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ABSTRACT Although many successful algorithms have been proposed for visual tracking, it is still a
challenging task due to occlusion, scale variation, fast motion, and deformation. To handle these challenges,
we propose a collaborative model and focus on three key factors: 1) an effective representation to consider
appearance variations; 2) an effective application of the keypoints; and 3) an incorporation of contextual
information. In this paper, we propose a novel algorithm that takes into account the three key factors based
on complex cells and keypoints. The complex cells can effectively explore the contextual information at
multiple scales. Meanwhile, a keypoint is an ideal local representation. Keypoints-based tracking method
is used to make coarse tracking. A precise tracking-by-detection whose samples come from keypoints-
based tracking is followed by considering the scale information. In addition, measurement of appearance
variation is measured by matching the current inner cell with template’s individualistically. In the basis of
the measurement, an adaptive learning rate parameter is estimated for updating the object appearance model
to avoid noises. Experimental results demonstrate that our tracker is able to handle appearance variations
and recover from drifts. In conjunction with tracking acceleration modules, the proposed method performs
in real time and outperforms favorably many state-of-the-art algorithms for object tracking.

INDEX TERMS Computer vision, visual tracking, complex cells and keypoints, adaptive fusion tracking.

I. INTRODUCTION
Object tracking is one of the most important topic in
computer vision. It has been used for wide applications,
including intelligent surveillance, motion classification,
recognition, autonomous robots and so on. The tracking of
a priori unknown objects draws considerable interest and
establishes its place in the tracking community under the
template-matching visual tracking. Generally speaking,
the initial region in the first frame of the image sequence
is the only information that is provided to the tracker and
the tracking task is to estimate the current position of the
target. However, this task remains challenging because some
situations like illumination variations, shape deformation,
occlusion, or motion changes are hard to handle.

To well handle the above mentioned challenges, a descrip-
tor of the target in a tracker is very important and should
be robust enough to distinguish the object under appear-
ance variations. Hence, most tracking algorithms [1]–[9]

focus on the appearance representation and treat tracking as
template matching in each frame in recent years. We call
them tracking-by-matching. Keypoints-based or part-based
appearance model is the kernel of tracking-by-matching
method. Researchers have developed sophisticated methods
of adapting these models during tracking. One solution is
to use the descriptors of keypoints to represent an object
appearance model while voting those tracked or matched
keypoints to estimate the target location, for example, metric
learning tracker [10], structured output learning tracker [11],
consensus-based matching-tracking algorithm [4] and multi-
store tracker [7]. Another method is to build a robust object
appearance template and find the best candidate image
patch to match the template, such as, incremental learning
tracker [12], fragments-based tracker [13] and visual tracking
decomposition [14]. Last approach is to model both the object
and the background, and then to distinguish the object from
the background using a discriminative classifier [15], [16] or
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FIGURE 1. The framework of the proposed RAFT Tracking. System is divided into three components in accordance with
the traditional way: object representation, tracking-by-matching and template updating.

match the mixed template to calculate the maximum response
value from candidates [2].

However, keypoint descriptor, a local representation or
a global representation can only considers one aspect of
above demands. Generally, keypoint descriptor and local rep-
resentations represent the local regions information. They
are usually robust to handle variation in partial occlusions
or motion [13], [17], but easily fail in background clutters
and heavy occlusion because of ignoring object structures
and losing object information. On the contrary, global rep-
resentations can search for large object’s structure [15], [18]
but absence of the local adaptivity makes them not conduc-
tive to handle occlusion or deformation. In addition, three
kinds of representations only extract the information from the
object. However, the contextual features from surrounding
background are ignored absolutely, which can be applied
for accurate tracking as well as variations in occlusions or
deformations.

In this paper, we develop a simple tracking system frame-
work and propose a robust adaptive fusion tracking method,
named RAFT, which effectively integrates the three kinds of
representations based on complex cells and keypoints. The
framework is demonstrated in Fig. 1 and divided into three
components in accordance with the traditional way: object
representation, tracking-by-matching and template updating.

For object representation, to maintain the local stability,
local region histogram features are adopted as the bases of
our representation, named cells. These cells are formed by
dividing the region within and around the bounding box into
disjoint rectangular patches. To achieve the global robust-
ness, similar to CCT tracker [2], different cells are integrated
together, called complex cells. With the cells of different spa-
tial arrangements, there is an effective exploration for the con-
text information via complex cells at multiple scales. There
are five types of complex cells that collect the relativity from
local region, block neighbourhood, inter-region relations and
surrounding background. In addition, to enhance the global
distinctiveness, we add a new complex cell into the group of
object representation. The details refer to Sec. III-B. Some
complementary characteristics are highlighted by composing
the five kinds of complex cells. Both inner and outer object
information are employed and a multi-scale appearance is
taken into account to balance the conflict between local flex-
ibility with global stability. As a derivative, we extract the
center of each inner cells as keypoints for coarse tracking in
the next stage.

While taking account to tracking-by-matching, it is a
two-stage approach. First, as we know, keypoint is an
ideal local representation. Keypoints-based tracking method
is wonderful about handling these model. We use the
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FIGURE 2. Comparison of our approach with state-of-the-art trackers in challenging situations. The example frames are the jumping,
ironman and lemming sequences respectively. Qualitative comparison results of our approach with 12 state-of-the-art trackers in
challenging situations. The example frames are the boy, bolt and motorrolling sequences respectively, in which the targets undergo
motion blur and low resolution. Best viewed on color display. The results of IVT [12], VTD [14], CCT [2], VTS [21], CXT [22], CMT [4],
CT [23], Struck [24], MEEM [25], MUSTer [7], CNT [26], SCM [27] and our RAFT are represented by green, blue, black, yellow,
carmine, ultramarine, orange, purple, turquoise, white, crimson, grey and red boxes respectively.

LK optical-flow [19] based on keypoint for coarse tracking.
After this, we achieve the final tracking result or pro-
vide more accurate parameter for next precise tracking.
Second, we adopt the strategy proposed by Chen et al. [2],
in which the matching template is composed of temporal
varying cells. There are two layers which store the appear-
ance of the target and background for matching respectively.
Each cell is deemed as Gaussian distribution. The two-
layer template is conductive to search contextual information.
The background-weighted histogram algorithm proposed by
Ning [20] to reduce the interference of background in target
localisation in mean-shift tracking. Inspired by this inspi-
ration, we track the object by matching the complex cells
from candidates with the template for finding the maximal
similarity. The state with maximal response means that is
most similar to the template and thus can be treated as the
tracked location.

While considering about model updating, we focus on
the situation that the learning rate is changing with the
corresponding object’s appearance variation to avoid noises
effectively. In order to pursue the mentioned ideal situation,
we propose a novel strategy by matching the inner cells
between current object with the template’s individualistically.

Each inner cell is belong to one part of the target. The success
of each pair of cells match depends on the similarity between
them. In other words, there is evidence that proves the phe-
nomenon which the final matching result demonstrates the
degree of the appearance variation of the target. Then a double
sigmoid function [28] is employed to measure the learning
rate parameter. Fig. 2 shows that our tracker achieves promis-
ing results as compared with other state-of-the-art methods
and the key contributions of the proposed RAFT algorithm
are summarized as follows.
• We develop a simple tracking system framework and
propose a robust adaptive fusion tracking method, which
effectively integrates the three kinds of representations
based on complex cells and keypoints.

• We incorporate a novel complex cell into the
group of object representation to enhance the global
distinctiveness.

• We propose a novel strategy by matching the inner cells
individualistically to measure the degree of the appear-
ance variations.

• We present a new model update mechanism based on
the measurement of appearance variations to preserve
the stable features while avoid the noisy ones.
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• We adopt a new coarse-to-fine search strategy to make
the finally estimated location more accurate.

II. RELATED WORK
A. PARTS-BASED OBJECT TRACKING
There has been a considerable amount of work dedicated
to parts-based object representations under tracking-by-
matching. Adam et al. [13] propose a fundamental from
of parts-based tracker. The object is divided into multiple
image patches. The patches are assigned in a designed grid,
and each patch votes for the location of the object inside a
sliding-window. It is impossible to be permitted for rotating
or articulating of the object under the rigid arrangement of
those patches. Wu et al. [29] employ the theory of Markov
networks to present a part-based method for visual tracking.
The method is robust to appearance variations in occlusion
and deformation due to the difference of the parts are been
checked while rashly fusing all descriptors into a single one.
Nejhum et al. [30] propose a tracker with part-based appear-
ance model of the object. The foreground object is segmented
into a small number of rectangular blocks. The algorithm
aims at tracking the object by matching blocks intensity
histograms, and updating the part-based appearance model.
However, these methods require manual initialisation of part
locations carefully and do not use the context information.
To overcome those problems, Chen et al. [2] present a part-
based tracker with a novel representation framework. They
construct complex cells from local descriptors to represent
multiple scale and contextual information. Using fixed learn-
ing parameter seems to be a only fly in the ointment to update
its appearance model.

B. KEYPOINT-BASED OBJECT TRACKING
Efficient keypoint-based object tracking methods are utilized
in lots of real-time visual applications. Hare et al. [11] present
a keypoint-based approach for object tracking. The method
learns a model for real-time keypoint-based object detection
then matches those points for tracking. However, to combine
feature learning, matching and pose estimation into a single
unified framework is hard to balance the conflicts between
them. Kala et al. [31] propose a tracking-learning-detection
framework (TLD) for long-term tracking. This algorithm
combines the traditional tracking algorithm with the tradi-
tional detection algorithm to solve the problem of deforma-
tion and drifts during tracking. While it cannot handle the
heavy occlusion and lose the tracking result without returning
bounding box. Nebehay et al. [4] reveal a novel keypoint-
based method for long-term model-free object tracking in
a combined matching-and-tracking (CMT) framework. The
approach uses a keypoint-based object representation and
treats the tracking as finding the corresponding keypoints
in each frame. The algorithm is especially sensitive to the
number of keypoints. If the number of keypoints is too
large, it would lead to a heavy computational cost. On the
contrary, too small number of keypoints will result in los-
ing the target. Without the process of updating the model,

when the object’s angle changes drastically, the tracker will
not match the keypoints and lead to the failure of tracking.
Hong et al. [7] propose a novel multi-store tracker (MusTer)
based on a cognitive psychology inspired for object track-
ing. The RANSAC estimation interacts with the keypoint
descriptors in the long-term store and controls the final out-
put and the short-term memory states. Due to the excellent
performance of this method, we make a detailed analysis.
A flexible description is designed to present the target, which
is proved to adapt to the variances of object appearance during
tracking. Meanwhile, a dual-component approach consisting
of short- and long-term memory stores is proposed to deal
with object appearance memories. A powerful and efficient
Integrated Correlation Filter is also applied in the short-
term store for short-term tracking. According to keypoint
matching-tracking and RANSAC estimation, the long-term
measure can interact with the long-term memory and supply
enough information for controlling the tracking. Even though
a reasonable keypoint feature database size is not easy to
maintain, the MUSTer is still the best algorithm based on
keypoint matching-tracking up to now.

III. ROBUST ADAPTIVE FUSION TRACKING
A. KEYPOINTS-BASED COARSE TRACKING
Decomposition of the target as parts makes models more
robust for object tracking, since local changes only affect
individual parts. Meanwhile, keypoint is an ideal local repre-
sentation, which is utilized for coarse tracking in this paper.
For component of keypoints-based tracking, we estimate
the displacement of each keypoints in Kt−1 from It−1 to It
by employing the Optical-Flow [19] tracker of Lucas and
Kanade. For t = 2, points K1 are obtained by extracting the
center point of each inner cell. As shown in the left of Fig. 3,
the inner cells are located within the red object’s bounding
box and the keypoints center in these cells.

Median-Flow tracker [32] presents the target by a bounding
box and estimates its motion between consecutive frames.
Internally, the set of tracked keypoints T is estimated based
on their reliability, and voted with half of the most reliable
displacements for the motion of the bounding box using the
median. As shown in Fig. 3, the green bounding box is the
result of the keypoints tracking. Then we extract the complex
cells feature at location of the bounding box and calculate
the similarity between current sample and previous template.
A score function (Eq.3) is used to measure the similarity.
After this, we extract the complex cells at location of the
LK tracking and calculate the similarity with the template.
Algorithm process lies in the three kinds of results corre-
sponding to the similarity. If the similarity is beyond the
threshold value, we will treat the initial result as the final
result and get out of the loop to track the next frame to
speed up the algorithm. If the similarity is lower than the
threshold value, the result of LK tracking will be regarded as
the initial parameter. Meanwhile, a more accurate sampling
area can be provided for the next precise tracker. Moreover,
if the similarity is quite beyond the pale, the preliminary result
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FIGURE 3. The process of the Keypoints-based Tracking. left: The initial keypoints located in the center
of each inner cell. middle: Keypoints tracked by LK [19]. right: The result of tracking.

FIGURE 4. Overview of Complex Cells-based Precise Tracking. left: Object segment into cells; middle left: An intensity
histogram (I) and an oriented gradient histogram (G) are combined to describe each cell; middle right: Five types
complex cells composed of cells; right: Fusion score calculated from different complex cells with a linear function.

will be omitted to avoid noises. Inspired by the TLD [31]
method, our algorithm also increases the component with
failure detection. Hence, the third case generally does not
appear. The more details refer to Sec. IV-D.

B. COMPLEX CELLS-BASED PRECISE TRACKING
Complex cells tracking (CCT) [2] is a template-matching
method for object tracking, where the template is consisted
of temporal complex cells and has two layers template to
search the target and background appearance feature respec-
tively. Due to the different combinations of complex cells, the
template can be well explored in the context of information
at multiple scales for visual tracking, which is conductive
to improve the tracking performance. Fig. 4 demonstrates
the overview of the complex cells-based tracking. The whole
system is divided into three stages, namely, the extraction and
expression of the cell region of the object, the composition of
the complex cells, and finally the template matching.

1) EXTRACTION AND EXPRESSION OF THE CELL
An object is represented by a bounding box at frame t .
Its element Xt = (xt ; yt ; st ) is a three-dimensional vector
indicating position and scale. To obtain the local robustness,
local region histogram features are adopted as the bases of
our representation, named cells. These cells are formed by
dividing the region within and around the bounding box into
disjoint rectangular patches, written as M . As shown in the
left of Fig. 4, the cells inside the red bounding box are called
inner cells while the others are called outer cells. By the way,
the keypiont is also determined and located at the center of
each cell, corresponding to the red and purple dots in the left
of Fig. 4.Mall = Min

⋃
Mout , where theMin andMout are set

as the inner cell and the outer cell respectively, with forming
a whole Mall . An intensity histogram (I) and an oriented
gradient histogram (G) are combined to describe each cell.
Intensities stand for gray values with gamma normalization.
The gradient feature is similar to HOG [33]. Both kinds
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of histograms contain 8 bins. The descriptor for cell m is
a 16 dimensional vector obtained by combining with the
two histograms, written as hm(xt ). The method of integral
histogram [34] is emploied to calculate the histogram of a
rectangle efficiently.

2) COMPOSITION OF THE COMPLEX CELLS
A complex cell is obtained by combining cells with different
ways. Similar to CCT tracker [2], two basic operators are
applied for building the complex cells. One is the merging
which holds the histogram sum of selected cells. The other
is the contrast which computes the histogram difference
between a chosen cell pair. To enhance the global distinc-
tiveness, we add a novel complex cell into the group of
object representation. Finally, five kinds of complex cells
are proposed to represent the local, global and contextual
information. Local Complex Cell (LCC) is constructed by
a single inner cell directly, and its descriptor is just the
L2-norm normalized cell descriptor; Block Complex
Cell (BCC) takes neighbouring 2 × 2 cells to represent
larger region of the object, and its descriptor is the merge
of the cells; Non-local Complex Cell (NCC) is composed
of a randomly selected inner cell pair, and its descriptor is
the contrast of the cell pair; Background-Contrast Complex
Cell (CCC) is composed of a neighbouring inner-outer cell
pair, and its descriptor is the contrast of the two cells. The
major challenge for object tracking is to account for drastic
appearance variations. Zhong et al. [27] propose a robust
appearance model that exploits both holistic templates and
local representations. Inspired by this strategy, we create
a new complex cell to enhance the global distinctiveness,
named Global Complex cell (GCC) (as shown in Fig. 4).
It is a special case of BCC when the block is merged as
an object bounding box (w × h, where w > 2 and h > 2
are the numbers of block’s width and height). Even though
the GCC is simple, but it denotes to better control the global
information of object’s appearance.

3) TEMPLATE MATCHING
1) Template: The foreground and background information

are represented as a two-layer template separately. The
foreground template Ota is in accord with inner cells,
however, the inner and outer cells are in line with the
background template Obg, which are occupied by the
background.We roughly estimate the object continuous
variations under Gaussian model with mean µ and
variance D during tracking. The object template O can
be represented as:

Ota = {µtam,D
ta
m |m ∈ Min} (1)

Obg = {µbgm ,D
bg
m |m ∈ Mout } (2)

where Oall = Ota
⋃
Obg. We use µ as the cell descrip-

tors for template, and take the inner cells from target
template and the outer cells from background template
to construct the complex cells. The complex cell is
denoted as CT .

2) Measure the Similarity: In this algorithm, tracking aims
at searching for the state that is most similar to the
template. A score function is proposed to measure the
similarity, which is voted by likelihoods of all the com-
plex cells.

S(xt ) =
∑
i∈I

αi
∑
j∈J i

ωjmj(C(xt ),CT ) (3)

where I denotes complex cell types, written as
{L,B,N ,C,G}, and J i are the complex cell indexes
for a specific type i. C(xt ) and CT are complex cell
descriptors for xt and template T respectively. The
optimal state x̂t is the one with maximal score, namely
x̂t = argmaxxt S(xt ). mj(C(xt ),CT ) is the likeli-
hood of jth complex cell. To measure the likelihood,
we introduce a kernel function y. Suppose d and f
are the corresponding complex cell descriptors, func-
tion y integrates the two channel features by a linear
combination:

y(d, f ) = (d I + f I )+ (dG + f G) (4)

There are two types of weights are considered, namely,
adaptive weight ωj and fusion weight αi. The ωj is
associated with each complex cell and is determined
by

ωj =
sj · oj∑
j∈Jm sj · oj

(5)

where sj, oj are the stability and occlusion factor corre-
sponding to complex cell j.

sj =

log( Zin
Tr(Dtam )

) m ∈ Min

log( Zout
Tr(Dbgm )

) m ∈ Mout
(6)

where the Zin =
∑

Min
Tr(Dtam), and the Zout =∑

Mout
Tr(Dbgm ).

oj =

{
1→ 0, if (∃oj = 0) ∧ (r(l, j) > θocc)
0→ 1, if y(hm(x̂t ), µtam) > θdeocc

(7)

where (hm(x̂t ) is the current cell descriptor extracted

from the optimal state, and (r(l, j) = y(hm(x̂t ),µ
bg
m )

y(hm(x̂t ),µtam )
is the

ratio of its affinities with the neighbouring background
template and the affinity with the its target template.
The αi is associated with each complex cell type and
balanced between different complex cell types to pre-
serve global distinctiveness. For i type complex cells,
αi is computed based on the samples in the previous
frame t − 1,

α ∝
Sm(x̂t−1)− median

MAD
(8)

where S(xt ) =
∑

j∈J i ωjmj(C(xt ),CT ) is the score for
corresponding complex cells. median is the median
of Sm and MAD measures their deviation defined as
median(|Sm(xkt−1)− median|).
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C. MODEL UPDATE
Aswe know, many algorithms (like CCT [2] and CT [23]) use
fixed learning rate parameters to update their template mod-
els. The target model is particularly sensitive to noise. Hence,
we focus on the situation that the learning rate is changing
with the corresponding object’s appearance variation. In this
way, noise can be avoided effectively.

1) CELLS MATCHING
In order to pursue the mentioned ideal situation, we propose
a novel strategy by matching the inner cells between current
object with the template’s individualistically. Each inner cell
is belong to one part of the target. The success of each
pair of cells match depends on the similarity between them.
In other words, there is evidence that proves the phenomenon
which the final matching result demonstrates the degree of
the appearance variation of the target. In order to rule out
the keypoints of the non matching relation, which is pro-
duced because of the occlusion and background confusion,
the match method proposed by Lowe et al. [1] is employed.
Measurement ϑ of the appearance variation is

ϑ =
Mnum

Knum + c
(9)

where c is a constant. Mnum and Knum are the number of
matched keypoints and total number of keypoints in current
frame, respectively.

2) LEARNING RATE MEASURING
Once the appearance change factor are determined, the cor-
responding learning parameters can be calculated. In such
a principle, when the target is covered or the deformation
is very intense, learning rate for the current target should
be reduced. Conversely, learning rate for the previous tar-
get information should be increased. This can prevent the
negtive impact of noise on the object model. In order to
satisfy this characteristic, a double sigmoid function [28] is
employed:

ϕ =
1

1+ exp(−2(ϑ−tr ))
(10)

r =

{
r1 ϑ ≤ t
r2 other,

(11)

The less the value indicates that the degree of appearance vari-
ation between the current target and the template is greater.
In our experiment, t = 0.5, r1 = 0.2 and r2 = 0.3.

3) MODEL UPDATING
As cells descriptors in Ota and Obg are modeled as
Gaussian distributions, we incrementally update the
parameters (µtam;D

ta
m) and (µbgm ;D

bg
m ) by current cell

descriptor ĥm(xt) that is also modeled as a Gaussian dis-
tribution G(ĥm;D0). The template updating is therefore
operated as Gaussian merging. We first update the target

template Ota:

µ̃m = ϕ
taµtam + (1− ϕta)ĥm (12)

D̃m = ϕta(Dtam+µ
ta
mµ

ta
m
T)+(1−ϕta)(D0+ĥmĥTm)− µ̃mµ̃

T
m

(13)

µtam = olµ̃m+(1−ol)µtam Dtam=olD̃m+(1−ol)D
ta
m (14)

where ϕta is a learning rate parameter. When updating the
object template Ota, the ϕta = ϕ in the Eq. 10. Parame-
ter update model can automatically adjust the learning rate
parameter for updating the object model according to the
change of target appearance. Thus, it is more adaptive, and
the robustness of the algorithm is enhanced. The update rule
for background templateObg is similar toOta. However, there
are two main differences. One is that we only update the
(µbgm ;D

bg
m ) for the cell labelled as 0. The other is that we

update with a fix learning rate ϕbg since it is difficult to
find out the influence of background appearance variation on
tracking.

IV. EXPERIMENTS
Our method is implemented in native Matlab/C++. The
experiments are performed on an Intel i7 Quad-Core machine
with 2.34 GHz CPU and 8 GB RAM. In this section, we
compare our RAFT with 12 current state-of-the-art track-
ers on challenging sequences. The 12 trackers are as fol-
lows: incremental learning tracker (IVT) [12], decomposition
tracker (VTD) [14], structured output tracker (Struck) [24],
sampling trackers (VTS) [21], context tracker (CXT) [22],
compressive tracker (CT) [23], sparsity-based collaborative
model tracker (SCM) [27], complex cell tracker (CCT) [2],
consensus-based matching-and-tracking tracker (CMT) [4],
convolutional networks tracking (CNT) [26], multiple
experts tracker (MEEM) [25] and MUlti-Store
Tracker (MUSTer) [7]. These algorithms are related to
keypoints-based or parts-based model under tracking-by-
matching and achieve promising performance.

A. DATASETS
In order to verify the experiment, we employ the tracking
benchmark dataset [35] which includes 50 fully-annotated
videos with real image sequences (more than 29,000 frames).
In addition, in order to ensure the applicability of the experi-
ment, an animated video (bird2) is also adopted from [36].
For better evaluation and analysis of the strength and
weakness of the tracking algorithms, the sequences are
categorized according to 11 attributes, including illumina-
tion variation (IV), scale variation (SV), occlusion (OCC),
deformation (DEF), motion blur (MB), fast motion (FM),
in-plane rotation (IPR), out-of-plane rotation (OPR),
out-of-view (OV), background clutters (BC), and low reso-
lution (LR), which are summarized in Table 1.

B. SETUP
Given a target location at the current frame, the radiuses for
coarse-to-fine search are set as 20 and 4. The former takes
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TABLE 1. Test videos categorized with 11 attributes.

100 samples and the latter takes 50 samples. The number of
inner cells is around 25 and the outer cells is corresponding to
the bounding box. The number for different types of complex
cells are set as follows: LCC equals to inner cells; BCC
covers every possible 2 × 2 cell region; 60 inner cell pairs
are randomly chosen for NCCs; 30 inner-outer cell pairs
are chosen as CCCs across the bounding box boundary. The
learning rate parameter for background model is set as 0.85.
It is important to note that the parameters in our method are
fixed through the experiments.

C. EVALUATION METRIC
Two metrics are used to evaluate the proposed algorithm with
12 state-of-the-art trackers. The first metric is the success
plots based on the overlap metric [35], which is defined

as, score = area(ROIT
⋂
ROIG)

area(ROIT
⋃
ROIG)

, where ROIT is the tracking
bounding box and ROIG is the ground truth.

⋂
and

⋃
rep-

resent the intersection and union of two regions. We define
the successful frames as the frames whose overlap is larger
than a given threshold of t0. Another evaluation metric is
the precision plots based on the location error metric. Center
location error is a widely used evaluation metric for tracking
precision. It is defined as the average Euclidean distance
between the center locations of the tracked targets and the
manually labeled ground truths. The precision plot shows
the percentage of frames whose estimated location is within
the given threshold distance of the ground truth. For fair
evaluation, the Area Under Curve (AUC) of each success
plot is preferred to measure the success ratio. The One-Pass
Evaluation (OPE) which is basis of the average precision and
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FIGURE 5. The relationship between learning rate parameters and the appearance variations of image. The green
bounding box is the result of the initial tracking based on keypoints and points inside are the tracked by LK. The bottom
row results are the final tracking results and the cells are re-allocated corresponding to the keypoints are determined and
centered in each grid.

the success rate given the ground truth of the first frame is
applying for evaluating the robustness of our algorithm.

D. EXPERIMENTAL ANALYSIS
1) EFFECTIVENESS OF OCCLUSION AND IN-PLANE
ROTATION HANDLING
When the object’s appearance changes drastically such as
occlusion or in-plane rotation, the learning rate will be
reduced for the model update. As a result, it can maintain the
precious information while avoiding the noises. As shown in
Fig. 5, the appearance variation of the bird is very dramatic.
The frame #10, #11, #12, #46, #47, #48, #90, #91, #92 exist
obvious changes of the object corresponding to the curve,
the learning rates are descending. The bottom row results
prove the validity of the measurement of the appearance
variations.

2) FAILURE DETECTION FOR KEYPOINTS-BASED TRACKING
Median-Flow [32] tracking algorithm requires a prerequisite,
that is, the visibility of objects. Therefore, it will inevitably
fail if the object undergoes heavy occlussion or moves outside
the view of the camera. In order to distinguish these condi-
tions, we develop the following mechanism. Let dp instruct
the displacement of a single point of theMedian-Flow tracker
and dm be the median one. |dp − dm| is defined as the remain
of a single displacement. If the median |dp − dm| > 10

FIGURE 6. Comparison of the algorithms’ efficiency. The integer number
at the vertical coordinates indicates the speed of the tracking algorithm
(frame per second). The horizontal coordinate notes the tracking
algorithm.

pixels, the tracker is declared as failure. This mechanism
is able to reliably identify failures caused by fast motion,
out of view or fast occlusion of the target. If the failure is
detected, the tracker does not return any bounding box and
does not provide the candidate center for precise tracking.
The algorithm directly adopts the object center located in
the previous frame for sampling and tracking. In addition,
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FIGURE 7. Precision and success plots over all 51 sequences. The performance scores for
each tracker are reported in the legends. In both cases our tracker (RAFT) performs
favorably to state-of-the-art tracking methods. The best viewing is through color display.
(a) Precision plots. (b) Success plots.

TABLE 2. Score of success plot (Best viewed on a color display). The red fonts indicate the best performance. The blue fonts indicate the
second best ones and the green fonts indicate the third best ones.

once the tracker is successful, we also calculate the distance
between the tracked points and the object center located
in the previous frame. If the distance beyond the area of
the bounding box, corresponding keypoint will be removed
from T .

3) COARSE-TO-FINE SEARCH
To effectively search for the optimal state x̂t , we propose
a coarse-to-fine search strategy based on keypoints-based
tracking to gradually approximate the high score region. Once
keypoints-based tracking is successful, the complex cells
feature are extracted at location of the bounding box and the
similarity is computed between current sample and previous
template. If the tracking result of keypoints-based tracker is
not accepted as the final target location, we need to do the
following precise tracking. Otherwise, we achieve the final
tracking location directly to speed our algorithm (as shown
in the Fig. 6. It is clear that our RAFT tacker is faster than
CNT method [26], MUSTer tracking algorithm [7], SCM
approach [27], Struck [24] and CCT tracker [2]). Obviously,
sampling is essential for precise tracking. There are two
stages, namely rough exploration and accurate positioning.

FIGURE 8. Per attribute comparison on AUC score of the proposed RAFT
with CCT [2], MEEM [25] and CNT [26]. The bars are the performance
difference between RAFT with CCT [2], MEEM [25] and CNT [26](Best
viewed on a color display as shown in the chart). Positive means
RAFT is better. The integer number at horizontal coordinate is the
number of tracking sequences belonging to that group.

For the former, we adopt the location of the keypoints-based
tracker as the center, taking 100 samples in the region of
20 pixels as the radius. A state x̂t with maximal score is
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FIGURE 9. Precision plots of videos with different attributes namely: IV, OPR, OCC, DEF, IPR, MB, BC, LR, SV, FM and OV (best-viewed on
high-resolution display). (a) IV. (b) OPR. (c) OCC. (d) DEF. (e) IPR. (f) MB. (g) BC. (h) LR. (i) SV. (j) FM. (k) OV.

utilized as the new center for precise tracking. As to the
former, 50 samples are taken at the new center in the region
with a radius of 4 pixels. In this way, we can get a more
accurate tracking results.

4) ANALYSIS OF THE CELLS MATCHING
The keypoint is extracted from the center of each inner cell.
Let nature take its course, and the keypoint is described
by the feature (G and I) of corresponding inner cell.
In order to eliminate the interference, we match the key
points for two times respectively based on the intensity
(written as PI ) and the gradient (PG). We fuse PI and
PG into a set PIG, where PIG = PI ∪ PG, discarding
all matched keypoints based on intensity when there exists
a matched keypoint associated with gradient. Intuitively,
matched keypoints are more robust as they do not match on
a 16 dimensional vector obtained by concatenating the two
histograms (G and I).

E. EXPERIMENTAL EVALUATION
1) QUANTITATIVE COMPARISONS
• Overall performance: Fig. 7 illustrates overall
performance of the 12 categories of evaluated tracking
algorithms in terms of precision plot and success plot
over the challenging sequences. Note that all the plots
are generated using the code library from the benchmark
evaluation [35], and the code of CMT [4], MEEM [25]
CNT [26] and MUSTer [7] methods are provided by the
authors. The corresponding ranked results are shown in
the legends of each drawing. The proposed RAFT ranks
2nd in terms of both precision plot and success plot.
In the precision plot, the precision score of RASF is
0.706, which is close to the MUSTer (0.792) methods,
but outperforms MEEM [25] (0.701), CNT [26](0.673)
and CCT [2] (0.657). Meanwhile, in the success plot,
the proposed RAFT achieves the AUC of 0.547, which
also outperformsCNT [26](0.545),MEEM [25] (0.537),
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FIGURE 10. Precision plots of videos with different attributes namely: IV, OPR, OCC, DEF, IPR, MB, BC, LR, SV, FM and OV (best-viewed on
high-resolution display). (a) IV. (b) OPR. (c) OCC. (d) DEF. (e) IPR. (f) MB. (g) BC. (h) LR. (i) SV. (j) FM. (k) OV.

and CCT [2] (0.525). As described earlier, optical flow
is used in our approach first to filter out motion incon-
sistent candidates. Specifically, given the pixels covered
by the predicted box in the previous frame and the
estimated optical flow, we know where those pixels are
in the current frame. It narrows the scope for searching
the target and we throw more particles in this region.
As a result, not only improve our tracker’s accuracy, but
also more efficient. Even though the proposed RAFT is
less than MUSTer [7](0.642), it still achieves promising
results compared to other state-of-the-art methods in
both success plot and precision plot. The promising
scores at mild thresholds indicates our tracker hardly
misses targets while the competitive scores at strict
thresholds presents that our approach also searches tight
bounding boxes for targets.

• Attribute-based performance: Several factors can
affect the performance of a visual tracker. To analyze

the strength and weakness of the proposed algorithm,
we further test the tracker on challenging sequences with
11 attributes. The results are as follows: Fig. 9 shows an
example of precision plots of different attributes. Fig. 10
shows an example of success plots of different attributes.
We note that the proposed RAFT tracker ranks within
top 3 on 9 out of 11 attributes in success plots, and
outperforms the CCT method on all 11 attributes. In the
precision plots, the RAFT algorithm ranks top 3 on 9
out of 11 attributes, and outperforms the CCT method
on all attributes. Since the AUC score of the success
plot is more informative than the score at one position
in the precision plot, in the following we analyze the
results based on these values. Table 2 summarizes the
tracking results in terms of success plots. Despite the
MUSTer [7] tracker achieves the best results, RAFT still
reaches state-of-the-art performance, being tantalizingly
close to MUSTer.
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FIGURE 11. Qualitative comparison results of our approach with 12 state-of-the-art trackers in challenging situations. The example
frames are the bird2, woman and tiger2 sequences respectively, in which the targets undergo occlusion and rotations. Best viewed on
color display. The results of IVT [12], VTD [14], CCT [2], VTS [21], CXT [22], CMT [4], CT [23], Struck [24], MEEM [7], MUSTer [7], CNT [26],
SCM [27] and our RAFT are represented by green, blue, black, yellow, carmine, ultramarine, orange, purple, turquoise, white, crimson,
grey and red boxes respectively. (a) bird2. (b). woman. (c) tiger2.

To gain more insights, we evaluate the performance of
RAFT for individual attributes and compare with CCT [2],
MEEM [25] and CNT [26]. Fig. 8 shows the plot for AUC.
It is observed that RAFT is better mainly in LR, MB, OCC,
DEF and IPR. Especially on the image sequenceswith the low
resolution attribute, the RAFT algorithm ranks first among
all evaluated trackers. The low resolution in the sequences
makes it hard to extract effective features from the image
to represent the target. In contrast, not only local repre-
sentations and the context information with the surronding
region are exploited, but also holistic templates informa-
tion is extracted in our algorithom. Such a fully collabora-
tive model makes it robust to separate the target from the
background. For the videos with attributes such as in-plane
rotation, out-of-plane rotation, deformation, motion blur and
occlusion, the RAFT algorithm ranks first (except MUSTer)
among all evaluated algorithms, such as MEEM, CNT, and
CCT. All these methods use local image features as image
representations. The MEEM method utilizes HOG features

to describe the target and proposes multi-expert restoration
scheme to avoid drifting. Furthermore, both CNT and CCT
algorithms employ local features extracted from the normal-
ized local image patches. The CNT algorithm exploits useful
local features across the target object via filtering while the
CCT method extract the information between the cells which
are located in the target and backgroundwith color histogram.
The proposed RAFT algorithm draw on these advantages and
improve the update strategy to handle the drift problem.

2) QUALITATIVE COMPARISONS
• Overall: Fig. 2, Fig. 11, Fig. 12 and Fig. 13 illus-
trate some examples of qualitative tracking results over
the challenging sequences. Our tracker can successfully
track the object, since our observation models combine
the keypints tracking with the template matching and
evolve themselves by online updating. Our tracker effi-
ciently overcomes the occlusion, rotation, scale viria-
tion, motion blur and low resolutio. Additionally, the
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FIGURE 12. Qualitative comparison results of our approach with 12 state-of-the-art trackers in challenging situations. The example
frames are the basketball, couple and skating1 sequences respectively, in which the targets undergo deformation and complex
background. Best viewed on color display. The results of IVT [12], VTD [14], CCT [2], VTS [21], CXT [22], CMT [4], CT [23], Struck [24],
MEEM [7], MUSTer [7], CNT [26], SCM [27] and our RAFT are represented by green, blue, black, yellow, carmine, ultramarine, orange,
purple, turquoise, white, crimson, grey and red boxes respectively.(a) basketball. (b) couple. (c) skating1.

proposed algorithm is also robust to deformation and
background clutter because the observation models uti-
lize a two-layer templates to represent the object and
background respectively. It is conductive to enhance the
robustness and distinctiveness of the template. Specific
analysis is as follows.

• Occlusion and Rotation: Fig.11 shows sampled results
of three sequences where the objects undergo heavy
occlusions and rotations. Occlusion is one of the most
important problems in object tracking. In fact, several
trackers including the SCMmethod [27], the CNT algo-
rithm [26], the CCT method [2], MEEM method [7],
MUSTer approach [7] and our tracker are developed
to solve this problem. In contrast, the IVT tracking
method [12], the CMT tracking method [4] and the
VTD tracking system [14] are less effective in han-
dling occlusions as shown in Fig. 11. In the woman
sequence, a woman is almost occluded by the car (e.g.,
#130, #138, #200, #221 and #307). Only the MUSTer,

CXT, CNT, MEEM and our RAFT algorithm are able
to track the obscured object. In the tiger2 sequence,
the target is frequently occluded by dense leaf (e.g.,
#185, #236 and #319). In addition, there are several
illumination changes in this video. The CCT, CXT, CNT,
CT, IVT, VTS and MEEM methods do not perform
well. In our coarsely searching process, we estimate the
possible occluded patches and develop the keypoints by
the optical flow which only finds the region that are not
occluded. Thus, the occlusion handling scheme based
on the inner cells’ matching effectively alleviates the
pernicious influence of occlusions. Model drift occurs
because factors like tracking failure, occlusions andmis-
alignment of training samples can lead to bad model
updates. Aside from tracking a obscured target object,
our tracker updates the appearance model online. The
updating is deponding on the results of cells’ match-
ing and controlling the learn rate parameter to aviod
bringing noises especially when heavy occlusions occur.
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FIGURE 13. Qualitative comparison results of our approach with 12 state-of-the-art trackers in challenging situations. The example
frames are the boy, bolt and motorrolling sequences respectively, in which the targets undergo motion blur and low resolution. Best
viewed on color display. The results of IVT [12], VTD [14], CCT [2], VTS [21], CXT [22], CMT [4], CT [23], Struck [24], MEEM [7], MUSTer [7],
CNT [26], SCM [27] and our RAFT are represented by green, blue, black, yellow, carmine, ultramarine, orange, purple, turquoise, white,
crimson, grey and red boxes respectively. (a) boy. (b) bolt. (c) motorrolling.

In addition, our tracker is able to deal with rotation
when the target is occluded at bird2 (e.g., #41, #56
and #73) and tiger2 (e.g., #65, #137 and #80) video.
Bird2 is a virtual animation video, the bird’s posture
change is very exaggerated. Owing to the appearance
model we employ, our tracker can accurately locate the
target object as our generated histogram takes not only
the spatial information of local patches, but also the
context information between the surronding region with
the traget into consideration.

• Deformation and Complex background: Fig.12
shows some examples of the tracking results of three
challenging sequences where the objects undergo large
shape deformation and complex background. In the bas-
ketball sequence, the hoopster appears in the sequences
with rapid appearance variations due to shape deforma-
tion and fast motion. Only the MUSTer, MEEM and
RAFT algorithms can track the targets well. The SCM,
CXT and VTS methods miss the target and drift at

the beginning of the sequence (#63). The CT approach
drifts to the background at frame 290. Meanwhile, the
the background is cluttered and the target moves fast.
In frame #666, the CNT tracker fails as jumping from
the target to another as it only looks for the maximum
similarity with the target in the first frame. In the couple
sequence, the woman brings appearance variations due
to non-rigid body deformation when walking and the
color of cars in the background is very similar with the
woman’s cloth. Most trackers undergo large drift. All
these methods use local features that are not robust to
deformation. The IVT, VTS, CCT, CT and CMT lose
the goal in frame #18. Even the MUSTer, MEEM and
CNT are confused by the cars behind the woman and
regard it as the traget in frame #94. While they all re-
dectect the traget in frame #103, #116 and #135. The
MUSTer profits from the short-and long-term memory
stores to process target appearance changes. TheMEEM
propose a multi-expert restoration scheme to address the
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model drift problem in online tracking. The CNT algo-
rithm utilizes the target template from the first frame to
handle the drift problem. The target object in the skating
sequence undergoes heavy appearance variations when
skating. Furthermore, the sequence also undergos the
complex background and illumination changes. Those
make the tracking more difficult. The IVT, CT and
Struck methods fail to track of the target object from
frame #66. The CXTmethod locks on other skater which
is very similar with the target(#248).

• Motion blur and Low resolution: Fig.13 shows some
examples of the tracking results of three challenging
sequences where the objects undergo large fast motion,
motion blur and low resolution. Fast motion of the target
object or the camera leads to blurred image appear-
ance which make tracking difficult. The boy sequence
presents the tracking results in which the appearance of
the boy is almost indistinguishable due to the motion
blur. The IVT and CMT algorithms fail to follow the tar-
get right as shown in frame #233, #379, #493 and #557.
The reason is that the true target is blurred and it is
difficult for the detector of IVT to distinguish it from
the background. The CMT only relies on the keypoints
matching while it can not extract effective keypoints in
the blur image. In the bolt sequence, the object appears
in the scenes with blur due to fast motion. Only the
MUSTer, CNT and our RAFT algorithms can track
the targets well. The IVT, Struck, SCM, VTD, CT,
CMT, CXT, MEEM and CCT methods undergo large
drift at the beginning of the frame (e.g., #72, #124).
The VTD and VTS methods drift to the background
at frame #222. The motorrolling sequence undergo low
resulution, illumination change as well as scale varia-
tions when moving from the peak to the valley of the
pathway. Most tracking algorithms fail to track the obect
in this sequence. Even the MUSTer approach loses the
object in the frame #76 and re-dectects and track the
object as shown in frame #84, #117 and #141. The pro-
posed RAFT algorithm well handles the situation as the
optical flow narrows the searching region and the tracker
exploits both holistic templates and local representations
to better separate the target from the background. Mean-
while, by updating the negative and positive templates
online, the proposed algorithm successfully tracks the
target object throughout the sequence.

V. CONCLUSION
In this paper, we have proposed a robust adaptive fusion track-
ing algorithm based on complex cells and keypoints to bal-
ance keypoints, local descriptors and global representations.
The coarse and precise tracking have played an important
role, respectively, based on the keypoints and complex cells in
our framework. Finally, measurement of appearance variation
has been measured by matching the current inner cells with
template’s individualistically. In the bases of the measure-
ment, an adaptive learning rate parameter has been estimated

for updating the object appearance model while avoiding
noises. We have demonstrated in an extensive evaluation that
our approach achieves prossing results on a large number of
challenging sequences both in quantitative comparisons and
qualitative comparisons. Compared to other approaches, our
approach was better conductive to handle appearance varia-
tions and recover from drifts. Our fusion tracking framework
is flexible so that it will be easy to transplant for handling
with other challenge such as camera motion in the future.
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