are. Thus, this node ranks higher.
In the Aviation, Protein, Blogs, Powergrid, Euroroad and
aCa-AstroPh networks, WFCA performs the best among all
eight algorithms. For the Friendships and DBLP networks,
although EC achieves the best performance, WFCA still
provides a comparatively good performance. Note that the
WFCA method can not only rank the nodes by considering
the topological structure of a network, but it can also rank
nodes by considering the attributes of nodes (see Fig. 6h).
From the tables and figures, we observe thatWFCA delivers a
superior spreading effect compared with the other algorithms.

Furthermore, we compare the influence of the top-10 nodes
that are discriminatively selected by WFCA and other algo-
rithms. All top-10 different nodes are used as seed nodes and
the time step t is set ranging from 1 to 25. Table 6 further
presents the propagation influence of top-10 different nodes
in the Aviation network. We can observe that the number of
accumulative infected nodes F(t) increases as the time step t
increases, and eventually obtains a steady value after several
time points. Since there are 10 seed nodes, the propagation of
most networks reaches a steady state at the time step t = 15
and we can clearly investigate the spread effect ofWFCA and
other algorithms. In addition, Fig. 7 illustrates the influences
of the different top-10 nodes in eight networks. Note that
the differences between two approaches can be distinguished
effectively by investigating the effects of discriminative nodes
of the two ranking lists. Fig. 7 shows that the WFCA
method has a good spreading efficiency of top-10 differ-
ent nodes. Specifically, WFCA has the best performance on
the networks of Aviation, Protein, Powergrid, Euroroad and
Ca-Astroph. In Friendships and DBLP networks, EC and
HITS have the best propagation effect, and WFCA also has
better spreading influence than other algorithms.

V. CONCLUSION
In this paper, we have considered the problem of detecting
influential nodes based on weighted formal concept analy-
sis. This method considers global information regarding a
given network, and converts binary relationships between
nodes in the network into a hierarchy. Then, nodes are aggre-
gated according to their attributes, to rank node importance.
To evaluate the efficiency of WFCA, we conducted exper-
iments on eight real networks, and compared WFCA with
several representative influential node detection algorithms.
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These experiments further demonstrated the superiority of
WFCA over state-of-the-art algorithms. In future work, we
plan to extend WFCA as a paralleling method.
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