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ABSTRACT The recently proposed principal component analysis network (PCANet) has performed well
with respect to the classification of 2-D images. However, feature extraction may perform less well when
dealing with multi-dimensional images, since the spatial relationships within the structures of the images are
not fully utilized. In this paper, we develop a multilinear principal component analysis network (MPCANet),
which is a tensor extension of PCANet, to extract the high-level semantic features from multi-dimensional
images. The extracted features largely minimize the intraclass invariance of tensor objects by making
efficient use of spatial relationships within multi-dimensional images. The proposed MPCANet outperforms
traditional methods on a benchmark composed of three data sets, including the UCF sports action database,
the UCF11 database, and a medical image database. It is shown that even a simple one-layer MPCANet may
outperform a two-layer PCANet.

INDEX TERMS Deep learning, MPCANet, PCANet, tensor object classification, medical image
classification.

I. INTRODUCTION
A major difficulty of tensor object description in the visual
world is the large amount of intra-class variability in tensor
objects caused by illumination, rotation, scaling or more
complex deformation. In recent years, learning multiple-level
representations from visual content by convolutional neu-
ral networks (ConvNets) [1]–[6] has attracted much atten-
tion. Typically, ConvNets consist of multiple trainable stages
stacked on top of each other followed by a supervised clas-
sifier. Each stage is composed of three layers: a convolution
layer, a nonlinear processing layer, and a pooling layer.

While trainable ConvNets achieve success in many com-
puter vision tasks, the computational complexity of back-
propagation in the training phase and time-consuming
fine tunes adversely affect efficiency of use. To address
this issue, ConvNets without backpropagation has fre-
quently been used by researchers. Recently, Chan et al. [7]
proposed a new variant of convolutional networks, namely,
principal component analysis network (PCANet), which
does not make use of backpropagation to obtain features

from visual content. The features of input visual content
are extracted through three processing stages, i.e., prin-
cipal component analysis (PCA) filter banks in convolu-
tion layers, binarization in nonlinear processing layers, and
block-wise histogram in pooling layers, to avoid back-
propagation. Although PCANet is constructed from the
most basic units, it surprisingly achieves the state-of-the-art
performance among most two-dimensional (2-D) image clas-
sification tasks. Due to the success of this non-propagation
network, this sort of convolutional network has been exten-
sively researched and many novelty works have been pub-
lished recently. Feng et al. [8] proposed a discriminative
locality alignment network (DLANet) for scene classifica-
tion. Qin et al. [9] combined PCANet with spatial pyramid
pooling (SP) for underwater live fish recognition.
Zhao et al. [10] presented a multi-level modified finite
radon transform network (MMFRTN) for image upsam-
pling. Lei et al. [11] developed a stacked image descriptor
for face recognition. Shi et al. [12] proposed a histopatho-
logical image classification method based on PCANet and
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matrix-form classifier. By combining linear regression clas-
sification model (LRC) and PCANet, Huang and Yuan [13]
proposed a weighted-PCANet to solve the face recognition
problem. Hao and Zhao [14] presented an incremental
PCANet, which is a lifelong learning framework.
Zheng et al. [15] investigated a deep learning technique,
named deep learning with PCANet (DLPCANet), to esti-
mate human age. Zeng et al. [16] proposed a quater-
nion principal component analysis network for color
image classification. Wu et al. [17] proposed a Grass-
mann average network (GANet) algorithm to improve
the robustness of learned features from images. They
also proposed a quaternion GA network (QGANet) to
fuse color information and learn superior representa-
tion for color histopathological images at the same
time.

While these methods achieve success in their own fields,
most methods represent multi-dimensional patches, taken
from a tensor object, as one-dimensional (1-D) vectors to
learn their features. However, 1-D representation may not
only inevitably destroy the spatial structures of multidi-
mensional objects; it may also suffer from the so-called
curse of dimensionality [18]. Thus, a more compact rep-
resentation, which can keep spatial information of struc-
tures in tensors, is necessary. In the last few years, some
researchers [19]–[21] have shown that it is more suitable
to represent multidimensional images as tensors rather than
vectors. As a result, many research groups have shown
great interest in the tensor extension of deep learning net-
works. For example, a tensor deep stacking network (TDSN),
which is a tensor extension of traditional deep stacking net-
work (DSN) proposed by Hutchinson et al. [22], has been
applied to MNIST handwriting recognition and phone classi-
fication. Yu et al. [23] successfully extended deep neural net-
work (DNN) to tensor space and obtained a deep tensor neural
network (DTNN), which outperforms DNN in large vocabu-
lary speech recognition. To the best of our knowledge, a sim-
ilar tensor extension on PCANet has not been reported in the
literature.

In this paper, we propose a multilinear principal compo-
nent analysis network (MPCANet), a tensor extension of
PCANet [7], for tensor object classification. For the proposed
MPCANet, the convolution layers, the nonlinear processing
layers, and the pooling layers consist of multilinear principal
component analysis (MPCA) [19] filter banks, binarizations,
and block-wise histograms, respectively. Proper experiments
have been conducted on a UCF sports action database,
a UCF11 database, and also a medical image database to
evaluate the performance of MPCANet and other methods.

The rest of the paper is organized as follows. The MPCA
algorithm is briefly introduced in Section II. Section III
reviews the architecture of PCANet. Section IV describes
the architecture of MPCANet in detail. The classification
performance of MPCANet and PCANet is evaluated and
compared on various tensor object datasets in Section V.
Section VI concludes the paper.

II. REVIEW OF MPCA ALGORITHM
This section offers a brief review of theMPCAalgorithm [19],
which is a tensor extension of PCA, but it can capture more
original tensor input variation than PCA.

An N th-order tensor is denoted as X ∈ RI1×I2×···×IN ,
which is addressed by N indices In, n = 1, 2, . . . ,N , and
each In addresses the n-mode of X . The n-mode product of a
tensor X by a matrix U ∈ RJn×In is defined as:

(X ×n U)(i1,...,in−1,jn,in+1,...,iN ) =
∑
in

X(i1,...,iN ) · U(jn,in).

(1)

By using the N projection matrices {V(n)T
∈ RPn×In , n =

1, . . . ,N }, we can transform a set ofM tensor objects {Xm ∈

RI1×I2×···IN ,m = 1, . . . ,M} into another set of M tensor
objects {Ym ∈ RP1×P2×···PN ,m = 1, . . . ,M}, where Pn <
In, n = 1, 2, . . . ,N . That is,

Ym = Xm ×1 V(1)T
×2 V(2)T

× · · · ×N V(N )T ,
m = 1, 2, . . . ,M . (2)

Eq. (2) can also be expressed in matrix form as
follows [19]:

Xm(n) = V(n)
· Ym(n) ·

(
V(n+1)

⊗ V(n+2)
⊗ · · ·

⊗V(N )
⊗V(1)

⊗ V(2)
⊗ · · · ⊗ V(n−1)

)T
, (3)

where⊗ denotes theKronecker product.Xm(n) is the unfolded
matrix of the tensor Xm along the n-mode. That is to say,
the column vectors of Xm(n) are the n-mode vectors of Xm.
Ym(n) is the unfolded matrix of the tensor Ym along the
n-mode.
The objective of MPCA is the determination of N projec-

tion matrices {V(n)
∈ RIn×Pn , n = 1, . . . ,N } that satisfy the

following conditions:

{V(n)
∈ RIn×Pn , n = 1, . . . ,N } = argmax

v(1),v(2),...,v(N )
9Y , (4)

where 9Y =
∑M

m=1

∥∥Ym − Y
∥∥2
F , Y denotes the mean tensor

calculated as Y = (1/M )
∑M

m=1 Ym. The problem of (4) has
been solved by Lu et al. [19] as follows:

Let {V(n), n = 1, . . . ,N } be the solution of (4). Then, given
all other projection matrices V(1), . . . ,V(n−1),V(n+1), . . . ,

V(N ), the matrixV(n) consists of Pn eigenvectors correspond-
ing to the largest Pn eigenvalues of the following matrix:

8(n)
=

M∑
m=1

(
Xm(n) − X(n)

)
V8(n)VT

8(n)

(
Xm(n) − X(n)

)T
,

(5)

where

V8(n) =

(
V(n+1)

⊗ V(n+2)
⊗ · · · ⊗ V(N )

V(1)
⊗ V(2)

⊗ · · · ⊗ V(n−1)
)
. (6)

and Xm(n) is shown in (3), and X(n) = (1/M )
∑M

m=1 Xm(n).
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FIGURE 1. Visual illustration of MPCA flow diagram.

In practice, we generally further map the tensor Ym ∈
RP1×P2×···×PN to a vector zm ∈ RP1P2···PN , whose ele-
ments are arranged according to the amount of energy that
they carry [19]. In practical implementation, the first L1
elements that carry enough energy are chosen as features
of the sample. Fig. 1 provides a simple visual illustration
of MPCA algorithm for a third-order tensor. Note that the
MPCA degrades to 2-D PCA [24] and PCA when dealing
with the matrix (second-order tensor) and the vector (first-
order tensor), respectively.

III. REVIEW OF PCANet
This section offers a brief review of the two-layer PCANet
(PCANet-2), which is depicted in Fig. 2. The components of
PCANet-2 is described in detail in the following.

A. THE FIRST STAGE OF PCANet-2
Assume that we have M input training images {Im ∈

RI1×I2 ,m = 1, . . . ,M}. The size of image patch (or 2D filter
size) is set to k1 × k2, where 1 < ki < Ii. By collecting all
the (overlapping) k1× k2 image patches around each element
of the mth image, we obtain A1

m = {A
1
m,q ∈ Rk1×k2 , q =

1, . . . , I1I2}, where the superscript 1 denotes the 1st stage,
and each A1

m,q denotes the qth image patch of the original
image Xm. We reshape each image patch A1

m,q into a vector
a1m,q ∈ Rk1k2 . We then subtract patch mean from each image

patch, and getP
1
m =

[
a1m,1, a

1
m,2, . . . , a

1
m,I1I2

]
, where a1m,q is a

mean-removed image patch. We construct a matrix to further
collect these patches of all images, i.e.,

P1
m = [P

1
1,P

1
2, . . . ,P

1
M ] ∈ Rk1k2×MI1I2 . (7)

PCA is then utilized to minimize the reconstruction error as
follows

min
V1∈Rk1k2×L1

∥∥∥∥P1
m − V1

(
V1
)T

P1
m

∥∥∥∥2
F
,

s.t.
(
V1
)T

V1
= EL1 , (8)

where EL1 is an unitary matrix of size L1 × L1. The optimal
solution Ṽ1 of (8) is known as the first L1 principal eigen-
vectors of P1

m
(
P1
m
)T
. Note that the eigenvalues are ordered

as λ1 ≥ λ2 ≥ . . . λL1 ≥ . . .. The PCA filters in the first stage
can then be expressed as

W1
l1 = Matk1,k2 (ṽ

1
l1 ) ∈ Rk1×k2 , l1 = 1, 2, . . . ,L1, (9)

where ṽ1l1 denotes the l1-th principal eigenvector of Ṽ1, and
Matk1,k2 (ṽ

1
l1
) is a function that maps a vector ṽ1l1 ∈ Rk1k2 to a

matrixW1
l1
∈ Rk1×k2 .

The l1-th output feature map of the first stage is

Fl1m = Im ∗W1
l1 ,m = 1, 2, . . . ,M , (10)

where ∗ denotes the two-dimensional (2D) convolution. Note
that the feature matrix Fl1m has the same size as the original
image Im since the zero-padding method is used first for the
original image Im before performing the sliding process of
image patches.
Therefore, for each input image Im ∈ RI1×I2 , we obtain

L1 output images
{
Fl1m ∈ RI1×I2 , l1 = 1, 2, . . . ,L1

}
after the

first stage of PCANet.

B. THE SECOND STAGE OF PCANet-2
Similar to the first stage, we collect all the patches of Fl1m and

then subtract patchmean from each patch, and for eachFl1m we
can get P

2
m,l1 =

[
a2m,l1,1, a

2
m,l1,2, . . . , a

2
m,l1,I1I2

]
∈ Rk1k2×I1I2 ,

where the superscript 2 denotes the 2st stage. Then for allM

input images, we obtain P2
m,l1
=

[
P
2
1,l1 ,P

2
2,l1 , . . . ,P

2
M ,l1

]
∈

Rk1k2×MI1I2 . We then concatenate P2
m,l1

, l1 = 1, 2, . . . ,L1
together and obtain P2

m =

[
P2
m,1,P

2
m,2, . . . ,P

2
m,L1

]
∈

Rk1k2×L1MI1I2 .
By repeating the same process as the first stage, we can get

the PCA filters of the second stage as follows

W2
l2 = Matk1,k2 (ṽ

2
l2 ) ∈ Rk1×k2 , l2 = 1, 2, . . . ,L2, (11)

where ṽ2l2 denotes the l2-th principal eigenvector

of P2
m
(
P2
m
)T
.

Then, the l2-th output feature map of the second stage is

Gl2
m,l1
= Fl1m ∗W

2
l2 , m = 1, 2, . . . ,M , (12)

Therefore, for each input image Fl1m ∈ RI1×I2 , we obtain
L2 output images

{
Gl2
m,l1
∈ RI1×I2 , l2 = 1, 2, . . . ,L2

}
after

the second stage of PCANet.

C. THE OUTPUT STAGE OF PCANet-2
At the output stage, we first use the function H (.), whose
value is one for positive entries and zero otherwise, to binarize
the results of the second PCA stage, and then convert the
L2 outputs in

{
Gl2
m,l1

, l2 = 1, 2, . . . ,L2
}
back into a single

integer-valued ‘‘image’’:

Tl1m =
L2∑
l2=1

2l2−1H
(
Gl2
m,l1

)
. (13)

Note that each pixel value in ‘‘image’’ Tl1m is an integer
in the range [0, 2L2−1]. We then use B blocks to split these
feature maps and compute the histogram (with 2L2 bins) of
the decimal values in each block. We denote the result of this
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FIGURE 2. The architecture of two-layer PCANet (PCANet-2).

process as Bhist(Tl1m). We concatenate all the histograms into
one vector and obtain the final feature of PCANet:

fPm = [Bhist(T 1
m), . . . ,Bhist(T

L1
m )]T ∈ R(2L2 )L1B. (14)

Note that the local block can be either overlapping or
non-overlapping depending on application [7]. The feature
vector is then sent to a support vector machine (SVM) classi-
fier [25]–[27].

As depicted in [7], when assuming I1I2 ≥ max(k1,
k2, L1, L2, B), the overall complexity of the PCANet-2 is
O(I1I2k1k2(L1 + L2)+ I1I2(k1k2)2).

IV. THE ARCHITECTURE OF THE PROPOSED MPCANet
The architecture of our proposed two-layer MPCANet
(MPCANet-2) is summarized in Fig. 3. In this section,
we describe each of its components in detail.

A. THE FIRST STAGE OF MPCANet-2
Assume that we have a set of M third-order tensor objects
{Xm ∈ RI1×I2×I3 ,m = 1, . . . ,M} for training. The size of
tensor patch (or 3D filter size) is set to k1 × k2 × k3, where
1 < ki < Ii. By collecting all the (overlapping) k1 × k2 × k3
tensor patches around each element of the mth tensor object,
we obtain A1

m = {A1
m,q ∈ Rk1×k2×k3 , q = 1, . . . , I1I2I3},

where the superscript 1 denotes the 1st stage, and each A1
m,q

denotes the qth tensor patch of the original tensor Xm. Note
that a tensor patch is a 3D matrix extracted from a tensor
object and can be seen as a 3D tensor extension of 2D image
patch in PCANet. There are two reasons why we use a tensor
patch: (1) tensor is more likely to represent abstract semantic

than the ordinary 2D matrix in terms of high-dimensional
data; (2) a tensor patch can capture some local information
from the original tensor object.

By repeating the above procedure for allM tensor objects,
we can get A1

= {A1
m,m = 1, . . . ,M}, which is then pro-

cessed byMPCA algorithm [19], which is briefly described in
Eqs. (3)-(6), to obtain three projection matricesV1 = {V

(n)
1 ∈

Rkn×pn , n = 1, 2, 3}. The projected tensor patch is therefore
expressed as

S1
m,q = A1

m,q ×1 V
(1)T

1 ×2 V
(2)T

1 ×3 V
(3)T

1 ∈ Rp1×p2×p3 ,

(15)

which is then converted to a vector z1m,q ∈ Rp1p2p3 . Suppose
the number of filter banks in stage i is Li; we then pick up
the first Li elements of z1m,q to form a new vector ẑ1m,q ∈ RL1 .
Similarly, by constructing the matrices for all I1 × I2 × I3
projected tensor patches and putting them together, we can
obtain

z1m =
[
ẑ1m,1 ẑ1m,2 · · · ẑ1m,I1I2I3

]T
∈ RI1I2I3×L1 . (16)

Then, the inverse of the previous mapping to the
columns of z1m is used to derive a set of tensor objects{
F l1
m ∈ RI1×I2×I3 , l1 = 1, . . . ,L1

}
, where F l1

m is the l1th ten-
sor feature output of Xm in the first stage. That is, we reshape
each column of z1m back to a three-dimensional (3D) ten-
sor F l1

m . Note that the tensor feature F l1
m has the same size

as the original tensor Xm since the zero-padding method is
used first for the original tensor Xm before performing the
sliding process of tensor patches.
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FIGURE 3. The architecture of two-layer MPCANet (MPCANet-2).

B. THE SECOND STAGE OF MPCANet-2
Similar to the first stage, we collect all the overlapping tensor
patches of {F l1

m ∈ RI1×I2×I3 , l1 = 1, . . . ,L1}, and form a
new set of tensor patches A2

m = {A2
m,l,q ∈ Rk1×k2×k3 , l1 =

1, . . . ,L1; q = 1, . . . , I1I2I3}, where A2
m,l,q denotes the

qth tensor patch of the tensorF l1
m . By repeating this procedure

for all the tensor features, we getA2
= {A2

m,m = 1, . . . ,M}.
By exploiting MPCA algorithm [19], we can get a set of
projection matrices V2 = {V

(n)
2 ∈ Rkn×pn , n = 1, 2, 3},

which are then used to project A2
m to S2

m = {S2
m,l1,q

∈

Rp1×p2×p3 , l1 = 1, . . . ,L1; q = 1, . . . , I1I2I3}. Each element
of S2

m is converted to a vector, and then a new set of vectors
z2m = {z

2
m,l1,q

∈ Rp1p2p3 , l1 = 1, . . . ,L1; q = 1, . . . , I1I2I3}
is obtained. Picking up the first L2 elements of z2m,l1,q, a new
vector ẑ2m,l1,q ∈ RL2 is formed. Subsequently, by constructing

the same matrix for all projected tensor patches of F l1
m and

putting them together, a matrix may be generated as

ẑ2m,l1 =
[
ẑ2m,l1,1 ẑ2m,l1,2 · · · ẑ2m,l1,L2

]T
∈ RI1I2I3×L2 .

(17)

The columns of ẑ2m,l is then mapped back to a set of tensor

objects
{
Gl2m,l1 ∈ RI1×I2×I3 , l2 = 1, . . . ,L2

}
, where Gl2m,l1 is

the l2th tensor feature map of F l1
m in the second stage. Note

that the number of outputs of the second stage is L1L2. One
can simply repeat the above process to construct more stages
if a deeper architecture is found to be necessary.

C. THE OUTPUT STAGE OF MPCANet-2
Each tensor feature

{
Gl2m,l1 ∈ RI1×I2×I3 , l2 = 1, . . . ,L2

}
is

binarized by using Heaviside step function H (·), the value
of which is one for positive entries and zero otherwise.{
G̃l2m,l1 ∈ RI1×I2×I3 , l2 = 1, . . . ,L2

}
denotes these b inar-

ized tensor features. Since different tensor features can
describe different variations of the original tensor data,{
G̃l2m,l1 , l2 = 1, . . . ,L2

}
should be weighted to form new sin-

gle tensor features as follows [7]:

W l1
m =

L2∑
l2=1

2l2−1G̃l2m,l1 . (18)

Note that each element of the tensor featureW l1
m is an integer

in the range of [0, 2L2−1].
Next, a spatial pooling operation is applied to W l1

m . The
cubic tensor feature is divided into B boxes. We compute the
histogram of the decimal values for each box and denote it as
hist(Box)b, b = 1, . . . ,B. After the above pooling process,
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FIGURE 4. Some frames from the UCF sports action dataset. The top images are a series of diving sports. The middle images are a
series of running sports. The bottom images are a series of gymnastic sports.

we simply concatenate all the histograms of B boxes into one
vector, obtaining

fMPm =
[
hist(Box)1 hist(Box)2 · · · hist(Box)B

]
∈ R

(
2L2

)
L1B. (19)

Boxes can either be overlapping or non-overlapping in
MPCANet, depending on the application [7]. The feature
vector is then sent to a SVM classifier [25]–[27]. Note that the
feature vector is in general of very high dimension but very
sparse therefore, the performance of SVM classifier is much
better than that of k-nearest neighbor (KNN) classifier [16].

D. THE COMPUTATIONAL COMPLEXITY OF MPCANet-2
In this subsection, we examine the computational complexity
of MPCANet-2 for each third-order tensor object in a similar
manner to that of PCANet-2 introduced in [7]. In the first
stage of MPCANet-2, forming the patch-mean-removed ten-
sor version of A1

m,q ∈ Rk1×k2×k3 costs k1k2k3 + k1k2k3I1I2I3
flops. Note that this step is implied in the preprocessing of
MPCA algorithm [19]. The following usage of MPCA algo-
rithm consists of the formation of the matrices 8(n) in (5) and
the eigen-decomposition process, which have the complex-
ities of O(k21k2k3I1I2I3) and O((k1k2k3)

3). The MPCA filter
convolution requires Lik1k2k3I1I2I3 flops for stage i. In the
output layer, the conversion of L2 binary bits to a decimal
number costs 2L2I1I2I3, and the naive histogram operation
is of complexity O(I1I2I3BL2 log 2). Therefore, the overall
complexity of MPCANet-2 is O(k1k2k3I1I2I3(L1 + L2) +
(k1k2k3)3 + k21k2k3I1I2I3) when assuming I1I2I3 ≥ max(k1,
k2, k3, L1, L2, B).

V. EXPERIMENTAL RESULTS
This section gives three applications of the proposed
MPCANet for tensor object classification. Although there are
many variants of PCANet, most of them are optimized for
a particular situation. For example, parameters of weighted-
PCANet [13] and Deep learning PCANet (DLPCANet) [15]
are optimized for face recognition and human age estimation.
The optimized parameters of [13] and [15] are not suitable
for tensor object classification. Therefore, we only compare
our proposed MPCANet with PCANet [7] and also MPCA
algorithm [19].

A. PERFORMANCE ON THE UCF SPORTS
ACTION DATABASE
The UCF database [28] is a sports action video database; it
contains 9 classes and approximately 200 videos of sports
action at a resolution of 720× 480. The videos are typically
chosen from broadcast television channels such as BBC and
ESPN. Some frames taken from the videos in the UCF sports
action dataset are shown in Fig. 4.
The video samples of the UCF database need to be prepro-

cessed before performing the proposed MPCANet. We first
convert each video frame from color space to gray scale one
and then manually extract the sportsman in each frame with a
size of 400× 250. The cropped video frames are then resized
to 80 × 50 pixels to reduce computational complexity. The
dimension of the third-mode (or time mode) is set to 20 to
maintain a complete sports action. When preprocessing is
complete, video samples can be represented by a set of tensor
objects {Xm ∈ R80×50×20,m = 1, . . . ,M}. We randomly
pick up half of the tensor objects in each class as a training
set and the others as a testing set.
Since MPCA [19] is the tensor extension of the conven-

tional PCA, we use parameters in the proposed MPCANet
consistent with those of PCANet reported in [7]. For compu-
tational simplicity, we set the size of the third-mode dimen-
sion of the tensor patch to 20, which is equal to that of
each tensor object. That is to say, the tensor patch sizes in
MPCANet are set to 3×3×20, 5×5×20 and 7×7×20. Thus,
the output tensor feature in the second stage of MPCANet-2
is the second-order tensor (or matrix). We set the number
of filters to L1 = L2 = 8 in the convolution layer and the
box sizes to multiples of 8 × 5 × 1 in the pooling layer of
MPCANet. To offer some degree of translation invariance
in tensor objects, the overlapping ratio of the box is set to
50%. For PCANet, we use the parameters recommended by
the authors [7]. The patch sizes are 3 × 3, 5 × 5 and 7 × 7.
The number of filters is 8. The block sizes are multiples of
8× 5 and the overlapping ratio of the block is 50%.
In addition to PCANet, we also compare the proposed

MPCANet with the conventionalMPCA [19], where liblinear
SVM is used to do the classification. The recognition rates of
MPCANet, PCANet [7] with different patch sizes and block
sizes are shown in Fig. 5. The best recognition accuracy rates
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FIGURE 5. The recognition rates of MPCANet and PCANet for different
patch sizes k1 × k2. (a) 3 × 3. (b) 5 × 5. (c) 7 × 7.

of MPCANet, PCANet and MPCA are listed in Table 1.

TABLE 1. The best performance of MPCANet, PCANet [7], and MPCA [19]
on the UCF sports action database.

It can be observed that both one-layer MPCANet
(MPCANet-1) and one-layer PCANet (PCANet-1) outper-
form MPCA. May be the reason is that MPCA algorithm
does not have a nonlinear pooling layer, leading to less robust
features for visual content compared to MPCANet-1 and
PCANet-1. PCANet-1 achieves the best performance among
one-layer networks but the improvement from PCANet-1 to
PCANet-2 is not as large as that of MPCANet. One can
see that MPCANet-2 obtains the best recognition result in
two-layer networks since it utilizes the information of spa-
tial structures of tensor objects much more efficiently than
PCANet-2.

B. TESTING ON THE UCF11 DATABASE
In this subsection, we test the performance of MPCANet on
the UCF11 database [29] for tensor object classification. The
UCF11 database contains 11 action categories: basketball
shooting, biking, diving, golf swinging, horseback riding,
soccer juggling, swinging, tennis swinging, trampoline jump-
ing, volleyball spiking, and dog walking. Some examples in
the UCF11 dataset are shown in Fig. 6. The video samples
are all 240 × 320 pixels and have been manually collected

TABLE 2. The best performance of MPCANet, PCANet [7], and MPCA [19]
on the UCF11 database.

from YouTube. For each category, the video samples belong
to 25 groups with more than 4 action clips in each group.
We only choose the first ten groups in each category to test
the performance of MPCANet, PCANet [7], andMPCA [19].
The total number of experimental video samples is 642. For
each group, half of the video samples are randomly selected
for training, and the others are used for testing. We nor-
malize the video samples first to reduce the differences in
frame variation. For videos whose frames are larger than 20,
we only choose the first twenty frames. For videos whose
frames are less than 20, we simply copy the last frame to fill
them. Every video sample is resized to 48 × 64 to reduce
the calculation burden. Therefore, the video samples of the
UCF11 database are represented by a set of tensor objects
{Xm ∈ R48×64×20,m = 1, . . . ,M}.

The patch sizes and the overlapping ratios of MPCANet
and PCANet are the same as the previous experiment on
the UCF sports action database. Three box sizes are con-
sidered here: 6 × 8, 12 × 16 and 24 × 32. Table 2 reports
the best performance of MPCANet, PCANet, and MPCA.
We observe that MPCANet-2 still outperforms the other
methods, and MPCA is still worst in terms of classification
accuracy.

C. PERFORMANCE IN A MEDICAL IMAGE DATABASE
Medical image processing has attracted a great deal of atten-
tion [30]–[36]. In this subsection, the experiments are carried
out on the classification of the medical image database that
we collected. The database contains different samples of
abdomens, lumber, brains, lungs, hearts and chests, and each
class has 48 samples, all of which are three-dimensional (3-D)
image sequences. The samples are taken from CT or MRI
images. Some examples of the dataset are shown in Fig. 7.
The lung sequence of images consist of 50 low-dose docu-
mented whole-lung CT scans. The CT scans were obtained
in a single breath hold with a 1.25 mm slice thickness, and
the original size of the flames is 512 × 512. Both the brain
images and the abdomen images are MRI images; they are
260 × 260 slices with 0.6 mm thickness.
It is necessary to preprocess the images in the database

before performing the proposed MPCANet. First, we resize
all the frames to 64 × 64 pixels to reduce computational
complexity. The dimension of the third-mode is set to 20.
After preprocessing, all the samples can be represented as
a set of tensor objects {Xm ∈ R64×64×20,m = 1, . . . ,M}.
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FIGURE 6. Some examples from the UCF11 dataset. The top left corner block shows
4 basketball scenes. The top right corner shows biking. Trampoline activities are shown
at bottom left. In the right bottom, soccer is shown.

FIGURE 7. Some examples from the medical image database. The top images are a series of lung images. The middle images are a series of
brain images. The bottom images are a series of abdomen images.

For each class, we randomly select half of the tensor objects
for training and test on the others.

In addition to PCANet [7], we also compare the proposed
MPCANet with conventional MPCA [19]. The recognition
rates ofMPCANet, PCANet [7] with different patch sizes and
block sizes are shown in Fig. 8.

It is apparent that with the increase in patch size, the results
of these four methods tend to be better. However, the perfor-
mance does not improve greatly when the patch size is larger
than 7 × 7. In addition, the recognition rates of the learning

networks gradually improve as the block size increases. From
the figure, we can see that the performance of the MPCANet
is somewhat less sensitive to block size. To take MPCANet-2
as an example, when the patch size is set to 9 × 9, the recog-
nition rate is almost 100%, regardless of the changes in block
size.

The best recognition accuracy rates ofMPCANet, PCANet
and MPCA are listed in Table 3. We note that MPCANet-
2 still outperforms the other methods and MPCA is still the
worst in terms of classification accuracy. It is also shown that
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FIGURE 8. The recognition rates of MPCANet and PCANet for different
patch sizes k1 × k2. (a) 3 × 3. (b) 5 × 5. (c) 7 × 7. (d) 9 × 9.

TABLE 3. The best accuracy rates of MPCANet, PCANet [7], and MPCA[19]
on the medical image database.

one-layer MPCANet (MPCANet-1) outperforms a two-layer
PCANet (PCANet-2) in this experiment. Maybe the reason
is that one-layer MPCA captures better intra-class variability
than two-layer PCA on this medical image database.

VI. CONCLUSIONS
In this paper, we propose and implement a novel deep learn-
ing architecture, that is, MPCANet. Compared to PCANet,
MPCANet involves tensor interactions among stages to pro-
tect the spatial structures of multi-dimensional objects, which
efficiently improve its recognition rate. MPCANet is com-
posed of projection dictionaries, the projection encoder layer,
and the pooling layer. An approach to mapping the tensor
objects to a corresponding feature vector and the architecture
of MPCANet has been described in detail.

We have executed the MPCANet on the UCF sports action
database, the UCF11 database, and a medical image dataset
to verify the effectiveness of MPCANet. The experimental
results demonstrate that MPCANet outperforms the conven-
tional PCANet and MPCA in tensor object classification.
It provides deep insight on tensor extension on ConvNets.
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