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ABSTRACT Target tracking has wide-ranging applications in fields using wireless sensor networks.
However, localization accuracy is adversely affected by the non-line-of-sight (NLOS) effect. Thus, we pro-
pose a three-step localization approach to target tracking to identify and mitigate the NLOS effect.
A Bayesian sequential test is designed to identify whether the measurement data are affected by this effect.
On the basis of the identified measurement condition, we smooth the measurement range and mitigate the
NLOS effect using a modified Kalman filter (MKF). After adjusting the measurement noise covariance
and prediction covariance by using an established measurement equation, we apply the MKF, which is a
standard Kalman filter with updated parameters. After the distances between the target and the sensor nodes
are estimated by the MKF, the final estimated target position can be obtained using a residual weighting
algorithm. Experimental and simulation results show that the proposed approach is superior to other methods
that do not identify the propagation condition, and it can effectively improve the localization accuracy.

INDEX TERMS Bayesian sequential test, modified Kalman filter, NLOS affect, residual weighting
algorithm, target tracking.

I. INTRODUCTION
With the rapid development of the Internet of Things and
distributed sensor networks, wireless localization in wireless
sensor networks (WSNs) has received considerable attention
in recent years [1], [2]. Accurate target position information
has become increasingly important since the introduction of
regulations on emergency services and commercial applica-
tion for location-based services by the US Federal Commu-
nications Commission (FCC) and other government bodies.
Wireless localization systems are extensively used in various
fields, such as target tracking, acoustic source localization,
navigation, medical location service, and wildlife monitor-
ing [3]–[7]. Target tracking is a fundamental task for WSNs.
In any application scenario, target positioning and moni-
toring should be based on different measuring techniques,
such as angle-of-arrival (AOA) [8], time-of-arrival (TOA) [9],
time-difference-of-arrival (TDOA) [10], and received-signal-
strength (RSS) [11]. Some hybrid approaches of TOA, AOA,
TDOA, and RSS have also been proposed for target track-
ing and localization [12]–[14]. However, the performance
of positioning systems is reduced by some noise errors.

Themajor sources of noise errors in the target positioning sys-
tems include the measurement noise and the NLOS propaga-
tion error [15]. Both of which are random. The measurement
noise usually follows a Gaussian random distribution, and the
NLOS error commonly obeys a Gaussian random or expo-
nential distribution. As a result, the relationship between
the measured and the target states is nonlinear. The nonlin-
ear relationship results in a nonlinear positioning equation.
Therefore, the problem of locating the target is a process
of solving the nonlinear equation. However, establishing an
accurate model for the measurement data under NLOS prop-
agation condition is difficult; thus, NLOS propagation poses
a serious challenge to target position estimation. Aiming at
the difficulties in localization system, numerous target loca-
tion methods and techniques have been proposed to solve
the nonlinear positioning equation and mitigate the NLOS
propagation effect.

For decades, the extended Kalman filter (EKF) is the most
widely used deal with nonlinear problem. In the process of
nonlinear mode linearization, EKF uses the Taylor series
to expand the nonlinear function, which is only to keep
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the first-order linear term, and then the measurement data
is smoothed by the standard KF. Although this method is
fast and easy to implement, when the nonlinear function is
strong, only the first-order term will bring large error and
cause filtering divergence. Meanwhile, calculation of Jacobi
matrix requires function derivation, so we must determine
the specific expression of the function. Especially when the
function is complex, the function expression is not easy to
determine. Over the past few decades, many target tracking
methods based on EKF were proposed by resear-
chers [16]–[20]. In [16], an adaptive energy-efficient multi-
sensor scheduling scheme was proposed for collaborative
target tracking based on EKF in WSNs; the proposed scheme
can achieve a good trade-off between tracking accuracy and
energy consumption. Modalavalasa et al. [17] proposed an
EKF-based tracking algorithm to solve the difficulties in
underwater environments. A generalized EKF based on a
multiplicative noise model was proposed in [18] for tracking
moving targets in WSNs equipped with distance-estimating
sensor. Xu and Liu et al. [19] proposed a novel wireless
location algorithm based on the extended kalman particle
filter (EPF), which combine EKF with the particle fil-
ter (PF). Initial estimated position of the target is rectified
and smoothed by EPF algorithm to realize fast and high
precision passive target’s location. However, this method
requires multiple simulation experiments and a large number
of experimental data. In [20], an EKF-based interacting
multiple model (EK-IMM) smoother is proposed for mobile
location estimation with the data fusion of the TOA and RSS
measurements in a rough wireless environment. Combining
EKF with the IMM scheme for accurately smooth range esti-
mation between the corresponding sensor node and moving
target in the rough wireless environment, this method can
efficiently mitigate the NLOS effects on the measurement
range error. However, this method cannot effectively identify
NLOS propagation. In a word, EKF methods are limited by
the significant deviation of the final state estimate from the
actual value in many applications.

NLOS propagation error is considered the major error
source in the positioning systems of WSNs. In most cases,
the propagation error caused by the NLOS effect cannot be
ignored in wireless positioning systems with high accuracy
demand. Thus, identifying NLOS propagation and mitigat-
ing NLOS effect is important in wireless positioning sys-
tems. Borras et al. [21] performed a binary hypothesis test
to identify NLOS propagation condition. In [22], a prior
NLOS measurement correction algorithm was proposed to
correct the measurements fromNLOS propagation. However,
the two methods in [21] and [22] focus on ultra-wideband
systems, and they are unsuitable for target tracking in WSNs.
In [23], an RSS-based NLOS identification method was
investigated using recorded measurements, the NLOS effect
was mitigated by subtracting the expected NLOS propagation
error, and then the residual weighting algorithm (RWGH)
was employed to estimate the location. However, this pro-
cess is tedious for NLOS identification. Fuzzy modeling was

introduced for measurement condition estimation in [24].
Probability-possibility transformation was utilized to calcu-
late the possibility of the measurement data, and the measure-
ment data with high and low possibilities were considered the
line-of-sight (LOS) and NLOS measurements, respectively.
However, this method fails to mitigate the identified NLOS
propagation separately. Moreover, the estimated final posi-
tion was determined by maximum likelihood estimation and
Kalman filter (MLE/KF), such that the positioning accuracy
is affected by the position estimation based on the false alarm
probability. Evidently, these methods require complex calcu-
lation, high sensor density, and extensive prior knowledge.

In this study, we propose a simple yet effective approach
to target tracking in WSNs for identifying NLOS propa-
gation and mitigating the NLOS effect. First, we establish
a range measurement model with measurement noise and
NLOS propagation error and analyze the influence of the
NLOS effect on target position estimation. Then, a Bayesian
sequential test is designed to identify whether the propaga-
tion condition is LOS or NLOS propagation on the basis of
decision rules. The NLOS measurement data is smoothed,
the NLOS positive errors are mitigated using a modified
Kalman filter (MKF), and the distances between the target
and the different sensor nodes are estimated. Finally, we
estimate the target positionwith the RWGHon the basis of the
estimated distances. The simulation and experimental results
indicate that the proposed method shows better performance
in target positioning than the traditional methods.

The main contributions of this study are as follows:
1. The Bayesian sequential test is usually applied in math-

ematical and engineering fields, such as statistical deci-
sion theory, artificial intelligence, and pattern recogni-
tion. In this study, we use the Bayesian sequential test
to determine whether LOS or NLOS propagation con-
ditions prevail. New decision constants are determined
on the basis of the Bayesian prior probability. Thus,
the NLOS measurement data is selected from all the
measurements data in accordance with decision rules.

2. After identifying NLOS propagation, the NLOS mea-
surement data is smoothed, and the NLOS positive
error is mitigated using the MKF. When the condition
is NLOS propagation, the standard deviation of the
measurement range and the prediction covariance of
the standard KF are adjusted adaptively. We define this
updated Kalman filter (KF) as the MKF. Then, we can
estimate the measurement distances between the target
and different sensor nodes by using the MKF.

3. RWGH is used to estimate the final position of themov-
ing target on the basis of the estimated measurement
distances.

The rest of this paper is organized as follows. In Section 2,
we briefly introduce the range measurement model and ana-
lyze the influence of NLOS propagation errors on target
position estimation. In Section 3, the proposed target tracking
approach is introduced in detail. The proposed approach is
composed mainly of NLOS identification, NLOS mitigation,
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and the final position estimation using MKF and RWGH.
In Section 4, the simulation and experimental results are
presented. Finally, in Section 5, the conclusions of the study
are elaborated.

II. RANGE MEASUREMENT MODEL
We shall consider the general case of moving target tracking
in two-dimensional space, the position of the moving target
is estimated in real time with WSNs. The moving target
carries a main sensor, which is used to communicate with
the other sensor nodes in the WSNs. The main sensor can
estimate the distances between the moving target and the
sensor nodes by using the measured TOA. Since accurate
sensor node position and clock synchronization are identified
as two crucial aspects for target tracking inWSNs, we assume
that the accurate position sensor nodes are known; the WSNs
is a asynchronous networks, the target carries the same syn-
chronization clock as the networks, and besides, there is no
clock bias. For simplicity, all the sensor nodes are assumed
to be of the same type and have the same noise statistics. The
position and velocity of the moving target u are denoted by
(x, y) and (vx , vy), respectively. The position of the ith sensor
node si is (xi, yi). Then, the actual distance between the target
and the ith sensor node at time instant ti is given by

ri =
√
(x − xi)2 + (y− yi)2, i = 1, 2, · · · ,M , (1)

whereM is the number of the sensor nodes. Themeasurement
equations for the LOS and NLOS propagation conditions can
be written as follows:

zi = ri + ni LOS condition, (2a)

zi = ri + ni + ei NLOS condition, (2b)

where ni is the measurement noise, which is commonly
assumed a zero-mean Gaussian noise with variance σ 2

i,LOS ;
ei is the NLOS propagation error, which is also modeled as a
Gaussian distribution with meanµi and variance σ 2

i,NLOS . The
NLOS environment causes the radio signal to propagate along
a longer path than the true distances between the sensor nodes
and the target because of the effects of reflection and diffrac-
tion. Thus, a larger positive error must be added. We suppose
that the measurement noise and the NLOS propagation error
are independent of each other and that the sensor node i’s total
noise, which is denoted by ui = ni + ei, is also a Gaussian
noise with mean µi and variance σ 2

i = σ 2
i,LOS + σ

2
i,NLOS .

Usually, ei is significantly greater than the absolute value of ni
under NLOS conditions (i.e., ei � |ni|). Although the noise
ni can be reduced by averaging the repeated measurements
from each sensor node, the NLOS propagation error ei will
still significantly reduce the accuracy of position estimation,
as shown in Fig. 1.

We suppose R1, R2, and R3 are three static sensor nodes.
The radii of the circles are the corresponding measurement
distances, the black solid lines represent the true distances,
and the black dashed lines represent the actual measure-
ment distances. If all the sensor nodes are in an LOS situ-

FIGURE 1. Diagram of position estimation.

ation, then the estimated position of the target is point M.
However, if R3 is in an NLOS situation, then the positive
NLOS propagation error e3 is added to the measurement dis-
tance. M’, which is considered the estimated position of the
target, is highly important in removing the NLOS effect for
position estimation. We assume that the main sensor fixed on
the target is the fusion computing center, which is connected
to the computer, and that all the measurements are gathered
at this center.

We aim to estimate the target position reliably and accu-
rately by mitigating the NLOS effect. In the next section,
we propose an improved approach to achieve this goal.
The proposed approach is divided into NLOS identification,
NLOS mitigation, and the target final position estimation.

III. PROPOSED TARGET TRACKING APPROACH
Our proposed three-step approach to target tracking includes
the following steps: (1) identify the propagation condition
(LOS or NLOS propagation) by using Bayesian sequential
test, (2) smooth the measurement data andmitigate the NLOS
effect by applying the MKF, and (3) estimate the final target
position by RWGH. The flow of the proposed approach is
shown in Fig. 2.

A. NLOS IDENTIFICATION
Given the many advantages of Bayesian sequential test,
we introduce it to identify propagation condition. Bayesian
sequential decision is an optimization decision method for
stochastic or uncertain dynamic systems. According to vari-
ous prior probabilities, it uses the Bayesian theorem to obtain
the posterior probability and makes the decision for the prop-
agation condition. Bayesian sequential test is a combina-
tion of classical sequential test theory and Bayesian method,
it takes a group of experiments one by one and starts from the
initial state, the optimal decision is made at each moment,
then the state of the next step is observed, and then a new
optimal decision is made, repeats decisions until the end.
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FIGURE 2. The flow chart of the proposed approach.

Since the Bayesian sequential test saves the experiment time
and reduces the number of experiments, it has been paid
great attention by scientific researchers all over the word.
The specific process is as follows: first, according to (2),
the probability density function (PDF) of the measurement
data zi is written as follows:

pLOS ( zi| x, y) =
1√

2πσ 2
i,LOS

× exp

{
−
(zi − ri)2

2σ 2
i,LOS

}
LOS, (3a)

pNLOS ( zi| x, y) =
1√

2π (σ 2
i,LOS + σ

2
i,NLOS )

× exp

{
−

(zi − ri − µi)2

2(σ 2
i,LOS + σ

2
i,NLOS )

}
NLOS.

(3b)

Before the NLOS propagation condition is identified,
the following hypotheses as formulated:

H0 : Zi ∼ pLOS ( zj,i
∣∣ x, y) with probability PHO (LOS ),

H1 : Zi ∼ pNLOS ( zj,i
∣∣ x, y) with probability PH1 (NLOS),

where Zi = [z1,i, z2,i, · · · , zn,i] is the measurement data from
n tests and j = 1, 2, 3, · · · , n; zj,i is the jth measurement
distance of the ith sensor node. We suppose that H0 is the
primary hypothesis whereas H1 is the alternative hypothesis
in the Bayesian sequential test, with PH0 representing the
pretest probability of H0 and PH1 representing the pretest
probability of H1. Based on (3), the likelihood ratio function
of Bayesian sequential test is defined by [25]

ηn =
PH1
PH0
·
P (Zi; H1)

P(Zi; H0)
, (4)

where P (Z ; H0/1) =

n∏
j=i
pLOS/NLOS

(
zj,i |x, y

)
, and

pLOS/NLOS
(
zj,i |x, y

)
is the PDF of zj,i under condition H0/1.

The decision constants in the sequential test are defined by

A =
1− β1
α0

, B =
β1

1− α0
, (5)

where α0 is the probability of abandoning the truth, and β1 is
the probability of adopting the false belief in consideration of
the prior information . Thus, we obtain

α0 =

∫
Z∈H0

α (Z )dF (Z )

∵ α (Z ) ∝ α, suppose, α (Z ) = Jα

∴ α0 = KαPH0

No prior information is available when PH0 = PH1 = 0.5;
consequently, equation α0 = α is correct. We can then obtain
J = 2 (i.e. α0 = 2αPH0), and β1 = 2βPH1. Subsisting
α0 = 2αPH0 and β1 = 2βPH1 into (5), the equation (5) yields

A =
1− β1
α0

=
1− 2βPH1
2αPH0

, (6a)

B =
β1

1− α0
=

2βPH1
1− 2αPH0

, (6b)

where α and β are the probabilities of the two types of
errors when the prior information is ignored. The error caused
by (6) is minimal when α and β are less than 0.5, and the
error can meet the requirement of positioning in practical
applications. The distribution function of the measurement
data Z is denoted by F(Z ). When the pretest probabilities of
H0 and H1 are combined, the final expressions of the decision
constants are as follows:

A’ =
1− 2βPH1
2αPH0

·
PH0
PH1
=

1/(2PH1)− β
α

, (7a)

B’ =
2βPH1

1− 2αPH0
·
PH0
PH1
=

β

1/(2PH0)− α
. (7b)

Therefore, the rule of NLOS propagation condition identifi-
cation based on the Bayesian sequential test can be expressed
as follows:

If ηn ≤ B′, then accept H0. The propagation condition is
identified as LOS propagation.

If ηn ≥ A′, then accept H1. The propagation condition is
identified as NLOS propagation.

If B′ < ηn < A′, then proceed to the next test.
The process continues until the conditions are identified as

either LOS or NLOS propagation.
In the subsequent experiments and simulations, we assume

that the accuracy of NLOS identification is higher than 95%
and that the probabilities of the two types of errors are
α = 0.1 and β = 0.2.

B. NLOS MITIGATION
After the propagation condition is identified as either
LOS or NLOS propagation, the measurement data is
smoothed, and the NLOS effect is mitigated using MKF.
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We let σ̂ 2
i (k) be the updated standard deviation of the mea-

surement range zi at time instant ti in accordance with the
method in [26], and σ̂ 2

i (k) can be obtained with the block of
C data samples as follows:

σ̂ 2
i (ti) =

√√√√ 1
C

k∑
i=k−C+1

(
zi − r̂i

)2
, (8)

where r̂i is the estimated measurement range using the stan-
dard KF. We define the state vector in the ithsensor node at
time instant tias Xi(ti) = [ ri(ti) ṙi(ti) ]T, where ri(ti) is the
distance, and ṙi(ti) is the distance rate. After the standard KF
is used to update the state vector related to the moving target,
the following is obtained:

Xi(ti+1) = FXi(ti)+ 0W (ti), (9)

where W (ti) represents the process noise with an assumed

covariance Q = σ 2
w; F =

[
1 1t
0 1

]
and 0 = [1t2/2 1t]T

represent the state and noise transition matrices, respectively;
and1t is the sampling time interval. Therefore, the measure-
ment equation for the ith sensor node can be written as

Zi(ti) = 8Xi(ti)+ U (ti), (10)

where 8 = [1 0] is the measurement matrix, and U (ti) is
the measurement noise with covarianceR = σ 2

u . The updated
process of the standard KF can be summarized as follows:

X̂i(ti+1 |ti ) = FX̂i(ti |ti ), (11)
Pi(ti+1 |ti ) = FPi(ti |ti )FT

+ 0Q0T, (12)

Ki(ti+1) = Pi(ti+1|ti)8T
[
8Pi(ti+1|ti)8T

+R
]−1

, (13)

X̂i(ti+1 |ti+1 ) = X̂i(ti+1 |ti )+Ki(ti+1)

×

[
Zi(ti+1)−8X̂i(ti+1 |ti )

]
, (14)

Pi(ti+1 |ti+1 ) = Pi(ti+1 |ti )−Ki(ti+1)

×

[
8Pi(ti+1 |ti )8T

+ R
]
KT
i (ti+1). (15)

In (11)-(15), X̂i is the estimate of Xi, X̂i( ti| ti) is the state
estimate at time ti, and X̂i(ti+1 |ti ) is the predicted state at time
ti+1,K(ti+1) is the Kalman gain, and P(ti|ti) is the covariance
matrix of X̂(ti). The positive NLOS error component is mit-
igated by adjusting the measurement noise covariance σ 2

u (ti)
and prediction covariance P1,1(ti+1|ti). The adjustment rules
are as follows:

Case 1: Zi(ti+1) − 8X(ti+1|ti) > 0, and for NLOS propa-
gation condition, let

σ̂ 2
u (ti+1) = σ̂

2
i (ti)+

[
Zi(ti+1)−8X(ti+1|ti)

β

]2
. (16)

Case 2: Zi(ti+1) − 8X(ti+1|ti) < 0, and for NLOS propa-
gation condition, let σ̂ 2

u (ti+1) = σ̂
2
i (ti) and

P1,1(ti+1|ti) = P1,1(ti+1|ti)+
[
Zi(ti+1)−8X(ti+1|ti)

β

]2
.

(17)

Case 3: For LOS propagation condition, let
σ̂ 2
u (ti+1) = σ̂

2
i (ti).

In (16) and (17), the standard deviation σ̂ 2
i (ti) is obtained

from the previous prediction, and P1,1(ti+1|ti) is the upper-
left entry in the covariance matrix P(ti+1|ti). The constant
β is selected such that the minimum value is within the
scope of βtimes of the P(ti+1|ti) related to the maximum
value. We set β at 3 after numerous tests. Adjusting of the
measurement noise covariance σ̂ 2

u (ti+1) and the prediction
covariance P1,1(ti+1|ti) in (16) and (17) can reduce the effects
of the negative range rate ṙi(k) and consequently mitigate the
positive NLOS range error. When measurement noise covari-
ance and prediction covariance are adjusted, the standard KF
becomes the MKF.

The estimation for the measurement distance by the MKF
is expressed as

ˆ̂ri(k) = [ 1 0 ]X̂i(ti+1|ti+1). (18)

C. TARGET POSITION ESTIMATION
After the estimated distances between the target and the sen-
sor nodes are determined usingMKF, the target can be located
using the estimated distance.We use RWGH in estimating the
position of the moving target. The steps of target localization
using RWGH follow [27].

1. M sensor nodes form T =
∑M

i=3 C
i
M range measure-

ment combinations. Each combination is represented
by the index set of sensor nodes {Sk |k = 1, 2, · · · ,T }.

2. For each index set of sensor nodes, the MKF is applied
to estimation of the target position, which can be rep-
resented by X̂k = [ x̂ ŷ ]T. The mean value of the
residual (Res) can be described as follows:

Res(X̂k , Sk ) =
Res(X̂k , Sk )
size of Sk

. (19)

where

Res(X̂k , Sk )=
∑

i∈Sk
( ˆ̂ri −

√
(xi − x̂k )2 + (yi − ŷk )2)

and (xi, yi) are the coordinates of ith sensor.
3. The final estimated position of the target can be obtain

using the weighted linear combination of the interme-
diate estimates in step 2. The final estimated position
can be expressed mathematically as

X̂ =

∑T
k=1 X̂k

(
Res

(
X̂ , Sk

))−1
∑T

k=1

(
Res

(
X̂ , Sk

))−1 . (20)

IV. EXPERIMENTAL AND SIMULATION RESULTS
The performances of three algorithms for target tracking are
compared on the basis of the experimental and simulation
results. The compared algorithms are the RWGH algorithm
described in [27], the combined MLE with KF algorithm
described in [24], and the proposed approach described
in Section 3. The experimental results in small monitor-
ing areas and the theoretical simulation results in large
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monitoring areas are presented and discussed in the following
subsections.

FIGURE 3. Experimental setup.

A. EXPERIMENTAL RESULTS IN SMALL MONITORING
AREAS
In the experiment, six sensor nodes and a moving target
carrying a main sensor node are employed, and the WSN is
established using a wireless communication module cc2530
(Fig. 3). The target can communicate with other sensor nodes,
and the distances between the target and the different sensor
nodes can be calculated. The target can also transmit the
measurement data to a PC. The monitoring area covered by
the experiment is 5 m × 6 m with the coordinates from
(0, 0) to (6, 5), and the position coordinates (in meters) of the
six sensor nodes are SN1(0.25, 0), SN2(0.25, 5), SN3(3, 0),
SN4(3, 5), SN5(5.75, 0), and SN6(5.75, 5). Only one obstacle
is present in the monitoring area, and two sensor nodes,
namely, SN3 and SN5, are considered to be under NLOS
propagation condition at a certain period. The others sensor
nodes are considered to be under LOS propagation condition
at any moment. The measurements noise ni and the NLOS
propagation error ei are assumed as Gaussian noise sources
with σi,LOS = 0.075m, σi,NLOS = 0.2m, and µi = 0.55m
(for i = 1, 2, · · · , 6). The target moves along in a line from
point (0.5, 1)m with a velocity of (0.5, 0.4)m/s, and the sam-
pling time interval is 1t = 0.05s. The initial state estimate
and the corresponding covariance matrix are selected as

X̂(0| 0) = [ 0.5 0 1.6 0 ]T, P(0| 0) = 0.01 · I4, (21)

where I4 represents the 4× 4 identity matrix.
Fig. 4 shows the target tracking results obtained using the

three algorithms. These results combinedwith the experimen-
tal results show that the accuracy of the three target tracking
methods in an LOS environment is higher than that in an
NLOS environment. Compared with the two existing meth-
ods, the proposed approach can perform steady-state estima-
tion faster from the initial position. The experimental results
demonstrate that the proposed target tracking approach is
more accurate than the two other methods.

FIGURE 4. Comparison of experimental results of different algorithms for
target tracking.

FIGURE 5. Measurement data processing of the compared algorithms.

Fig. 5 shows a comparison of performance of the com-
pared methods in terms of the data processing of mea-
surement distance. The least square (LS) in [27], MLE/KF
in [24], and the proposed approach in Section 3 are compared.
For simplicity, the measurement distance from the sensor
node SN3(3, 0) to the target is taken as an example. The
standard deviation of the measurement distance obtained by
LS is greater than those of the two other methods mainly
because the LS algorithm does not deal with the measurement
data by KF processing. By contrast, the proposed approach
not only smoothes the measurement data but also adjusts
the measurement noise covariance and prediction covariance
adaptively with the standard KF, and the proposed approach
can effectively reduce the NLOS propagation error. Thus,
the proposed approach shows better performance than the
two other algorithms for smoothing measurement data and
mitigating NLOS propagation error.

B. SIMULATION RESULTS IN LARGE MONITORING AREAS
Target tracking errors are random in nature, and repeating
the experiments numerous times to decrease tracking errors
is impractical. Thus, we attempt to evaluate the performance
of the proposed approach by using a Monte Carlo test for
moving target tracking. In the simulation, we assume a
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1500m×1000mmonitoring area with eight sensor nodes and
three obstacles of different shapes. The target starts moving
from point (60, 800)mwith a velocity of (5, 4)m/s. The initial
state estimate and the corresponding covariance matrix are
selected to be

X̂(0| 0) = [ 60 0 850 0 ]T, P(0| 0) = 0.01 · I4. (22)

We use the average of root mean square error (RMSE)
to evaluate the performance of the proposed approach. The
average RMSE of the position estimates is defined by

RMSE=
1
N

N∑
j=1

√[
x̂j(ti |ti )− x(ti)

]2
+
[
ŷj(ti |ti )− y(ti)

]2
,

(23)

TABLE 1. Default parameter values.

where N = 2000 is the total number of Monte Carlo tests
with the same parameters, [x(ti), y(ti)] is the true position of
the moving target, and [x̂j(ti |ti ), ŷj(ti |ti )] is the jth position
estimate in the Monte Carlo test at time ti. The default param-
eter values in the simulation experiment are shown in Table 1.

FIGURE 6. LOS/NLOS propagation condition in the sample points.

Fig. 6 shows the sight state between the target and all the
sensor nodes in the sampling points. The figure indicates that
the sensor nodes 1 and 8 exhibit LOS propagation in all the
sampling points, and the sight states of the other sensor nodes
vary between LOS and NLOS propagation with time. The
first nine sample points are obtained under the condition of

LOS propagation between the target and all the sensor nodes.
Thus, the estimation errors of the three algorithms under the
first nine sampling points may be smaller than those under
the other sampling points.

FIGURE 7. Target tracking results of the compared algorithms.

Fig. 7 compares the performances of the target tracking
algorithms. The black solid line represents the true trajectory
of the moving target. The figure shows interesting results.
First, the localization accuracy of the three target tracking
algorithms in the first nine sampling points is higher than
that in other sampling points. This result confirms the con-
jecture based on Fig. 6. Second, from the initial position at
which a stable tracking error is obtained, the convergence
rate of the proposed algorithm is the fastest, followed by
MLE/KF in [24] and then RWGH in [27]. Finally, the pro-
posed approach exhibits better performance than MLE/KF
and RWGH in all the sampling points.

FIGURE 8. Average RMSE versus the number of sensor nodes.

Fig. 8 displays the relationship between the average RMSE
and the number of sensor nodes from 3 to 8. The localiza-
tion errors of the three different target tracking algorithms
decrease as the number of sensor nodes increases. The local-
ization errors of the three algorithms decrease rapidly as the
number of sensor nodes increases from 3 to 5; however,
the decline decelerates from 6 to 8 sensor nodes. In the case
of 7 and 8 sensor nodes, the localization errors of MLE/KF
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and the proposed approach are insignificant. Thus, under the
conditions of this simulation experiment, a WSN composed
of 7 to 8 sensor nodes presents a reasonable allocation of
resources. In addition, the localization accuracy of the pro-
posed approach improves by 25.2% and 9.56% on average
compared with MLE/KF and RWGH, respectively.

FIGURE 9. Average RMSE versus the standard variance of measurement
noise propagation error.

Fig. 9 depicts the relationship between the average RMSE
and the standard variance of measurement noise. The perfor-
mance of the proposed approach is similar to that ofMLE/KF.
This finding is verified by the localization error values of
the two methods at a probability of 67% in Fig. 12. RWGH
exhibits the worst performance. Nevertheless, the average
RMSEs of the three methods increase with an increase in
measurement noise.

FIGURE 10. Average RMSE versus the standard variance of the NLOS
propagation error.

Fig. 10 shows the average RMSE versus the standard
variance of the NLOS propagation error. To investigate the
performance of the proposed approach comprehensively,
we calculate the

average RMSEs of the three methods under different
standard variances of the NLOS propagation error. The
average RMSE increases with an increase in the stan-
dard variance of the NLOS propagation error. However, the

proposed approach and MLE/KF are relatively robust com-
pared with RWHG. The proposed approach achieves the
highest localization accuracy among the compared methods.

FIGURE 11. Average RMSE versus the mean of the NLOS propagation
error.

Fig. 11 plots the average RMSE versus the mean of the
NLOS propagation error. The localization accuracy levels of
the threemethods decrease with an increase in themean of the
NLOS propagation error. However, the proposed approach
presents significantly improved the localization accuracy
compared with the two other methods. The superiority of
the proposed approach is mainly due to the smoothing of the
measurement data and the mitigation of the NLOS propaga-
tion error by the MKF in the proposed approach. By contrast,
MLE/KF only uses the standard KF to predict the state and
estimate the position of the target. The average RMSE of
RWGH, which uses LS to estimate the measurement range,
is the highest.

FIGURE 12. Average RMSE versus CDF.

We investigate the cumulative distribution function of
the three methods and show the results in Fig. 12. At a
probability of 67%, the localization error of the proposed
approach is 15.2m, which is lower than the localization errors
of RWGH (24.3 m) and MLE/KF (16.1 m). Therefore, all
the three methods meet the E-911 regulations of the FCC.
However, the localization accuracy of the proposed algorithm
is better than those of the two other methods.
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V. CONCLUSION
In this study, we present a three-step target tracking approach
that identifies the prevailing NLOS propagation condition
and mitigates the NLOS effect in random NLOS propaga-
tion environments of WSNs. First, a Bayesian sequential test
is developed to identify whether the measurement range is
under NLOS condition. Second, the measurement data is
smoothed according to the identified measurement condition,
and the NLOS effect is mitigated using MKF with the adjust-
ment of the measurement noise covariance and prediction
covariance. Finally, the final target position is obtained using
RWGH. The experimental and simulation results show that
the proposed approach effectively reduces the NLOS effect
and improves the localization accuracy, thereby outperform-
ing both RWGH and MLE/KF.

In the experiment and simulation, we assume that the posi-
tions of all sensor nodes are known. In addition, the exper-
iment and simulation are performed in a simple outdoor
NLOS propagation setup. In practice, however, the positions
of the sensor nodes are usually unknown, and the NLOS
propagation scenario is highly complex indoors. Further-
more, we fixed the parameters in the Bayesian sequential
tests, such as the probability of abandoning the truth and
the probability of adopting the false belief. However, these
parameters are variable. Thus, in our future work, we will
use the target tracking algorithm in an indoor scenario in
which the positions of the sensor nodes are unknown.We will
also examine the influences of the parameter variations on
the target localization accuracy with the Bayesian sequential
test.
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