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ABSTRACT The emerging ultra-dense small cell networks (UD-SCNs) will need to combat a variety of
challenges. On the one hand, massive number of devices sharing the limited wireless resources renders
centralized control mechanisms infeasible due to the excessive cost of information acquisition and compu-
tation. On the other hand, to reduce the energy consumption from fixed power grid and/or battery, network
entities (e.g., small cell base stations and user devices) may need to rely on the energy harvested from
the ambient environment (e.g., from environmental sources). However, opportunistic energy harvesting
introduces uncertainty in the network operation. In this paper, we study the distributed user association
problem for energy harvesting UD-SCNs. After reviewing the state-of-the-art research, we outline the major
challenges that arise in the presence of energy harvesting due to the uncertainty (e.g., limited knowledge
on energy harvesting process or channel profile) as well as limited computational capacities. Finally, we
propose an approach based on the mean-field multi-armed bandit games to solve the uplink user association
problem for energy harvesting devices in a UD-SCN in the presence of uncertainty.

INDEX TERMS Ultra-dense small cell networks, energy harvesting, distributed control, user association,
multi-armed bandits.

I. INTRODUCTION
Traditional cellular networks suffer from shortcomings such
as limited uplink capacity, poor cell-edge coverage, and
heavy loads at macro base stations (MBSs), all affecting the
users’ experience adversely. Thus, implementing low-cost,
low-power small base stations (SBSs) in order to offload the
MBSs traffic and to increase the network capacity is foreseen
as a promising solution to deliver the expected services of the
next generation wireless networks, i.e., to sufficiently support
human-centric (human-to-human) communications as well
as machine-type (machine-to-machine) interactions [1], [2].
In general, every small cell is expected to serve up to few
hundreds devices; thus, an ultra-dense deployment of SBSs
is necessary to technically support the massive growth of
smart devices (e.g., IoT devices) in wireless networks. As an
immediate consequence, it becomes imperative to search for
new mathematical tools that are suitable for handling a vari-
ety of problems that arise due to an ultra-dense deployment
of SBSs as well as a massive number of end-user devices.

As a specific example, network management becomes very
challenging due to the following reasons. On one hand, cen-
tralized methods are not suitable since they require excessive
amount of information and incur large computational and
signaling costs. On the other hand, traditional distributed
control mechanisms, such as those adapted from game theory,
either yield slow convergence or require costly data exchange
among neighboring nodes. Clearly, both problems are aggra-
vated when the number of network nodes becomes very
large.

Another important concern in future ultra-dense small cell
networks (UD-SCNs) is to obtain the required energy, both
at SBSs- and at end-users. From one side, SBSs are irreg-
ularly deployed, so that not all of them can be connected
to a power grid. From the other side, the limited battery
lifetime of human-centric and machine-type devices, thus the
requirement of frequent recharge, is an immediate challenge.
To date, two main solutions are foreseen to mitigate energy
problems:
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• Wireless energy transfer, where devices are powered by
a dedicated power source (power beacon) [3];

• Opportunistic ambient energy harvesting, where devices
locally harvest the ambient energy, for example the
solar or wind energy, if available. Moreover, ambient
RF energy harvesting (for example, from the nearby
television broadcast signals) [4] is a feasible solution for
network entities such as sensors to reduce the depen-
dency on batteries and other fixed energy resources
so that frequent recharge becomes unnecessary. Usu-
ally, energy harvesting devices apply either harvest-and-
use (HU) or harvest-store-use (HSU) strategies [5]. In
the former, the energy needs to be consumed immedi-
ately after it has been harvested, whereas in the latter,
the harvested energy can be stored temporarily and then
reused later. Recently, harvest-use-store (HUS) strat-
egy is being investigated as well, where the harvested
energy is used immediately and the rest is stored [6].
In selecting the energy harvesting strategy, the storage
efficiency/capacity, network requirements, and technical
needs for implementation (e.g., hardware) should be
taken into account.

Despite being reliable, wireless energy transfer might be
inefficient, as it is prone to storage and transfer loss. In
fact, the efficiency can be achieved only thorough direc-
tional transfer (energy beam-forming), which necessitates the
acquisition of accurate channel state information (CSI) [7].
Precise CSI acquisition, however, yields excessive overhead,
specifically when a large number of devicesmust be powered.
In addition, due to hardware limitations, currently only very
small amount of power can be transferred using a wireless
link. Opportunistic ambient energy harvesting, in contrast, is
energy-efficient and environment-friendly. Moreover, it does
not rely on CSI availability; nonetheless, it is inherently a
stochastic process and hence counts as a source of uncer-
tainty in the network. More precisely, often the amount of
available energy is not known prior to decision making and
network planning.

One of the main goals of deploying SCNs is to reduce the
MBS traffic by offloading some users’ traffic to the SBSs.
To this end, every user equipment becomes associated with
some BS (either an SBS or an MBS), with the problem being
named as user association or cell association. Although user
association is a fundamental problem also in traditional cel-
lular networks, it is significantly more challenging in energy
harvesting UD-SCNs, since (i) every user might be located
within the coverage area of a set of SBSs; and (ii) the amount
of harvested energy at SBSs and/or the user devices as well
as the channel qualities from the user devices to the SBSs are
random (i.e., uncertain). The uplink/downlink communication
performance (e.g., the transmission rate) of a user device
will depend on the SBS it associates to, the number of user
devices served by that SBS, the transmission power of the user
device/SBS (which in turn depends on the energy harvested)
as well as the channel qualities. In addition, due to the
absence of a central controller, it is preferable to perform user

association in a distributed manner. Moreover, due to small
coverage radius of SBSs, for mobile users, handover has to be
performed rather frequently. In addition, due to the absence of
a central controller, it is preferable to perform user association
in a distributed manner.

In this paper, we focus on the problem of distributed uplink
user association of energy harvesting devices in UD-SCNs.
As described before, distributed control in such networks is
a twofold challenge: first due to the dense deployment of
SBSs as well as the large number of devices (e.g., sensors),
and second due to the uncertainty introduced by energy har-
vesting and channel qualities. We argue that in a UD-SCN
with energy-harvesting devices, a variety of optimization
problems can be formulated as distributed decision making
problems in a multi-agent system, where each solution cor-
responds to an outcome of the interactions of a large number
of agents under uncertainty. We first review the state-of-the-
art and outline several open challenges and future research
directions on user association in SCNs in presence of energy
harvesting. Then, we review a recently-developed mathemat-
ical tool, namely mean-field multi-armed bandit games, that
can be used to model and analyze distributed control prob-
lems in UD-SCNs, including the distributed user association
problem with a variety of optimization objectives. We then
develop amean-fieldmulti-armed bandit model for the uplink
user association problem in a UD-SCN, where a large number
of energy harvesting devices intend to select an appropriate
SBS to achieve a minimum uplink transmission rate during
a transmission interval, in order to guarantee the minimum
required quality of service (QoS).

II. USER ASSOCIATION IN UD-SCNs:
STATE-OF-THE-ART AND OPEN ISSUES
A. STATE-OF-THE-ART
In the existing literature, user association in SCNs is per-
formed with a variety of objectives [8], including interference
mitigation, capacity maximization and energy efficiency, as
most important examples. Nonetheless, regardless of the
specific objective, only a small minority of research works
address the association problems under the assumption that
SBSs and/or users rely on the opportunistic ambient energy
harvesting as the source of power. Also, majority of them
are centralized solutions which may not be suitable for an
ultra-dense deployment of SCNs. Belowwe briefly review the
state-of-the-art.

1) INTERFERENCE MANAGEMENT THROUGH
USER ASSOCIATION
In a dense SCN, the spectrum shall be reused by closely
located small cells. Thus, while the majority of users might
enjoy a strong signal from the corresponding SBS, the
inter-cell interference is strong as well, especially for cell-
edge users. Smart interference cancellation through user
association is investigated in [9]. Stochastic geometry is
used to model and solve the user association problem.
Similarly, interference mitigation through power control and
user association is studied in [10]. The problem is formulated
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as an integer program and a heuristic algorithm is proposed
to solve it. Reference [11] develops an algorithm to associate
users to small cells, aiming at maximizing the sum utility
of average achievable rates within the macro cell. Small cell
group muting (SCGM) is applied to mitigate the interference
among adjacent small cells. Zhou et al. [12] use a model
based on Stackelberg game for distributed user association
and interference coordination in order to improve the perfor-
mance of macro cell as well as small cells, through minimiz-
ing the interference. None of these works, however, considers
energy harvesting along with interference mitigation and user
association.

2) CAPACITY-MAXIMIZING USER ASSOCIATION
Similar to any other network architecture, capacity
maximization is a fundamental problem in UD-SCNs.
Kim et al. [13] suggest a user association scheme
which maximizes the sum-rate via dual connectivity.
Reference [14] considers an overlay small cell network with
backhaul constraint, and optimizes a weighted sum-rate with
carrier aggregation. In both works energy source is fixed
and deterministic. Maghsudi and Hossain [15] investigate a
distributed user association problem in the downlink of an
SCNwhere SBSs obtain the required energy through ambient
energy harvesting. The SCN is modeled as a competitive
market with uncertainty, where SBSs and users are repre-
sented as consumers and commodities, respectively. Based
on this model, a distributed user association method is devel-
oped. As another example, in [16], downlink user association
is performed in a distributed manner at end-users, where
every user aims at maximizing the probability of successful
transmission. Note that both works investigate the downlink
association problem where the SBSs harvest the energy.
Consequently, the proposed solutions are not suitable for the
uplink association problem with energy harvesting devices.
The main reason is that in downlink association, multiple
users are selected by an SBS, while in uplink association,
each user has to select one SBS. Moreover, for downlink
transmission, power allocation and scheduling are usually
investigated as well.

3) ENERGY-EFFICIENT USER ASSOCIATION
It is known that in UD-SCNs, energy efficiency and capacity
are improved when small cells are turned on and off using
a sleep-awake scheduling method [17], called cell planning
or cell scheduling. It is however clear that turning SBSs on
and off has to be performed in combination with a sophis-
ticated user association mechanism, in a way that changing
SBS density does not degrade the user satisfaction level.
Dong et al. [18] optimize the SBS density for energy effi-
ciency in cellular networks by using stochastic geometry,
and optimize the user association matrix by using quantum
particle swarm optimization. Similarly, in [19], two heuris-
tic algorithms are proposed to jointly optimize base station
operation and user association in heterogeneous networks.
Joint energy and spectrum efficiency is studied in [20].

Taking the quality of service into account, the authors
develop a low-complexity algorithm to solve the for-
mulated optimization problem approximately. However,
none of these works considers energy harvesting in the
system model.

B. OPEN ISSUES
Despite being under intensive investigation, many features
of energy harvesting UD-SCNs remain unexplored. In par-
ticular, enhancing a network with energy harvesting impacts
its characteristics dramatically due to uncertainty, so that
the conventional solutions may no longer be applicable.
For example, although the problems of interference manage-
ment, power control, joint cell planning and user association
in SCNs have been already investigated in the literature,
enabling SBSs and/or devices to harvest the ambient energy
renders the existing solutions non-applicable. In particular,
to solve the aforementioned problems efficiently, the avail-
ability of transmission energy (which is uncertain) should
be taken into consideration. Moreover, emerging network-
ing concepts (such as caching and full-duplexing), can be
efficiently implemented only in conjunction with intelligent
user association. Hence, one might need to consider energy
harvesting in UD-SCN scenarios, in order to reduce the grid
and/or battery power usage. Therefore, new objectives will
need to be examined when performing the user associa-
tion. In the following, we outline some promising research
directions.

1) UPLINK DISTRIBUTED USER ASSOCIATION FOR
ENERGY HARVESTING DEVICES IN SCNs
Conventionally, cellular systems are designed to perform
the transmission of large data streams in the downlink, in
order to serve human-driven service demands. Neverthe-
less, by emerging networking concepts such as IoT-driven
UD-SCNs, the next generation of wireless networks are
required to also support a variety of machine-type commu-
nications, for instance information transmission in wireless
sensor networks used for site surveillance [21]. Such data
streams are small individually but create a heavy traffic in
the uplink when they superimpose. Moreover, closely located
devices that transmit in the same frequency band cause inter-
ference to each other. Changing traffic pattern and mitigating
the interference can be realized by intelligent user associa-
tion. Such association schemes need to be designed to achieve
some desired performance objective considering uncertain-
ties in energy harvesting as well as channel qualities.

Again, most of the existing methods for user association
rely on a central controller, and/or demand excessive amount
of information at SBSs or user devices. Thus, we need to
develop distributed association methods which are capable of
dealing with very large network size (number of SBSs and/or
users) as well as information shortage. Moreover, within the
scope of energy harvesting networks, an efficient solution to
this problem ought to address the uncertainty imposed by
random energy arrivals and/or intensities. Later in this paper,
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we will present such a method for distributed uplink user
association for energy harvesting devices in a UD-SCN based
on the theory of mean-field multi-armed bandit games.

2) JOINT USER ASSOCIATION AND MODE SELECTION IN
DEVICE-TO-DEVICE (D2D)-ENHANCED SCNs
In heterogeneous SCNs, nearby users might be able to estab-
lish direct (i.e., device-to-device) communication links as an
alternative to transmitting the data via an SBS. Thus, enhanc-
ing the network with the possibility of direct transmission
gives rise to the problem of transmission mode selection.
In UD-SCNs, where every user might be in the coverage area
of multiple SBSs, mode selection has to be performed jointly
with user association, since the performance of network-
assisted D2D communication can vary with user association
(e.g., due to different number of channels available for D2D
communication in different small cells).Moreover, in order to
reduce the overhead of information acquisition and computa-
tional cost, the selection is preferably performed by devices,
i.e., in a distributed manner. Similar to other problems, the
uncertainty of energy harvesting and lack of channel knowl-
edge complicates the problem, since the (a priori unknown)
available energy as well as the device’s channel matrix play
an important role in selecting the optimal transmission mode
and (possibly) the subsequent user association.Maghsudi and
Stanczak [22] propose a distributed mode selection method in
heterogeneous networks by using multi-armed bandit theory;
however, energy harvesting is not included in the system
model.

3) USER ASSOCIATION FOR FULL-DUPLEX
TRANSMISSION IN SCNs
Full-duplex transmission1 is an emerging technology to
increase the spectral efficiency. Recent studies show that
in-band full-duplex technology exhibits better performance
for low-power transmissions, which makes it suitable for
UD-SCNs. However, it becomes inefficient to perform the
uplink and downlink user association separately, since uplink
and downlink transmissions are mutually dependent due to
self-interference. More precisely, even an efficient user asso-
ciation method in the downlink (uplink) in conventional half-
duplex networks might cause high interference in the uplink
(downlink) in an in-band full-duplex communication sce-
nario. While user association in full-duplex SCNs has been
addressed previously (see [23], for example), investigating
the effect of energy harvesting is an open issue. Taking the
uncertainty of energy harvesting into consideration makes the
problem more difficult, since in this case the set of users
that can be successfully served by an SBS (in uplink and
downlink) is non-deterministic.While this problem is already
challenging to be solved by a central controller, it becomes
aggravated if all network nodes take active roles in selecting
their correspondence. In this case, it is vital to search for

1Simultaneous transmission and reception in the same/different frequency
band are respectively referred to as in-band/out-band full-duplexing.

distributed decision making methods that converge to an
efficient equilibrium.

4) USER ASSOCIATION FOR SMALL CELL CACHING AND
MULTICAST IN PRESENCE OF ENERGY HARVESTING
In the past few years, small cell caching has attracted an
ever-increasing attention as a solution, to reduce the backhaul
traffic. The basic idea is to save popular files in SBSs, instead
of fetching the data frequently from the core network. In a
densely deployed SCN, every small cell has a small coverage
area and serves mainly its nearby users. Meanwhile, it is
noticeable that popular contents are generally requested by
multiple users simultaneously. Thus, a feasible solution to
reduce the SBS traffic, also to offload the wired backhaul,
is to cache the popular files and then to employ multicas-
ting for data transmission. This concept itself gives rise to
context-aware user association, where users are clustered and
associated based on the possibility of demanding similar files,
which can be predicted using machine learning methods and
historical requested data. Although cache-aware user associ-
ation has been briefly investigated in the literature so far [24],
energy harvesting (at the SBSs and/or the user devices) shall
also be considered in the user association problem, by which
the problem formulation will be influenced.

III. MEAN-FIELD BANDIT GAMES
Although a large body of literature propose centralized
approaches to solve the resource allocation problems includ-
ing the user association, in UD-SCNs, such methods require
very costly information acquisition at the central controller
and incur heavy computations cost, thus are not practi-
cal. Hence, for energy-harvesting UD-SCNs, it is beneficial
to formulate the control problem as distributed optimiza-
tion problem under uncertainty, which can be even multi-
objective. Inmost cases, the formulated optimization problem
can be afterward modeled as distributed decision making
problem is a large multi-agent system with uncertainty.

However, naive learning methods such as regret matching
or conventional solution concepts based on game, auction
or contract theory are not sufficient to deal with such prob-
lems in large and non-deterministic systems. Such solutions
mostly (i) require unaffordable prior knowledge at least at
some agents, or heavy information exchange among agents;
(ii) are not able to deal with the uncertainty; (iii) converge
slowly for medium/large number of actions and agents, if
at all. In the following, we describe an efficient mathemat-
ical model to analyze UD-SCNs that does not suffer from
such shortcomings, namely mean-field multi-armed bandit
game [25]. As we see later, in this model, users do not need
to have any prior information about channel quality, network
traffic, and/or energy harvesting profile. Moreover, we show
that the complexity is low even for very large number of
users. We also establish that a convergence to equilibrium is
guaranteed.

To this end, we first provide a brief tutorial of conventional
bandit games, paving the path to describe the mean-field
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approximation of such games when the number of agents
grows large. To our knowledge, bandit games in conjunction
with mean-field approximation has not been applied in wire-
less communications literature so far, rendering an introduc-
tory tutorial advantageous. Afterward, in Section IV, we use
this approach to solve the uplink distributed user association
problem with energy harvesting devices. At the same time,
we would like to emphasize that, this mathematical tool can
be applied in a wide variety of resource allocation problems
beyond user association.

A. SINGLE-AGENT MULTI-ARMED BANDITS
Multi-armed bandits (MAB) is a class of sequential opti-
mization problems, where given a set of arms (actions), a
player pulls an arm at successive trials to receive some a
priori unknown reward. Upon pulling an arm, the player
observes only the reward of the played arm, and not those
of other arms. Due to the lack of information, there might be
some difference between the maximum reward (achievable
by pulling the optimal arm), and the reward of the actual
played arm. This difference is referred to as regret. The player
decides which arm to pull in a sequence of trials so as its
average regret is minimized, or its (discounted) aggregate
reward is maximized. The basic problem is to deal with
the famous exploration-exploitation dilemma, i.e., to find a
balance between receiving immediate rewards (exploitation)
and gathering information to achieve large rewards in the
future (exploration).

Bandit games are classified based on (i) the random nature
of the arms’ reward processes, (ii) density and type of
agents, (iii) availability of side-information, (iv) randomness
in action availability, (v) number of actions and agents, and
so on. To date, a variety of algorithmic solutions have been
developed to solve different types of single-agent bandit prob-
lems. A well-known policy, which we later use in this paper,
is the upper confidence bound (UCB) strategy. The seminal
UCB policy is designed specifically for stochastic stationary
bandit problems, where the set of instantaneous rewards of
each arm are independent and identically-distributed (i.i.d.)
random variables. At every round of selection, the UCB
policy estimates an upper-bound of the mean reward of each
arm m ∈ M at some fixed confidence level. The arm with
the highest estimated bound is then played, and bounds are
updated after observing the reward [26]. The seminal UCB
policy is summarized in Algorithm 1. For a survey on bandit
problems see [27] and [28].

B. MULTI-AGENT MULTI-ARMED BANDITS
When multiple agents are involved in a bandit game, the
agents affect each other, in the sense that the reward achieved
by every agent is determined not only through its own actions,
but also through the joint action profile of other agents.
In other words, the payoff of every arm to every agent depends
not only on the type (or ability) of that specific agent, but
also on the set of agents selecting that arm. For instance, in
a congestion model, the individual rewards might decrease

Algorithm 1 Upper Confidence Bound Selection Policy [26]
Initialization: Play each arm m ∈M once.
Loop for t = M + 1,M + 2, ...
• Calculate the index of every arm m ∈M, denoted by
Im,t at round t , as

Im,t = ūm,t−1 +

√
2 ln(t)
Tm,t−1

, (1)

where Tm,t−1 is the total number of rounds arm m is
selected, and ūm,t−1 is the average reward of arm m,
both up to round t − 1.

• Select the arm with the largest index. Formally,

at = argmax
m∈M

Im,t (2)

in case multiple agents select an arm (negative externalities),
whereas in a coordination model, the reward might increase
(positive externalities). In addition to minimizing the regret,
in a multi-agent setting, it is important to reach some sort of
steady state or equilibrium.

For small number of agents, there are some results that
connect multi-agent multi-armed bandit games with corre-
lated and Nash equilibria (see [28] for a review). Perfect
Bayesian equilibrium is another notion of equilibrium that is
widely-used in conjunction with learning games. For multi-
armed bandit games with large number of agents, however,
such equilibrium notions are not practical since they yield
excessive complexity and long convergence time, already
for a moderate number of agents. For example, for a multi-
armed bandit game to converge to correlated equilibrium,
every agent has to observe the joint action profile of all
other agents (full monitoring) and forecast their future moves,
which is clearly a highly-involved task from the computa-
tional aspects, even when only few agents compete with each
other. Thus it is imperative to search for new frameworks and
solution concepts that are suitable to deal with large number
of players.

C. MEAN-FIELD MULTI-AGENT MULTI-ARMED BANDITS
In general, games with (very) large number of agents are ana-
lyzed using mean-field approximation. In mean-field approx-
imation, every agent regards the rest of the world as being
stationary, considering individual moves of agents as unim-
portant details. In other words, mean-field analysis restates
game theory as an interaction of each individual with the
mass of others. While mean-field analysis for games with
perfect information is well-established, applying this concept
to multi-armed bandit games is a recently-emerging research
direction, initiated by Gummadi et al. in [25], [29]. In what
follows, we describe mean-field multi-armed bandit games
briefly, without getting too much into mathematical details.
To show an application, in Section IV, we return to energy-
harvesting UD-SCNs and model the uplink cell assignment
problem by mean-field multi-armed bandits.
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Consider a multi-agent multi-armed bandit game G that
consists of a set M of M arms and a set N of N agents.
At every round t , each agent n ∈ N selects an action, denoted
by an,t , from the predefined action setM, and receives some
a priori unknown reward. Each agent n ∈ N is characterized
by some type θn ∈ A = [0, 1]M and some state Zn.
The type of each agent n ∈ N is a random variable with
M components, sampled from some distribution W at each
round of the game. The m-th component of θn captures the
parameters that influence the reward of arm m ∈M to agent
n ∈ N . In accordance with the general bandit setting, the
type and its distribution are unknown to the agent. Let fm,t
denote the fraction of agents that pull arm m ∈ M at round
t . Then the reward of arm m ∈ M to an agent n ∈ N is a
Bernoulli random variable with some parameterQ(fm,t , θn,t ).
The state of each agent is the collection of its past actions and
rewards. More formally, Zn,t =

(
w1,t , l1,t , ...,wM ,t , lM ,t

)
,

with wm,t and lm,t , m ∈ M, being the total number of
successes and failures of arm m up to round t , when selected
by agent n ∈ N . Hence, unlike the type, the state is known
to the agent. At every round t , every agent n ∈ N uses
some (randomized) selection policy (for example, the UCB
algorithm, described in Section III-A) to map Zn,t−1 to some
action an,t .

Every agent regenerates after some random time which
follows a geometric distribution with parameter 1 − α, α ∈
[0, 1). Physically, the regeneration corresponds to the dynam-
icity of the network, in the sense that any regenerating agent
quits the game and a new agent takes its place. Clearly,
the regeneration can also capture the changes in the type
for each agent. Let us refer to ft =

(
f1,t , f2,t , ..., fM ,t

)
as

population profile at time t . The population profile evolves
as the agents select their actions over time, according to
the mean-field dynamics. For an arbitrary agent n ∈ N ,
the mean-field dynamics works as follows: If a trial is a
regeneration trial (by chance), the agent’s type θn,t is sampled
from distributionW ; Moreover, the state Zn,t is reset to zero.
Otherwise (in case of no regeneration), the type remains
unchanged and a (randomized) selection policy (for example,
the UCB algorithm, described in Section III-A) is used to
map Zn,t−1 to some action an,t . It is assumed that all agents
apply the same policy δ throughout the game. As mentioned
before, the agent receives some random reward following a
Bernoulli distribution with parameter (success probability)
Q(fm,t , θn,t ), and the state vector Zn,t is updated. The dynam-
ics is summarized in Algorithm 2. Roughly-speaking, we say
that a mean-field equilibrium (MFE) is achieved when in the
mean-field dynamics, the population profile f remains fixed,
so that for every agent, the system is stationary. For details
see [25] and [29].

To our knowledge, the mean-field multi-armed bandit
model is so far only studied for Bernoulli reward process,
which restricts the applicability. Thus a future line of research
is to extend the analysis (including mean-field dynamics,
existence and uniqueness of mean-field equilibrium) to other
models of rewards’ randomness.

Algorithm 2Mean-Field Dynamics for Multi-Armed Bandit
Games [25]
for t = 1, 2, ... do
if t is a regeneration trial, then

The agent’s type θn,t+1 is sampled from some distri-
bution W .
The state Zn,t+1 is reset to zero.

else
Use a (randomized) selection policy δ to map Zn,t to
some action an,t . The mapping δ can be any standard
(optimal) bandit policy such as the upper confidence
bound (UCB) policy, summarized in Algorithm 1.
Observe the reward.
Update Zn,t to Zn,t+1.

end if
end for

IV. DISTRIBUTED UPLINK USER ASSOCIATION FOR
ENERGY HARVESTING DEVICES IN SCNs
A. SYSTEM MODEL
We consider a dense small cell network that consists of a set
M ofM cells2 and a setN ofN devices. Every device n ∈ N
intends to transmit Jn ≤ J data packets in the uplink direction
in successive transmission rounds.3 At every transmission
round j, each device transmits one data packet to an SBS
of its choice, implying that the association is performed in a
distributed manner. In what follows we omit the time notion j
for the simplicity of notation unless an ambiguity arises.
By Nm,j we denote the set of Nm,j devices to be served by
SBS m ∈ M at round j. Every device obtains the energy
through ambient energy harvesting by applying a harvest-use
strategy; that is, for every transmission round, it harvests the
energy and then uses all of it for transmission. Note that due to
hardware limitation, small wireless devices are usually only
able to harvest small amounts of energy, especially in short
time. Without loss of generality, we assume that the energy
equals power.

Since energy harvesting is opportunistic, for every device
n ∈ N and at every round j, the amount of harvested energy,
denoted by Pn,j, is unknown a priori. We assume that Pn,j,
j = 1, ..., Jn, are i.i.d. random variables following half-
normal distribution with parameter σ 2

n > 0. This assump-
tion is not restrictive since the half-normal distribution can
be replaced by any other distribution, without affecting the
solution approach.

The Nm,j devices which select any SBS m ∈ M share
the available spectrum resources equally in an orthogonal
manner. For each small cell m ∈ M, the inter-cell inter-

2We do not explicitly consider the macro cell which could be one of these
M cells. We use the term SBS generically to denote a BS in one of these
cells.

3If a device quits transmission, it is replaced by another device so that
the number of devices is always equal to N . As described before, this
corresponds to regeneration in mean-field game models which follows a
geometric distribution.
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ference experienced by every device n ∈ Nm,j, denoted by
Inm,j ≥ 0, is regarded as noise. Treating interference as
noise is commonly used for SCNs, for instance in [30], [31],
and [32], among many others. Transmissions are also cor-
rupted by zero-mean additive white Gaussian noise with vari-
ance N0. At round j, the real-valued channel gain between
device n ∈ Nm,j and small cell m ∈M is denoted by hnm,j.
We assume frequency non-selective block fading channel
model, where the random variable hnm follows a Rayleigh
distribution with parameter 1

√
2βnm

, and remains constant dur-

ing the transmission of every packet j = 1, ..., Jn for all
n ∈ N and m ∈ M, and changes from one transmission
round to another. The random channel power gain h′nm = h2nm
thus follows an exponential distribution with parameter βnm.
At every round j, the type of every device n ∈ N , denoted by
θn,j ∈ (0, 1]M , is defined as the collection

θn,j =
(
θn1,j, θn2,j, ..., θnM ,j

)
, (3)

where for m ∈M,

θnm,j =
h′nm,j

Inm,j + N0
. (4)

Note that devices do not have any prior knowledge on channel
quality and/or interference level. In other words, the type is
unknown a priori.

Let fm,j =
Nm,j
N denote the fraction of devices that select

SBSm at round j. Thus, for each n ∈ Nm,j and for transmitting
every data packet j, the achievable transmission rate is given
by

rnm,j =
Wm

Nfm,j
log

(
1+

Pn,jh′nm,j
Inm,j + N0

)
, (5)

where Wm is the available bandwidth at SBS m ∈M. More-
over, as stated before, Pn,j is the transmit power of device n
at trial j, which equals the amount of energy harvested at
that trial. For transmission of every data packet, every device
n ∈ N requires a specific QoS that is expressed in terms of
a minimum data rate rn,min. Hence, for any device n ∈ N , at
every transmission round j, we define the reward of selecting
SBS m ∈M as

un,j(m) =

{
1, if rnm,j ≥ rn,min,

0, otherwise.
(6)

The success probability of user n when selecting SBS m at
every transmission round j is then given as

p(s)nm,j = Pr
[
rnm,j ≥ rn,min

]
, (7)

and the failure probability yields p(f )nm,j = 1 − p(s)nm,j. Thus,

successful transmission is a Bernoulli random variable with
parameter p(s)nm.

From (5), it can be easily concluded that given rn,min, for
any specific fm,j, h′nm,j, and Inm,j,

Pn,j,min =
Inm,j + N0

h′nm,j

(
e
Nfm,jrn,min

Wm − 1
)

(8)

yields rnm,j ≥ rn,min. Thus we have p(s)nm,j =

Pr
[
Pn,j ≥ Pn,j,min

]
. By the half-normal assumption on the

harvested energy we can conclude

p(s)nm,j = 1− erf
[
Pn,j,min
√
2σn

]
, (9)

so that

p(s)nm,j ∝
θnm,j

fm,j
, (10)

which, as intuitively expected, corresponds to a congestion
model or game with negative externalities.

B. MEAN-FIELD EQUILIBRIUM
According to the system model described before, the type
of each device n ∈ N is the collection of channel qualities
(including interference), given by (3) and (4). Upon selecting
any SBSm ∈M at round j, the device transmits successfully
(receives reward) with probability p(s)nm,j. The success proba-
bility depends on the type of user n as well as the fraction
of devices that select SBS m, fm,j, as declared by (8) and (9).
Prior to selecting an SBS, however, the users do not have any
information about channel gains, interference, and/or user
traffic, since such knowledge is very costly to acquire, if
possible at all. Thus, the uplink user association can be cast as
a multi-armed bandit game. Since the number of users is large
in UD-SCNs, the mean-field approximation can be used. The
following proposition describes the characteristics of mean-
field equilibrium in the multi-armed bandit game model of
user association problem.
Proposition 1: In the mean-field multi-armed bandit game

model for the uplink user association problem,

1) There exists a mean-field equilibrium;

2) Let anm =
√

2
π
Inm+N0
h′nmσn

and bnm =
Nrn,min
Wm

. Moreover,

assume that for all n ∈ N and m ∈ M, the regen-
eration parameter α (see Section III) satisfies α ≤

1
1+anmbnmebnm

. Then the mean-field equilibrium is unique

and the mean-field dynamics converges to it from any
initial point.
Proof: See Appendix.

C. COMPLEXITY AND OVERHEAD
The mean-field dynamics can be implemented fully distribu-
tively. The time and space complexity depend on the policy δ,
which maps the state into the action in case no regeneration
takes place. The UCB policy, for example, calculates an index
for each action corresponding to some confidence bound. The
arm with the largest index is then played (see Algorithm 1).
Thus, the time and space complexity is polynomial in the
number of actions. Note that as the state, the dynamics only
saves the total number of successes and failures, not the actual
strings. In fact, the most important metric to observe is the
convergence to mean-field equilibrium, where the population
profile f remains almost fixed.
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D. NUMERICAL PERFORMANCE EVALUATION
We consider an SCN where the devices apply the mean-field
dynamics described in Section III, with the policy δ being
the UCB strategy. The goal of every device is to succes-
sively decide for the SBS which, with the highest probability,
yields a reward; that is, the arm with the largest success
probability, p(s)nm. Note that the reward is defined in terms of
successful transmission. Without loss of generality and for
simplification, we choose Wm = N , rn,min = 0.75, and
σn = 1, for all n ∈ N and m ∈ M. For every device
n ∈ N , the collection of channel gains h′n =

(
h′n1, ..., h

′
nM

)
is

selected at random. Note that for every device n ∈ N , and for
every SBS m ∈M, h′nm are independent but non-identically
distributed. The state Zn is initialized randomly.

FIGURE 1. The effect of the number of devices on the performance of
mean-field dynamics (left: 103 devices, right: 105 devices). In the right
fluctuations are less, meaning that the system settles easier at
equilibrium.

First we investigate the convergence and equilibrium per-
formance of mean-fieldmulti-armed bandit dynamics. To this
end, we simulate the number of end-user devices (agents)
which select each SBS (arm) for transmission (population
profile, see Section III). Fig. 1 shows the effect of the number
of devices on the equilibrium performance, where the number
of SBSs is selected as M = 5. As expected, the mean-
field dynamics performs better for larger number of devices.
That is, with larger number of devices, fluctuations are less,
meaning that the system settles at some point. The reason is as
follows: In mean-field dynamics, every device observes the
rest of the world as stationary stochastic, ignoring individ-
ual moves by considering them as unimportant details. This
assumption is specifically valid for large number of devices,
since in a small system individual moves might have great
impacts and thus cannot be neglected. Note that although
the fluctuations are larger for smaller number of devices
(here 103), the performance is still acceptable.
In Fig. 2, we select the number of devices N = 105

and investigate the effect of the number of SBSs (arms)
on the dynamics’ equilibrium performance. The figure
shows that the convergence of the mean field dynamics
to equilibrium is not adversely affected by the number
of SBSs.

FIGURE 2. The effect of the number of SBSs on the performance of
mean-field dynamics (left: 3 SBSs, right: 7 SBSs). The dynamic
converges to equilibrium regardless of the number of SBSs.

Next we investigate the throughput performance of mean-
field multi-armed bandit games, where the total number of
successful transmissions is simulated. We select the num-
ber of devices and SBSs as N = 103 and M = 3. We
compare the performance of mean-field multi-armed bandit,
in terms of aggregate average throughput (average number
of successful transmissions), with those of the following
assignment schemes:
• Optimal (centralized-informed) association: In this sce-
nario, user association is performed by a central unit
given global information. By means of exhaustive
search, every device is assigned to the SBS to which it
has the maximum likelihood of successful transmission.

• ε-Greedy: At each trial, with probability ε ∈ (0, 1), the
user selects an SBS uniformly at random (exploration),
whereas with probability 1− ε, the user selects the best
SBS so far (exploitation).

• Explore-then-commit: At first, for a specific number of
trials, SBSs are selected in a round-robin manner (explo-
ration). Afterward, the best SBS in terms of average
reward (successful transmission) is selected constantly
(exploitation).

• Random association: Every device selects an SBS sim-
ply at random.

The results are shown in Fig. 3. It can be observed that
given enough time to converge, the mean-field multi-armed
bandit performs well in comparison to other approaches.
We should emphasize that despite its slightly better per-
formance, centralized-informed assignment yields excessive
overhead for information acquisition as well as large com-
plexity. Hence it is impracticable, in particular for networks
with very large number of devices. It is also worth noting that
our work is the first user association model that combines the
uncertainty of (both) energy harvesting and wireless channel
with the high density of SBSs and devices in SCNs using the
mean-field multi-armed bandit model. Thus, the performance
of no other user association method can be fairly compared
with ours. Finally, in Fig. 4, we depict the average wasted
energy over time. At every harvesting round followed by a
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FIGURE 3. The throughput performance of mean-field multi-armed
bandits model compared with centralized association given global
information and few other approaches.

FIGURE 4. The energy performance of mean-field multi-armed bandits
model compared with centralized association given global information
and few other approaches.

transmission, the energy is wasted if the transmission is not
successful; that is, if the required QoS is not achieved due
to inappropriate SBS selection. As it can be seen from the
figure, the average wasted energy reduces over time since the
users learn and make better choices. As expected, the bandit
approach performs well. Note that this figure confirms the
results of Fig. 3, since in case of successful transmission the
energy is not wasted.

V. CONCLUSION
We have studied the user association problem in energy
harvesting ultra-dense small cell networks, where densely-
deployed SBSs serve a large number of users, and the
required energy of SBSs and/or users is obtained through
local ambient energy harvesting. Due to its opportunis-
tic nature, energy harvesting introduces some uncer-
tainty to the network, in addition to the random wireless
channel quality. We reviewed state-of-the-art as well as
future research directions. We further described mean-field
multi-armed bandit game model, in which a large number
of agents with limited information sequentially select an
action from a finite action set, thereby affecting the welfare
of each other. Due to the mean-field analysis, this model
is particularly appropriate for analyzing the interactions of
energy harvesting devices in dense networks with strictly-

limited prior information, where users contribute to the net-
workmanagement by playing active roles in decisionmaking.
With energy harvesting at the devices, we have modeled the
uplink user association problem by a mean-field multi-armed
bandit game. Theoretical results establish that a uniquemean-
field equilibrium exists to which the mean-field dynamics
converges from any initial condition. Moreover, numerical
results show the applicability of themodel to hyper-dense net-
works.

APPENDIX
PROOF OF PROPOSITION 1
According to the mean-field multi-agent multi-armed bandit
model described in Section III-C, assume that upon pulling
arm m ∈ M, agent n ∈ N receives a random reward
which follows a Bernoulli distribution with success probabil-
ity p(s)nm = Q(fm, θnm). First we state the following definition
as well as two theorems [25].4

Definition 1 (Lipschitz Function): A function g : X → Y
is called Lipschitz if there exists a real constant L ≥ 0 such
that, for all x1, x2 ∈ X ,

dY (f (x1), f (x2)) ≤ LdX (x1, x2). (11)

For example, any function with a bounded first derivative is
Lipschitz.
Theorem 1: If Q is continuous in f , then a mean-field

equilibrium exists.
Theorem 2: Suppose that Q is Lipschitz in f with Lipschitz

constant L. Then if α(1 + L) < 1, then there exists a
unique mean-field equilibrium, and the mean-field dynamics
converges to it from any initial condition.

The first part of Proposition 1 immediately follows from
Theorem 1, since by (10) (also see (8) and (9)), the success
probability p(s)nm is continuous in fm.
To proof the second part, we first substitute (8) in (9), so

that we have

p(s)nm = 1− erf

[
Inm + N0
√
2σnh′nm

(
e
Nfmrn,min

Wm − 1
)]

. (12)

Then, ∂p
(s)
nm

∂fm
can be calculated as∣∣∣∣∣∂p(s)nm∂fm

∣∣∣∣∣ = anmbnme−
π
4 a

2
nm
(
−1+ebnmfm

)2
+bnmf , (13)

with anm and bnm being as defined in the proposition. Since
0 ≤ fm ≤ 1, we have

∂p(s)nm
∂fm
≤ anmbnmebnm . (14)

Thus p(s)nm is Lipschitz in fm with Lipschitz constant being
anmbnmebnm . Thus by Theorem 2, if α(1 + anmbnmebnm ) < 1,
the mean-field equilibrium is unique, and the mean field
dynamics converges to it from any initial point. Hence the
result follows.

4The full pre-print can be found at http://dx.doi.org/
10.2139/ssrn.2045842.
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