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ABSTRACT A t/s-diagnosable system, a generalization of t/t-diagnosable system, refers to such a system
that all the faulty nodes of the system can be isolated within a set of size at most s in the presence of at most
t faulty nodes. In this paper, the t/s-diagnosability of the hypercubes under the PMCmodel (the comparison
model) is evaluated. First, several novel properties of hypercube are proposed, which are previously unknown
in the literatures. Second, based on the above properties of hypercubes, we show that an n-dimensional
(n > 5) hypercube is (kn− ((k(k + 1))/2)+ 1)/(kn− ((k(k + 1))/2)+ k − 1)-diagnosable in terms of both
the PMC and the comparison models, where 2 6 k 6 n − 2. Furthermore, we introduce a fast diagnosis
algorithm to isolate the faulty nodes in a subset of the system under the PMCmodel (the comparison model).
And the time complexity of the algorithm is O(n2n) for an n-dimensional hypercube.

INDEX TERMS t/s-diagnosable systems, fault diagnosis, n-dimensional hypercube, isolation algorithm,
PMC model, comparison model.

I. INTRODUCTION
With the rapid development of Multi-Processors, multipro-
cessor computer systems can now contain hundreds and thou-
sands of processors. It is inevitable that some processors in
such a system may fail. On one hand, in order to main-
tain the communication of the multiprocessor system, the
system should have the capability of fault tolerance with a
certain degree, which is relative to the structure of the system.
Some studies on the fault tolerance properties of the system
structures can be found in [14], [17], [18], [23], [27], [28].
On the other hand, to ensure reliability, the system should
have the ability to identify the faulty processors. On fault
identification, a realistic diagnosis method, called system-
level diagnosis, is first proposed by Preparata et al. [1], [2].
In [1], Preparata et al. proposes the first system-level diag-
nosis model, namely the PMC model. In the PMC model,
a system can be represented by a digraph G(V ,E), and the
edge (i, j) means node i tests node j. The test outcome of
node i testing node j is represented by ω(i, j). ω(i, j) = 1(0)
implies that node j is faulty(fault-free) and the outcome of test
(i, j) is reliable only if node i is fault-free. The PMC model
has been adopted in [6]–[13], [15], [16]. Another practical
system-level diagnosis model is the comparison model (also
called MM model), proposed by Maeng and Malek [3], [4].
Sengupta and Dahbura [5] suggested a further modification,

called the MM* model, in which any node has to test other
two nodes if it is adjacent to them. Under the comparison
model, for a system represented by an undirected graph
G(V ,E), node k is a comparator for nodes i and j if and only
if (i, k) ∈ E and (j, k) ∈ E . The test outcome of comparator
k testing i, j is denoted by ω(k : i, j). ω(k : i, j) = 1 implies
that at least one of nodes i and j is faulty and ω(k : i, j) = 0
implies that nodes i and j are all fault-free. The test outcome
ω(k : i, j) is reliable only if node k is fault-free. If node k is
faulty, thenω(k : i, j) can be arbitrary. The comparison model
has been adopted in [12], [19], [21], [23]–[26].

There are two fundamentally different strategies to system-
level diagnosis: t-diagnosis [1] and t/t-diagnosis [6], [7].
A system is t-diagnosable if and only if the system can
identify all the nodes within the system correctly in the
presence of at most t faulty nodes. And a system is
t/t-diagnosable if and only if it can isolate all of the faulty
nodes to within a set of size at most t in the presence of
at most t faulty nodes. For a system, the t/t-diagnosability
of it is usually larger than it’s t-diagnosability. For exam-
ple, under the PMC model (the comparison model), the
t/t-diagnosability of an n-dimensional hypercube is 2n − 2,
which is larger than n, the t-diagnosability of it [14]. How-
ever, for a system, if the real number of faulty nodes is larger
than it’s t/t-diagnosability, then the above two diagnosis
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strategies can do little for diagnosis. As a generalization of
the t/t-diagnosis, t/s-diagnosis (s > t) can be expected to
diagnose the faulty nodes in the system when the number of
faulty nodes of the system is larger than its t/t-diagnosability.
Hypercube is an important network topology in modeling

multiprocessor systems, and has been applied to the paral-
lel computer systems for commerce and research, such as
Intel iPSC/2, nCUBE/10, CM-2, SGI/Cray Origin2000, may
be a general method for designing nanocomputers, a future
computer system. Hypercube has been widely studied (see
[14], [15], [18], [27], [28]). However, the research about
the t/s-diagnosability of the hypercube is unknown in the
previous literatures. In this paper, we introduce some novel
properties of the hypercube and apply them to discuss the t/s-
diagnosability of the hypercube under the PMC model (the
comparison model).

The rest of this paper is organized as follows: Section 2
outlines the preliminaries for a system-level diagnosis.
In section 3, some novel important properties of hypercube
are derived. In section 4, by using properties of hypercube
proposed in section 3, the t/s-diagnosability of
hypercube is presented under the PMC and comparison mod-
els. In section 5, an algorithm is proposed to locate a subset
such that all faulty nodes can be isolated in this subset for an
n-dimensional (n > 5) hypercube, whose time complexity is
O(n2n). Section 6 draws a conclusion.

II. PRELIMINARIES
We begin our paper by doing the following preliminaries.
For convenience, the following graphs Gs are all undirected
graphs.

For a graph given by G(V ,E), let V (G) be the set of all
nodes of graphG. The connected subgraph set ofG is denoted
by Csub(G) = {C1,C2, . . . ,Ck |Ci is connected(1 6 i 6 k)
and Ci,Cj is disconnected(1 6 i, j 6 k) and V (C1) ∪
V (C2)∪ . . .∪ V (Ck ) = V (G)}. Especially, if G is connected,
the Csub(G) = G.

For a subset X ⊂ V , the induced subgraph of X in graph
G can be denoted by Gind (X ) = (V ′,E ′) where V ′ = X and
E ′ = {(i, j)|i, j ∈ X and (i, j) ∈ E}
Let Cardk (Csub(G)) = {Ci|Ci ∈ Csub(G) and |V (Ci)| = k}

be the set of k nodes connected subgraph in G.
For example, consider a graph G shown in Figure 1,

Csub(G) = {C1,C2,C3} where C1 = Gind ({v1, v2}),
C2 = Gind ({v3, v4, v5}) and C3 = Gind ({v6, v7, v8, v9}).
Card2(Csub(G)) = {C1}, Card3(Csub(G)) = {C2} and
Card4(Csub(G)) = {C3}.
Definition 1: Under the PMC model, for a system given

by G(V ,E) and a syndrome σ , a set X ⊂ V is called an
allowable fault set (AFS) of the system for syndrome σ if for
any two nodes i, j such that (i, j) ∈ E,
i) If i, j ∈ V − X then ω(i, j) = 0, and
ii) If i ∈ V − X and j ∈ X then ω(i, j) = 1.
Definition 2: Under the comparison model, for a system

given by G(V ,E) and a syndrome σ , a set X ⊂ V is called
an allowable fault set (AFS) of the system for syndrome σ

FIGURE 1. An interconnection topology graph G.

if for any three nodes i, j, k such that (i, k) ∈ E and
(j, k) ∈ E,
i) If k ∈ V − X and i, j ∈ V − X then ω(k : i, j) = 0, and
ii) If k ∈ V − X and {i, j} ∩ X 6= ∅ then ω(k : i, j) = 1.
For a node v ∈ V , let N (v) = {u|(u, v) ∈ E} denote the set

of the all neighbors of node v. And for a subset X ⊆ V , let
N (X ) = ∪v∈XN (v)− X .
Lemma 3: A system is given by undirected graph G(V ,E)

with at most t faulty nodes. For a connected subgraph of G,
say G′, then following conditions hold:
i) Under the PMC model, if the test results are all 0 and
|V (G′)| > t + 1, then all the nodes of G′ are fault-free.
ii) Under the comparison model, if the test results are all 0

and |V (G′)| > t + 1 and each node of G′ has at least two
neighbors in G′, then all the nodes of G′ are fault-free.

Proof: For condition i), assume that there exists some
node, say u, is faulty, then the nodes of N (u) are all faulty.
Similarly,N (N (u)) are all faulty. Furthermore, the nodes ofG′

are all faulty which implies that the system has at least t + 1
faulty nodes, which is a contracdiction to the assumption that
the system has at most t faulty nodes.
For condition ii), assume that there exists some node,

say u, is faulty. By assumption, for each neighbor of u,
say v, there exists one node u1 ∈ V (G′), u1 6= u, such that
ω(v : u1, u) = 0, which implies that v is faulty. Furthermore,
the nodes of N (v) are all faulty and the nodes of N (N (v))
are also all faulty, which implies all nodes of G′ are faulty.
Therefore, the system has at least t + 1 faulty nodes, which
is a contracdiction to the assumption that the system has at
most t faulty nodes. �

III. PROPERTIES OF HYPERCUBE
An n-dimensional hypercube Qn has 2n nodes and each node
is labeled by an n-bit binary string. Two nodes are adjacent if
and only if their labels differ in exactly one bit position.

A 4-dimensional hypercube is shown in Figure 2.
Lemma 4 [20]: Let G(V ,E) be the graph of a hypercube

of dimension n and X ⊂ V with |X | = k, 0 < k 6 n+1, then
N (X ) > kn− k(k + 1)/2+ 1.
Lemma 5: Let G(V ,E) be the graph of a hypercube of

dimension n (n > 5) and S = {v1, v2, . . . , vk |v1, v2, . . . , vk ∈
V and v1, v2, . . . , vk have one common neighbor}(k 6 n).
Then |N (S)| = kn− k(k+1)

2 + 1.
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FIGURE 2. A 4-dimensional hypercube.

Proof: For convenience, let add(v0) be the address of
node v0. Without loss of generality, let node v0 be their com-
mon neighbor and add(v0) = a1a2 . . . an(ai = 0 or 1 and if
ai = 0(1), then ai = 1(0)). It is easily seen that the addresses
of the nodes in S can be presented as follows: add(v1) =
a1a2 . . . an, add(v2) = a1a2 . . . an, . . . , add(vk ) =

a1a2 . . . akak+1 . . . an. Now we consider the addresses of
node v′is neighbors. The addresses ofN (vi) can be represented
by a1a2 . . . ai . . . an, a1a2a3 . . . ai . . . an, . . . , a1a2 . . . ai . . . an.
Therefore, for any different i, j, N (vi) ∩ N (vj) = {v0, u}
where add(u) = a1a2 . . . ai . . . aj . . . an. Hence, |N (S)| =
k(n− 1)− C2

k + 1 = kn− k(k+1)
2 + 1. �

Lemma 6 [22]: Let G(V ,E) be the graph of a hypercube
of dimension n (n > 3) and let S be a set of nodes S ⊂ V
with n 6 |S| 6 2(n − 1) − 1. Suppose that Gind (V − S) is
disconnected and let Csub(Gind (V −S)) = {C1,C2, . . . ,Cm}.
Then following conditions hold:
i) 61

i=0i|Cardi(Csub(Gind (V − S)))| 6 1.
ii) There exists only one Ci ∈ Csub(Gind (V − S)) with
|V (Ci)| > 2.
Lemma 7: Let G(V ,E) be the graph of a hypercube of

dimension 5 and let S be a set of nodes S ⊂ V with |S| 6
5k − k(k+1)

2 (1 6 k 6 3). Suppose that Gind (V − S) is
disconnected and let Csub(Gind (V −S)) = {C1,C2, . . . ,Cm}.
Then following conditions hold:
i) 6k−1

i=0 i|Cardi(Csub(Gind (V − S)))| 6 k − 1.
ii) There exists only one Ci ∈ Csub(Gind (V − S)) with
|V (Ci)| > k.

Proof: When k = 1, we have |S| 6 4, therefore, the
claim is true. According to Lemma 6, the claim also holds
for k = 2. Next, we consider the situation that k = 3. Note
that when k = 3, |S| 6 9. For convenience, divide Q5 to
two 4-dimensional hypercubes denoted by QL4 and QR4 . Let
SL = S∩QL4 and SR = S∩QR4 . Consider the following cases:
Case 1: |SL | > 4k− k(k+1)

2 = 6 or |SR| > 4k− k(k+1)
2 = 6.

Without loss of generality, let |SL | > 4k − k(k+1)
2 = 6,

then |SR| 6 3, which impiles thatQR4 −SR is connected. Note
that there exist 24 > 3 edges between QL4 and QR4 . Then at
most (3− 1) nodes can be surrounded by S. Hence the claim
is true.

Case 2: |SL | < 4k − k(k+1)
2 = 6 and |SR| < 4k −

k(k+1)
2 = 6.
Since |SL | 6 5 and |SR| 6 5. Let A (respectively, B) be the

largest component of QL4 − SL (respectively, QR4 − SR) and
A′ (respectively, B′) be the union set of the remaining small
components ofQL4 −SL (respectively,Q

R
4−SR). According to

Lemma 6, we have that |A′| 6 1 and |B′| 6 1, which implies
that the condition i) is true. Note that |A| > 24 − 5− 1 = 10
and |B′| + |SR| 6 5, which implies there exists an edge from
A to B. Therefore, condition ii) is true. �
Lemma 8: For any two positive integers a, b,

1+ ab > (a+ b).
Proof: Let f (a, b) = (1+ab)− (a+b). After factoriza-

tion, f (a, b) = (a− 1)(b− 1), then f (a, b) > 0 when a, b are
all positive integers. Therefore, for any two positive integers
a, b, 1+ ab > (a+ b). �
Lemma 9: Let G(V ,E) be the graph of a hypercube of

n(n > 5) dimension and let S be a set of nodes S ⊂ V with
|S| 6 kn− k(k+1)

2 (1 6 k 6 n−2). Suppose that Gind (V−S) is
disconnected and let Csub(Gind (V −S)) = {C1,C2, . . . ,Cm}.
Then following conditions hold:
i) 6k−1

i=0 i|Cardi(Csub(Gind (V − S)))| 6 k − 1.
ii) There exists only one Ci ∈ Csub(Gind (V − S)) with
|V (Ci)| > k.

Proof: We prove the claim by induction on n. According
to Lemma 7, we have that the claim holds for n = 5. And
assume that the claim holds for some (n − 1), n − 1 > 5.
Next, we will show that it holds for n. For convenience, divide
Qn to two (n− 1)-dimensional hypercubes denoted by QLn−1
and QRn−1. Let SL = S ∩ QLn−1 and SR = S ∩ QRn−1. Let
A (respectively, B) be the largest component of QLn−1 − SL
(respectively, QRn−1 − SR) and A′ (respectively, B′) be the
union set of the remaining small components of QLn−1 − SL
(respectively, QRn−1 − SR). We consider following cases:

Case 1: |SL | > k(n−1)− k(k+1)
2 or |SR| > k(n−1)− k(k+1)

2 .
Without loss of generality, let |SL | > k(n − 1) − k(k+1)

2 ,
then |SR| 6 k 6 n − 2, which implies that QRn−1 − SR is
connected. Note that there exist 2n−1 > k − 1(n > 5)
edges between QLn−1 and QRn−1. Then at most k nodes can
be surrounded by S. According to Lemma 4, we have that if
there are k nodes surrounded by S, then |S| > kn− k(k+1)

2 +1,
which is a contradiction to that |S| 6 kn− k(k+1)

2 . Hence the
claim is true.
Case 2: |SL | < k(n− 1)− k(k+1)

2 and |SR| < k(n− 1)−
k(k+1)

2 .
Case 2.1: k < n− 2.
Since k 6 (n− 1)− 2, according to the induction hypoth-

esis, |A′| 6 k − 1 and |B′| 6 k − 1. We claim that A
and B are connected. According to the induction hypothesis,
|A| > 2n−1−[k(n−1)− k(k+1)

2 ]−(k−1), similarly, |QRn−1−
B| 6 k(n−1)− k(k+1)

2 +(k−1). Note that |A|−|QRn−1−B| >
2n−1−2kn+2+ k(k+1) > 2n−1−n2+n+8 > 0(n > 5).
Therefore, there exists at least one edge from A to B, which
implies A and B are connected. Let |A′| = ka 6 k − 1,
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|B′| = kb 6 k − 1. Suppose, to the contrary, |A′ ∪ B′| > k .
Then |S| = |SL | + |SR| > (ka + kb)(n − 1) − ka(ka+1)

2 −
kb(kb+1)

2 + 2. We claim that ka, kb > 1. Otherwise, |A′ ∪
B′| < k which is a contradiction to the hypothesis. Accord-
ing to Lemma 8, |S| = |SL | + |SR| > (ka + kb)(n − 1) −
ka(ka+1)

2 −
kb(kb+1)

2 + 2 > (ka + kb)n−
(ka+kb)(ka+kb+1)

2 + 1.

Let k ′b = k−ka. Note that k ′b 6 kb and k ′b(n−1)−
k ′b(k

′
b+1)
2 6

kb(n − 1) − kb(kb+1)
2 . Therefore, |S| = |SL | + |SR| > (ka +

kb)(n − 1) − ka(ka+1)
2 −

kb(kb+1)
2 + 2 > (ka + k ′b)(n − 1) −

ka(ka+1)
2 −

k ′b(k
′
b+1)
2 + 2 > (ka+ k ′b)n−

(ka+k ′b)(ka+k
′
b+1)

2 + 1 =
kn− k(k+1)

2 +1, which is contradiction to the hypothesis that
|S| 6 kn− k(k+1)

2 .
Case 2.2: k = n− 2.
Since |SL | 6 k(n − 1) − k(k+1)

2 − 1 = (n − 2)(n − 1) −
(n−1)(n−2)

2 − 1 = (n−1)(n−2)
2 − 1 = n2−3n

2 = (n − 3)(n −
1)− (n−3)(n−2)

2 . According to the induction hypothesis, |A′| 6
k − 1 and |B′| 6 k − 2 = n − 4. We claim that A and B
are connected. According to the induction hypothesis, |A| >
2n−1− n2−3n

2 −(n−4), similarly, |QRn−1−B| 6
n2−3n

2 +(n−4).

Note that |A| − |QRn−1 − B| > 2n−1 − 2[ n
2
−3n
2 − (n− 4)] =

2n−1−n2+8+n > 0(n > 5). Therefore, there exists at least
one edge from A to B, which implies A and B are connected.
Let |A′| = ka 6 k − 2, |B′| = kb 6 k − 2. Suppose, to the
contrary, |A′ ∪ B′| > k . Then |S| = |SL | + |SR| > (ka +
kb)(n−1)− ka(ka+1)

2 −
kb(kb+1)

2 +2. We claim that ka, kb > 1.
Otherwise, |A′ ∪ B′| < k which is a contradiction to the
hypothesis. Then according to Lemma 8, |S| = |SL |+ |SR| >
(ka + kb)(n − 1) − ka(ka+1)

2 −
kb(kb+1)

2 + 2 > (ka + kb)n −
(ka+kb)(ka+kb+1)

2 + 1. Let k ′b = k − ka. Note that k ′b 6 kb
and k ′b(n − 1) −

k ′b(k
′
b+1)
2 6 kb(n − 1) − kb(kb+1)

2 . Therefore,
|S| = |SL |+|SR| > (ka+kb)(n−1)−

ka(ka+1)
2 −

kb(kb+1)
2 +2 >

(ka + k ′b)(n − 1) − ka(ka+1)
2 −

k ′b(k
′
b+1)
2 + 2 > (ka + k ′b)n −

(ka+k ′b)(ka+k
′
b+1)

2 +1 = kn− k(k+1)
2 +1 which is contradiction

to the hypothesis that |S| 6 kn − k(k+1)
2 . And our proof is

done. �
With above preliminaries, we shall discuss the diagnosabil-

ity of t/s-diagnosable of the n-dimensional hypercube.

IV. DIAGNOSABILITY OF T/S-DIAGNOSABLE
OF THE HYPERCUBE
Definition 10: A system S is t/s-diagnosable (s > t) if

and only if all the faulty nodes can be isolated within a
set of size at most s in the presence of at most t faulty
nodes.
Lemma 11: For a system given byG(V ,E), let X ⊆ V with

X = {v1, v2, . . . , vk} and (vi, vj) /∈ E (1 6 i, j 6 k, i 6= j)
(k > 3). Let α = |N (X )|, then the system is not (α+ 1)/[α+
(k − 1)]-diagnosable under the PMC model.

Proof: Let F = N (X ) ∪ {v1} be the real fault set in the
system, then |F | = α+ 1 and |N (X )∪X | = α+ k . Consider
the following syndrome σ for each pair of nodes i, j ∈ V such
that (i, j) ∈ E(Shown in Figure 3).

FIGURE 3. A syndrome σ of Theorem 13 under the PMC model.

i) If i, j ∈ V − F − {v2, . . . , vk}, then ω(i, j) = 0.
ii) If i ∈ V − F − {v2, . . . , vk} and j ∈ F − {v2, . . . , vk},

then ω(i, j) = 1.
iii) The test results from X to F − {v2, . . . , vk} are 1s.
iv) The test results from X to V − F − {v2, . . . , vk} are 0s.
v) The other possible test results are arbitrary.
For above syndrome σ , N (X ) ∪ {vi}(1 6 i 6 k) are all

allowable fault sets. Since |∪ki=1[N (X )∪{vi}]| = α+k > α+

k−1, we conclude that the system is not (α+1)/[α+(k−1)]-
diagnosable. �
Lemma 12: For a system given byG(V ,E), let X ⊆ V with

X = {v1, v2, . . . , vk} and (vi, vj) /∈ E (1 6 i, j 6 k, i 6= j)
(k > 3). Let α = |N (X )|, then the system is not (α+ 1)/[α+
(k − 1)]-diagnosable under the comparison model.

Proof: Let F = N (X ) ∪ {v1} be the real fault set in the
system, then |F | = α+ 1 and |N (X )∪X | = α+ k . Consider
following syndrome σ , for three nodes i, j, k ∈ V such that
(i, k), (j, k) ∈ E :

i) If i, j, k ∈ V − F − {v2, . . . , vk}, then ω(k : i, j) = 0.
ii) If i, k ∈ V − F − {v2, . . . , vk} and j ∈ F − {v}, then

ω(k : i, j) = 1.
iii) If j, k ∈ V − F − {v2, . . . , vk} and i ∈ F − {v}, then

ω(k : i, j) = 1.
iv) If k ∈ X , and i, j ∈ F − {v}, then ω(k : i, j) = 1.
v) The other possible test results are arbitrary.
For above syndrome σ , N (X ) ∪ {vi}(1 6 i 6 k) are all

allowable fault sets. Since |∪ki=1[N (X )∪{vi}]| = α+k > α+

k−1, we conclude that the system is not (α+1)/[α+(k−1)]-
diagnosable. �
Next, we present the diagnosability of t/s-diagnosable

of the n-dimensional hypercube by the following
theorems.
Theorem 13: Under both the PMC model and comparison

model, an n-dimensional (n > 5) hypercube is not kn −
k(k+1)

2 + 2/kn− k(k+1)
2 + k-diagnosable (2 6 k 6 n).

Proof: According to Lemma 5, 11, 12, the claim is
true. �
Theorem 14: Under the PMC model , an n-dimensional

(n > 5) hypercube is [kn− k(k+1)
2 +1]/[kn− k(k+1)

2 +k−1]-
diagnosable (2 6 k 6 n−2 and kn− k(k+1)

2 +1 6 n2−n
2 −1).

Proof: Let F ⊆ V be the real fault set with
|F | 6 kn − k(k+1)

2 + 1 in the system and
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Csub(Gind (V − F)) = {C1,C2, . . . ,Cm}. According to
Lemma 9, the following conditions hold:

i) 6k
i=0i|Cardi(Csub(Gind (V − F)))| 6 k .

ii) There exists only one Ci ∈ Csub(Gind (V − F)) with
|V (Ci)| > k + 1.

For convenience, let S = ∪ki=0Cardi(Csub(Gind (V − F)))
and α = |S| 6 k . It is obvious that V − F − S is connected
since |V−F−S| > 2n−[kn− k(k+1)

2 +1]−k > kn− k(k+1)
2 +1

where n > 5.
According to Lemma 3, the test results of V −F−S are all

0s, which implies that all nodes of V − F − S are fault-free.
Consider the following cases:
Case 1: α < k − 1.
Note that |F ∪ S| 6 kn− k(k+1)

2 + k − 1. Therefore, the all
faulty nodes can be isolated within F ∪ S.
Case 2: α = k − 1.
We claim that there exists no such a node v ∈ F such that

N (v) ⊆ F ∪ S, otherwise, there exists such one node v that
N (S ∪ {v}) ⊆ F − {v}. Therefore, |N (S ∪ {v})| 6 kn− k(k+1)

2
which is a contradiction to Lemma 4. For each node u ∈ F ,
there always exists an edge from some node w ∈ V − F − S
to u, which implies that each node can be identified as faulty
correctly
Case 3: α = k .
We claim that there exists no such a node v ∈ F that

N (v) ⊆ F ∪ S. Otherwise, there exists such one node v that
N (S ∪{v}) ⊆ F −{v}. Therefore, |N (S ∪{v})| 6 kn− k(k+1)

2 .
According to Lemma 4, |N (S∪{v})| > (k+1)n− (k+1)(k+2)

2 +

1. Note that (k + 1)n − (k+1)(k+2)
2 + 1 − [kn − k(k+1)

2 ] =
n − k > 0 which is a contradiction. Therefore, for each
node u ∈ F , there always exists an edge from some node
w ∈ V − F − S to u, which implies that each node can be
identified as faulty correctly. �
Theorem 15: Under the comparison model, an n-

dimensional(n > 5) hypercube is [kn − k(k+1)
2 + 1]/[kn −

k(k+1)
2 +k−1]-diagnosable(2 6 k 6 n−2 and kn− k(k+1)

2 +

1 6 n2−n
2 − 1).

Proof: Let F ⊆ V be the real fault set with |F | 6
kn − k(k+1)

2 + 1 in the system and Csub(Gind (V − F)) =
{C1,C2, . . . ,Cm}. According to Lemma 9, the following con-
ditions hold:

i) 6k
i=0i|Cardi(Csub(Gind (V − F)))| 6 k .

ii) There exists only one Ci ∈ Csub(Gind (V − F)) with
|V (Ci)| > k + 1.

For convenience, let S = ∪ki=0Cardi(Csub(Gind (V − F)))
and α = |S| 6 k . It is obvious that V − F − S is connected
since |V−F−S| > 2n−[kn− k(k+1)

2 +1]−k > kn− k(k+1)
2 +1

where n > 5.
We shall show that the nodes of V − F − S can be

identified as being fault-free correctly by the following
cases.
Case 1: Each node of V −F−S has at least two neighbors

in V − F − S.
According to Lemma 3, the test results of V − F − S are

all 0, which implies that all nodes of V −F−S are fault-free.

FIGURE 4. The comparison among three kinds of diagnosabilities on
n-dimensional hypercubes.

Case 2: The other possible situations.
Let X ⊆ V − F − S be the susbet such that each node of

X has at least n − 1 neighbors in F and |X | = β. We claim
that |V − F − S| − β > kn − k(k+1)

2 + 1 + 1. Otherwise,
|V − F − S| − β < kn − k(k+1)

2 + 1 + 1. Note that β >
|V − F − S| − |F | > 2n − [kn − k(k+1)

2 + 1] − k − [kn −
k(k+1)

2 + 1] = 2n − 2 − 2kn + k2 > 2n − n2 − 1. Since
each node of X has at least (n − 1) neighbors in F and for
any two nodes u, v ∈ V , |N (u) ∩ N (v)| 6 2, |N (X ) ∩ F | >
(n−1)(2n−n2−1)−2(2n−n2−1) = (n−3)(2n−n2−1),
which implies that |F | > (n − 3)(2n − n2 − 1). Note that
(n− 3)(2n− n2− 1)− [kn− k(k+1)

2 + 1] 6 (n− 3)(2n− n2−
1)− [ n(n−1)2 + 1] > 3 (n > 5) which is a contradiction to the
hypothesis that |F | 6 kn− k(k+1)

2 + 1. Therefore, |V − F −
S| − β > [kn− k(k+1)

2 + 1]+ 1.
Let M = V − F − S − X . Then |M | > [kn − k(k+1)

2 +

1] + 1 and each node of M has at least 2 neighbors in
V − F − S, which implies that M can be identified as
fault-free correctly by Lemma 3. Next we shall show that
each node of X can be identified as fault-free correctly.
Let Csub(Gind (X )) = {X1,X2, . . . ,Xl}. Note that M ∪ X is
connected. Therefore, for each Xi (1 6 i 6 l), there exist
nodes vi ∈ Xi and u ∈ M such that (u, vi) ∈ E , which
implies that vi can be identified as fault-free correctly. And the
neighbors of vi in Xi can be identified as fault-free correctly.
Furthermore, each node of Xi can be identified as fault-free
correctly.

The remaining argument is similar to the proof of
Case 1, 2, 3 of the Theorem 14. �

It is known that an n-dimensional hypercube is n-
diagnosable and (2n−2/2n−2)-diagnosable. Previous study
shows that an n-dimensional hypercube is kn − k(k+1)

2 +

1/kn − k(k+1)
2 + k − 1-diagnosable where 2 6 k 6 n − 1.

As a comparison, Figure 4 shows the relationship of their
diagnosabilities.
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V. A FAST T/S-DIAGNOSABLE ALGORITHM
FOR HYPERCUBE NETWORKS
In this section, we shall propose a fast t/s-diagnosable algo-
rithm to isolate all faulty nodes within a subset under the
PMC model (the comparison model).

This algorithm consists of two parts. The first part, Depth-
First search (DFS), can find the largest fault-free component
of the system (see Algorithm 1). The second part, Fast Iso-
lation, uses the largest fault-free component to identify the
remaining nodes in the system (see Algorithm 2).

Algorithm 1 Depth-First Search(PMC)
Input:
A system given by undirected graphG(V ,E) with 2n nodes
and a node v ∈ V . Let W = {v}.

Output:
A subset W ⊆ V .
1: DFS(v):
for each u ∈ N (v)
if ω(u, v) = ω(v, u) = 0.
W = W ∪ {u} and DFS(u).
2: Output the nodes set W .

A. T/S-DIAGNOSABLE ALGORITHM
UNDER THE PMC MODEL
Lemma 9 and Theorem 14 can be used to prove that the DFS
can always output unique set S with |S| > t + 1 for an n-
dimensional hypercube provided the number of faulty nodes
does not exceed t (t 6 n2−n

2 − 1, n > 5). Next, for a t/s-
diagnosable hypercube of n dimension (t 6 n2−n

2 −1, n > 5),
an algorithm called Fast Isolation is introduced to locate a
subset with size at most s such that the all faulty nodes are
isolated in this subset (see Algorithm 2).

Algorithm 2 Fast Isolation(PMC)
Input:
A system given by undirected graphG(V ,E) with 2n nodes
and a fault bound t(t 6 n2 − n(n+1)

2 − 1) and a syndrome
σ .

Output:
A faulty nodes set F , a fault-free nodes set T and a possible
faulty nodes set S with F ∪ T ∪ S = V .
1: Let Si = ∅(1 6 i 6 2n), T = F = S = ∅.
For each node ui ∈ V − ∪ij=1Si(1 6 i 6 2n), do DFS(ui)
and Si = DFS(ui).
If |Si| > t + 1, then T = T ∪ Si and F = F ∪ N (T ).
2: If V = T ∪ Fc, then output the fault-free nodes set T
and faulty nodes set Fc. Otherwise go to step 3).
3: If |F | > t , then T = V − F and output the fault-free
nodes set T and faulty nodes set Fc. Otherwise,
S = V − T − F and output sets T ,F, S.

Theorem 16: The algorithm Fast Isolation has a time com-
plexity O(Nlog2N ), where N = 2n.

Proof: For convenience, let F be the real fault set
in the system and X be the largest component of V − F
and Y = V − F − X . If the selected node (ui) belongs
to the largest component of V − F , then step 1) costs
O(Nlog2N ) time. If the selected node(ui) always belongs to
Y ∪ F , then step 1) costs O( n

2
+n
2 + Nlog2N ) = O(Nlog2N )

time. Hence step 1) costs O(Nlog2N ) time. step 2) and step
3) cost O(N ) time. Hence the total time of Fast Isolation
is O(Nlog2N ). �

B. T/S-DIAGNOSABLE ALGORITHM UNDER
THE COMPARISON MODEL
Similar to the part A, we present the t/s-diagnosable algo-
rithm under the comparison model for an n-dimensional
hypercube network as follows (see Algorithm 3, 4).

Algorithm 3 Depth-First Search(MM)
Input:
A system given by undirected graphG(V ,E) withN nodes
and a node v ∈ V . Let W = {v}.

Output:
A subset W ⊆ V .
1: DFS(v):
for any two nodes u0, u1 ∈ N (v) with u0 /∈ S or u1 /∈ S.
if ω(v : u0, u1) = 0.
W = W ∪ {u0} and DFS(u0).
2: Output the nodes set W .

Algorithm 4 Fast Isolation(MM)
Input:
A system given by undirected graphG(V ,E) with 2n nodes
and a fault bound t(t 6 n2− n(n+1)

2 −1) and a syndrome σ .
Output:
A faulty nodes set F , a fault-free nodes set T and a possible
faulty nodes set P with F ∪ T ∪ P = V .
1: Let Si = ∅(1 6 i 6 2n), T = F = P = ∅.
For each node ui ∈ V − ∪ij=1Si(1 6 i 6 2n), do DFS(ui)
and Si = DFS(ui).
If |Si| > t + 1, then T = T ∪ Si. Go to step 2).
2: Identify each node w ∈ N (Si) by using test result
ω(w0 : w,w1) where w0,w1 ∈ Si.
If w is faulty F = F ∪ {w}, otherwise Si = Si ∪ {w}.
Repeat step 2), until N (Si) ⊆ F .
3: If V = T ∪ F , then output the fault-free nodes set T
and faulty nodes set F . Otherwise go to step 4).
4: If |F | > t , then T = V − F and output the fault-free
nodes set T and faulty nodes set F . Otherwise,
P = V − T − F and output sets T ,F,P.

Similar to Theorem 16, we have that the algorithm Fast
Isolation has a time complexity O(n2n) for an n-dimensional
hypercube.
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VI. CONCLUSIONS
In this paper, we do a further study on the n-dimensional
hypercube (n > 5). Some new important properties of
hypercube are proposed. Based on the novel properties of
hypercube, we show that an n-dimensional hypercube is
(kn− k(k+1)

2 + 1)/(kn− k(k+1)
2 + k − 1)-diagnosable under

the PMC model (the comparison model), which is much
larger than n, the classical diagnosability of n-dimensional
hypercube (2 6 k 6 n − 2 and kn − k(k+1)

2 + 1 6 n2−n
2 −

1). Furthermore, an O(n2n) algorithm is proposed to isolate
faulty nodes within a set for an n-dimensional hypercube.
A future addition to this work would be to develop the

t/s-diagnosability of other interconnection networks such as
n-dimensional star graph, the exchanged hypercube, and their
identification algorithms.
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