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ABSTRACT With the development of the wearable brain–computer interface (BCI), a few-channel BCI
system is necessary for its application to daily life. In this paper, we proposed a bimodal BCI system that
uses only a few channels of electroencephalograph (EEG) and functional near-infrared spectroscopy (fNIRS)
signals to obtain relatively high accuracy. We developed new approaches for signal acquisition and signal
processing to improve the performance of this few-channel BCI system. At the signal acquisition stage,
source analysis was applied for both EEG and fNIRS signals to select the optimal channels for bimodal
signal collection. At the feature extraction stage, phase-space reconstruction was applied to the selected
three-channel EEG signals to expand them into multichannel signals, thus allowing the use of the traditional
effective common spatial pattern to extract EEG features. For the fNIRS signal, the Hurst exponents for
the selected ten channels were calculated and composed of the fNIRS data feature. At the classification
stage, EEG and fNIRS features were joined and classified with the support vector machine. The averaged
classification accuracy of 12 participants was 81.2% for the bimodal EEG-fNIRS signals, which was
significantly higher than that for either single modality.

INDEX TERMS BCI, EEG, fNIRS, phase-space reconstruction, common spatial pattern, data fusion, support
vector machine.

I. INTRODUCTION
Brain-computer interfaces (BCIs) were developed to allow
communication between human thought processes and a
computer, with the aim of assisting disabled patients with
motor function impaired as a result of disease or injury, but
whose mental functions are not severely affected [1]–[3].
The major noninvasive modalities for BCI include elec-
troencephalography (EEG) [4]–[7], magnetoencephalogra-
phy (MEG) [8], [9], functional magnetic resonance imag-
ing (fMRI) [10], [11], and functional near-infrared spec-
troscopy (fNIRS) [12]–[14]. Each modality has specific
advantages and limitations. The optimal selection for a BCI
system reflects the cost of the equipment, as well as the
spatial and temporal resolution required for the specific
application.

In principle,MEG and fMRI provide the optimal basis for a
BCI. However, these techniques are expensive, non-portable,
and require the user to remain stationary duringmeasurement,
makingMEGand fMRI unsuitable for BCI applications. EEG
is noninvasive, economical, portable, and has a high temporal
resolution. However, EEG also has some disadvantages,
including low spatial resolution, low signal strength, and sus-
ceptibility to electrical noise. fNIRS is a noninvasive method
for measuring the concentration changes of oxygenated
hemoglobin (HbO) and deoxygenated hemoglobin (HbR)
with near-infrared-range light (650–1000 nm) [12],
[15], [16]. fNIRS uses multiple emitter-detector pairs oper-
ating with near-infrared (NI) light at two or more different
wavelengths. Because the skin, scalp and skull are relatively
transparent to NI light, the light transmits into the brain tis-
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sues. The NI light is emitted at the skin of the head, transmits
through the skull into the brain; then diffuses through the
brain tissues due to photon scattering. However, a portion
of NI light exits the scalp after passing through the cortical
brain region, where the HbO and HbR chromophores in the
light-path absorb light with different absorption coefficients.
The exited photons are detected using strategically positioned
detectors, and the intensity of the detected light is used to
calculate HbO and HbR concentration changes (1HbO and
1HbR) along the photon path by the Beer-Lambert law
[12], [17]. Following neural activation, fNIRS measures the
1HbO and 1HbR in the outer layers of the cortex. The
concentration of HbO is expected to increase after focal
activation of the cortex due to higher blood flow, whereas
HbR is washed out and decreases [18]. Thereby, fNIRS
measures a comparable effect to the blood oxygenation level
dependent (BOLD) contrast in fMRI. fNIRS has relatively
low cost, portability, safety, low noise (compared to fMRI),
and is easy to use. More importantly, fNIRS has high spatial
resolution and is more resistant to electrical noise. For these
reasons, fNIRS-based BCIs have recently become widely
used [12]–[14], [19]–[21].

Motor imagery is one of the classic and widely used
BCI paradigms in BCI research. It is a mental process by
which an individual rehearses or simulates a given action
in their mind [6], [22]. Beisteiner et al. [23] demonstrated
that brain activation during a motor imagery was similar to
that observed during the associated motor execution (overt
body movement). Further, motor imagery was shown to work
well in previous EEG-based BCI studies [6], [24]–[28]. More
recently, motor imagery has also been used in fNIRS-based
BCI systems [14], [19], [21], [29]–[32]. For example, Sitaram
et al. [14] reported an 89.1% accuracy for classifying fNIRS
signals arising from right- and left-hand motor imagery,
whereas Naseer et al. reported average classification accura-
cies of 77.56% and 87.28% for right- and left-wrist motor
imageries, respectively [21]. Further, Takahashi et al. [32]
showed good discrimination results for task categories from
the motor area, prefrontal area, and frontal lobe data using
multichannel fNIRS.

The majority of EEG- and fNIRS-based BCIs are based
on multichannel data. However, the higher the number
of channels, the reduced portability and comfort of the
BCI, and the longer the preparation time. Thus, BCI sys-
tems that achieve relatively high classification accuracy
using only a few signal channels are required. Every neu-
roimaging method has specific limitations (e.g., spatial res-
olution for EEG; temporal resolution for fNIRS). How-
ever, the use of multi-modal data acquisition can partly
overcome these limitations by focusing on the strengths
of the individual modalities. More importantly, the infor-
mation acquired from multiple sources can be used to
increase data quality and quantity. Although a few stud-
ies have reported bimodal BCI devices, most of them
are multichannel [33]–[40]. Thus, in the present study,
with the aim of developing a portable and wearable

BCI device for the wider population, we used bimodal
EEG-fNIRS data acquisition to develop a few-channel BCI
system.

II. MATERIALS AND METHODS
A. PARTICIPANTS
Twelve healthy participants voluntarily participated in the
present study (six males, six females, mean age 23 years).
No participants had any known history of neurological dis-
orders. All participants had normal or corrected-to-normal
visual acuity, had no previous experience with BCI oper-
ation nor EEG/fNIRS recordings, and were right-handed
as confirmed by the Edinburgh Handedness Inventory. All
participants gave written informed consent for the experi-
mental procedures, which were approved by the Ethics Com-
mittee of Affiliated Zhongda Hospital, Southeast University
(2016ZDSYLL002.0).

FIGURE 1. EEG-fNIRS bimodal experimental environment.

B. EXPERIMENTAL PROCEDURE
The experiment was performed in a quiet room to reduce
disturbance from the environment. The participant sat in a
comfortable chair with her/his head on a chin rest (Fig.1).
A computer display on which stimuli were displayed was set
80 cm away from the participant. The participant was asked
to relax for at least 5 min prior to the experiment, and to
remain relaxed throughout the experiment. A schematic of
the protocol is shown in Fig.2. Each experiment consisted of
three sessions, and each session comprised 20 trials, with a
2 min rest period between sessions (total of 60 trials in one
experiment). Refer to Fazli’s study [39], a 10 s long motor
imagery task was used in the present study to get sufficient
data for classification. Each trial started with a pre-rest block
during which the participant stayed still for 5 s. This was
followed by the appearance of a cross on the screen for 2 s,
indicating to the participant to prepare for the motor imagery
task. Next, the participant performed the motor imagery task
for 10 s, as indicated by an arrow on the computer screen.
A left-pointing arrow indicated a left-hand motor imagery
task, and vice versa. Participants were asked to perform the
same type of hand movement during the motor imagery task.
After themotor imagery task block, the participant underwent
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FIGURE 2. Experimental paradigm for EEG-fNIRS signal collection. Each
experiment consisted of three sessions, and each session comprised
20 trials. Each trial consisted of a pre-rest block of 5 s, a preparation
block of 2 s, a motor task block of 10 s, and a post-rest block of 5 s.
During the task, participants imagined hand movement of the specified
hand over the 10 s duration of the task block.

a post-rest period for 5 s. Thus, one experiment lasted for
26 min.

C. DATA ACQUISITION
EEG and fNIRS data were recorded simultaneously to com-
pose an EEG-fNIRS bimodal BCI system in the present study.
EEG data were collected using a 64-channel Neuroscan sys-
tem (Neuroscan Synamps amplifier; Scan 4.5 Compumedics
Corp., El Paso, TX, USA) according to the international
10–20 system (Fig.3a), with the reference on the left mastoid.
Eye blinks were monitored with electrodes located above and
below the right eye. The horizontal electrooculogram (EOG)
was recorded from electrodes placed 1.5 cm lateral to the
left and right external canthi. All electrode impedances were
maintained below 5 k�. EEG and EOG data were amplified
using a 0.05–70 Hz bandpass filter, and a notch filter allowed
suppression of line noise. Data were continuously sampled at
1000 Hz.

fNIRS recording was performed via 52-channel LABNIRS
(Shimadzu Co., Ltd., Kyoto, Japan). This system used three
wavelengths (780, 805, and 830 nm) of continuous near-
infrared light. The HbO, HbR and total hemoglobin (total-
Hb = HbO + HbR) concentration changes during the motor
imagery tasks were recorded. fNIRS optodes have been
placed over the bilateral primarymotor cortex (Fig.3b), which
is known to be the area activated by motor imagery [41], [42].
A pair of emitter and detector optodes formed one fNIRS
channel, and an emitter-detector separation of around 3 cm
was used [43]. Eleven emitter and 11 detector optodes result-
ing in a total of 31 channels were placed around the C3-Cz-C4
areas. fNIRS data were acquired at a sampling rate of 28 Hz.

D. SOURCE ANALYSIS AND CHANNEL SELECTION
To improve the performance of our proposed few-channel
EEG-fNIRS BCI system, we optimized the configuration
of the EEG and fNIRS channels (i.e., selected the best
channels to build a few-channel system for data collection).
To achieve this, we performed source analysis of the brain

activations for motor imagery tasks for both 64-channel EEG
and 31-channel fNIRS, respectively (Fig.4). Before perform-
ing source analysis, data pre-processing was applied for both
EEG and fNIRS data. For EEG data, a bandpass filter was
used to filter the EEG data between 6 and 30 Hz. Independent
component analysis (ICA) was performed with the ICALAB
toolbox [44] to find an unmixing matrix that linearly decom-
posed the 64-channel EEG data into 64 independent compo-
nents (ICs). ICs that exhibited a high correlation with EOG
signals were considered responsible for EOG artifacts, and
were set to zero vectors, whereas all other ICs were projected
back onto the scalp to provide an EEG free of EOG arti-
facts [45], [46]. To remove noise and artifacts, all data were
smoothed with a window of 101 data points. The data from
2 s to 8 s during the motor imagery period were selected for
analysis. For fNIRS, the data were bandpass filtered between
0.02 and 0.1 Hz. The baseline period was defined from
−2 s to 0 s before motor imagery task stimulus, and the mean
value of the baseline was calculated for every trial. fNIRS
data for all trials were corrected by subtracting themean value
of baseline.

For EEG source analysis, we first used Matlab (2013a)
(The MathWorks, Natick, MA, USA) to calculate the grand
average for 12 participants. Next, a standardized low-
resolution electrical tomographic analysis (sLORETA) soft-
ware [47] was used on the 12-participant grand average,
which addressed the inverse problem by calculating the cur-
rent source density (CSD) from electrical signals recorded
from the scalp to estimate the source location. The solu-
tions were based on the Talairach cortical probability brain
atlas, digitized at the Montreal Neurological Institute (MNI).
The electrode locations were co-registered between both
the spherical model (BESA) and the realistic head geom-
etry [48]. The inverse weight projections from the origi-
nal EEG channels for each component contributing to the
temporal a-clusters were exported into sLORETA. Cross-
spectra were computed and mapped to the Talairach atlas and
cross-registered with the MNI coordinates, resulting in CSD
estimates for each contributing component. The statistical
significance of the CSD was analyzed with the sLORETA
software package.

For fNIRS source analysis, previous studies have reported
that HbO concentration exhibits a greater, more signifi-
cant change during mental tasks than HbR concentration
[19], [20]. Thus, we used the 12-participant grand aver-
age (calculated with Matlab) of the HbO signal for source
analysis. Five anatomical landmarks (nasion, inion, Cz,
and left and right preauricular points) and fNIRS optodes
(11 emitters, 11 detectors) were digitized using a 3D digitizer
(FASTRAK; Polhemus, Colchester, VT, USA). Coordinates
of the channels in real space were automatically calculated as
intermediate points between the emitters and detectors. The
location of each fNIRS channel and the topographical maps
of the changes in HbO concentration were then superimposed
onto the surface of the MNI standard 3D head model via
FUSION 3D imaging software (Shimadzu Co., Ltd.).
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FIGURE 3. Arrangement of EEG and fNIRS channels. (a) 64 EEG channel arrangement based on the international 10–20 system. (b) Probe
arrangement for fNIRS. The optodes were arranged above the premotor cortex and the motor cortex. A pair of emitter and detector optodes
formed one fNIRS channel. Eleven emitters and 11 detectors in the arrangement resulted in a total of 31 channels.

FIGURE 4. The procedure for channel selection.

Based on source analysis results for EEG (Fig.5) and
fNIRS (Fig.6), the supplementary motor area and the motor
area were the most activated. Therefore, channels from this
location were chosen for the few-channel EEG-fNIRS BCI
system. C3, Cz, and C4 in the 10–20 system were selected as
the EEG channels (Fig.3a), whereas six pairs of emitter and
detector optodes around C3 and C4 (see Fig.3b; channels 3, 4,
14, 24 and 25 around C3; channel 7, 8, 18, 28 and 29 around
C4, respectively) were selected as the fNIRS channels. This
channel selection is consistent with previous studies [49].

E. EEG FEATURE EXTRACTION
The general procedure for bimodal BCI is shown in Fig.7.
EEG data were obtained from the selected C3, Cz, and,

C4 channels. As our aim was to distinguish motor imagery
using only a few channels, it was important to extract more
information from these channels. Thus, we used phase-space
reconstruction (PSR) to obtain more detailed characteris-
tics [50]. By performing PSR, a few-channel time-varying
signal can be converted into multiple time-varying signals.
This channel-increasing method allows previous multichan-
nel BCI approaches, such as the common spatial pat-
tern (CSP), a powerful technique that is normally unsuitable
for few-channel signals [51], to be applied to the few-channel
method.

Time delay is the most popular method used to reconstruct
the phase space [52], [53]. This technique is based on the
concept that a scalar (or single-variable) time series xs, where
s = 1, 2, . . . ,N (N is the sample size), can be reconstructed
in a multi-dimensional phase space to represent the underly-
ing dynamics, according to:

X = [X1 X2 . . . XM ]

=


x1 x2 . . . xM
x1+τ x2+τ . . . xM+τ
...

... . . .
...

x1+(m−1)τ x2+(m−1)τ . . . xN

 (1)

where M = N − (m − 1)τ , m is the embedding dimension
of the vector Xk , k = 1, 2, . . . ,M , and τ is the embedding
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FIGURE 5. Regional brain activation obtained by EEG source analysis. (a) Left-hand imagery; (b) Right-hand imagery.

FIGURE 6. Regional brain activation obtained by fNIRS source analysis. (a) Left-hand imagery; (b) Right-hand imagery.

delay time. In the present study, the grid search method was
used to optimize m and τ according to the classification
accuracy. The search ranges for m and τ were set as [4:1:20]

and [1:2:20], respectively. The optimal values ofm and τ were
determined over a space of [9 13] and [7 11], respectively.
Next, the phase space for C3, Cz, and C4 was reconstructed
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FIGURE 7. Signal processing procedure for the bimodal BCI.

with m and τ for each trial. The reconstructed phase space is
shown by following trajectory matrix:

XPSR =

C3
Cz
C4

 =
C3_1 C3_2 . . .C3_M
Cz_1 Cz_2 . . .Cz_M
C4_1 C4_2 . . .C4_M

 (2)

By performing PSR, the original three-channel
time-varying EEG data could be converted into 3∗M -channel
time-varying signals. CSP is commonly used for effective
multichannel feature extraction [54]–[56]. In the present
study, CSP was used to extract features from the channel
expanded EEG data XPSR (3∗M channels) after channel expan-
sion with PSR. The extracted features for motor imagery
were defined as Z = [ZL ,ZR], where ZL was the feature for
the left-hand imagery and ZR was the feature for the right-
hand imagery. The extraction of ZL and ZR was performed as
previously reported in [57].

The EEG feature vector for the two different conditions
was defined as:

Ed = log(
VARd∑2
d=1 VARd

), d = L,R (3)

where VARd is the variance of Z among time points. A com-
posite feature vector for the i-th trial EEG was defined as:

Ei = [EL_i,ER_i], Ei ∈ R1×2 (4)

F. FNIRS FEATURE EXTRACTION
A moving average was applied to 4–10 s of HbO data (win-
dow length = 3/7 s) to remove the instant noise. For each
trial, the Hurst exponent [58] for each channel was calculated
and composes the fNIRS data feature Ni, which is defined
as Ni = [Nc1_i,Nc2_i, . . . ,Nc10_i], Ni ∈ R1×10, where Ncq_i
is the Hurst exponent for each channel, q = 1, 2, . . . , 10,
indicates the q-th channel, i = 1, 2, . . . , 60, indicates the i-th
trial.

G. DATA FUSION AND PATTERN CLASSIFICATION
The i-th EEG-fNIRS fusion feature was the combination of
EEG feature and fNIRS feature, which was defined as:

Yi = [Ei,Ni]

= [EL_i,ER_i,Nc1_i, . . . ,Nc10_i], Yi ∈ R1×12 (5)

The support vector machine (SVM) is a powerful and
widely employed BCI classification method [17], [59]. It has
high classification performance, relatively good scalability to

high-dimensional data, and explicit control of errors. In the
present study, we used the C-support vector classification in
the LIBSVM package [60] to implement SVM classification.

The basic concept of SVM is to determine the optimal
decision hyperplane that best separates the data points into
different classes with a maximum margin, whereas allowing
errors during separation; i.e., map the input Yi onto a high-
dimensional feature space z = 8(Yi), and construct an opti-
mal hyperplane defined by w·z+ b = 0 to separate examples
into different classes, wherew is the normal vector and b is the
bias of the separation hyperplane. This is achieved by solving
the primal problem:

min (
1
2
‖w‖2 + C

n∑
i=1

ξi)

s.t. li(w·zi + b) ≥ 1− ξi, ξi ≥ 0 (6)

where li is the class label value of the i-th trial, n is the number
of trials, ξi is the slack variable that allows an example to be
in the margin or to be misclassified, and C is a penalty factor.
This equation can be solved using Lagrange optimization;
i.e., solving the quadratic programming (QP) problem, as
follows:

max
n∑
i=1

ai−
1
2

n∑
i=1

n∑
j=1

liljaiajK (Yi,Yj)

s.t.
n∑
i=1

liai = 0, 0 ≤ ai ≤ C (7)

where ai is the Lagrange multiplier from the QP problem,
and K (Yi,Yj) is the kernel function. Due to the nonlinear
and small sample properties of EEG and fNIRS signals, we
selected the radial basis kernel function (RBF) as the SVM
kernel function:

K (Yi,Yj) = exp(−γ ‖Yi − Yj‖2), γ > 0 (8)

where γ is the kernel parameter. The kernel parameter γ
and penalty factor C are the main parameters that affect
the performance of the SVM. γ determines the distribution
of the transformed data in space, and the penalty factor C
controls the trade-off between maximizing the margin and
minimizing the training error, thus balancing classification
violation and the margin. Therefore, γ and C are important
for improving the correct rate and classification efficiency
of the SVM. In the present study, we used the grid search
method to optimize γ and C . The value ranges of γ and C
were used as the grid edges, and different values of γ and
C crossed over different grids. The optimal values for γ andC
were found by searching on all of these grids. A two-step grid
search was employed to reduce the computational complexity
and accelerate the search speed, in which γ andC varied with
a step of 2p. In the first step, a coarse grid search was applied
to determine the best region of demanded parameters. The
initial search range for γ and C were set from 2−10 to 210, in
which pwas set as 2. In this step, we got a preliminary optimal
value (γc and Cc). In the second step, a finer grid search was
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TABLE 1. Comparison of participant classification accuracies for EEG, fNIRS, and bimodal EEG-fNIRS techniques.

employed to recognize the final optimal γ and C . The search
ranges were set as [γc − 24, γc + 24] and [Cc − 24, Cc + 24],
respectively, in which p was set as 0.5. The optimal values of
γ and C were obtained when the cross-validation accuracy
was a maximum. In the present study, the optimum values
of γ and C were determined over a space of [2−7 2−4] and
[24 27], respectively.
To prevent the overfitting problem, a five-fold cross-

validation approach was used in the present study. In one fold,
each dataset was divided into five subsets with equal size. One
of the subsets was used as a test set and the remaining four
subsets were put together to form a training set. The optimal
combination of γ andC was searched for to obtain maximum
accuracy for the fold. This procedure was repeated five times
(folds) and the average of the accuracies for all five folds was
calculated to form the classification accuracy of this dataset.

By solving the QP problem, we calculated the fusion
weight for each feature w∗ =

∑n
i=1 liaiYi, b

∗
= li −∑n

i=1 liai
∗(Yi·Yj), where liai was theweight coefficient vector

for each sample, and the number in liai corresponded to the
weight coefficient of the feature vector Yi. For SVM, the data
fusion and pattern classification were performed at the same
time. The decision function can be described as:

f (Y ) = sgn{
n∑
i=1

liai∗K (Y ,Yi)+ b∗} (9)

III. RESULTS
The classification accuracies for EEG, fNIRS, and
EEG-fNIRS combinations for imagery tasks are shown in
Table 1. Compared with the averaged accuracy of the single
mode EEG, there was an average 6.5% increase in classi-
fication accuracy for the bimodal EEG-fNIRS. Compared
with the average accuracy of the single mode fNIRS, there
was an average 24.4% increase in classification accuracy for
the bimodal EEG-fNIRS. To compare the classification effect
among single mode EEG, single mode fNIRS, and bimodal
EEG-fNIRS, we used one-way repeated measures ANOVA
to test the difference between the averaged classification
accuracies based on the three kinds of signals. We found
that the main effect in the ANOVA was significant (F =
32.0, p < 0.001), meaning that there was a statistically
significant difference between the three signals. Thus, post
hoc tests were used to provide detailed information on which
classification accuracies were significantly different from the
others. Our results indicated that the averaged accuracy of the

bimodal EEG-fNIRS was significantly higher than that for
both the single mode EEG and fNIRS (EEG-fNIRS vs. EEG,
p < 0.01; EEG-fNIRS vs. fNIRS, p < 0.001). Moreover,
the average classification accuracy for the single mode EEG
was significantly higher than that for the single mode fNIRS
(p < 0.001).
The averaged confusion matrices of all participants

based on EEG, fNIRS and EEG-fNIRS are shown in
Table 2, respectively. Compared with the single mode EEG
and fNIRS, bimodal EEG-fNIRS has better classification
performance.

TABLE 2. The averaged confusion matrices of all participants based on
EEG, fNIRS and EEG-fNIRS.

For each participant, the bimodal EEG-fNIRS was higher
than (or equal to) that for the single mode EEG or
fNIRS for all 12 participants, except for participant YQ;
this case had an fNIRS accuracy higher than that for
EEG accuracy.

The column charts of the accuracies of the single mode
EEG and fNIRS plotted against the bimodal EEG-fNIRS for
all participants are shown in Fig.8. These data show different
classification accuracies for each participant. Participant ZJY
showed the highest accuracy of 100% for the single mode
EEG and the bimodal EEG-fNIRS, whereas participantWZY
showed the lowest accuracy of 58.3% and 43.1% for the
single mode EEG and fNIRS, respectively. The single mode
fNIRS showed the lowest classification accuracy, whereas
the bimodal EEG-fNIRS was optimal for almost all partic-
ipants, except participant YQ. Our data suggest that there
are large individual differences in classification accuracy of
motor imagery. Thus, a BCI system with one mode may
be inappropriate for participant with extremely low accu-
racy, whereas use of the bimodal system (e.g., participants
ZZ, SLR, and WZY) can provide a higher classification
accuracy.
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FIGURE 8. Classification accuracies for EEG, fNIRS, and EEG-fNIRS for all
12 participants.

IV. DISCUSSION
In the present study, we examined the performance of an
EEG-fNIRS-based BCI for discrimination between a set of
motor imagery tasks. EEG provides data on electrical cortical
activity, whereas fNIRS monitors the oxygen metabolism of
the cortex. Thus, this hybrid BCI system provides a more
robust BCI signal that can improve the detection rate when
compared to more conventional approaches. The majority of
reported EEG-fNIRS hybrid BCI systems have used motor
imagery tasks [37]–[39], [61], [62], although there are oth-
ers based on P300 [63], spatial attention [64], selective
sensation [65], memory load [66], [67], steady-state visual
evoked potentials [35] and mental arithmetic [68]. The motor
imagery task is a self-paced BCI paradigm that is controlled
using a computer display. Compared with other mental tasks,
motor imagery is relatively simple and stable. Moreover,
motor imagery causes lateralization in fNIRS signals, which
is useful for BCI classification [14], [19]. Thus, the motor
imagery task is the traditional paradigm used for EEG-fNIRS
hybrid BCI systems. In the present study, the motor imagery
task provided high accuracy data, confirming its utility for
EEG-fNIRS hybrid BCI devices.

EEG and fNIRS measure different physiological corre-
lates of neural activity, and are susceptible to different
noise sources. Recent studies using hybrid EEG-fNIRS BCIs
suggest that simultaneous measurement of electrical and
hemodynamic activity in the cerebral cortex provides
more accurate BCI operation by combining features from
both modalities [38]–[40], [61], [62], [64]. For example,
Fazli et al. [39] reported that complementing EEG data with
fNIRS improved motor imagery classification by approxi-
mately 5%. Lee et al. Reference [38] also demonstrated that
EEG-fNIRS bimodal data increased the accuracy of classifi-
cation by more than 10% for the motor imagery task. Further,
Morioka et al. [64] reported that an EEG-fNIRS hybrid BCI
improved spatial attention decoding accuracy by more than
8%. In the present study, there was an average 6.5% and
24.4% increase in classification accuracy for the bimodal
EEG-fNIRS compared with single mode EEG and single
mode fNIRS, respectively.

Similar to the previous EEG-fNIRS studies using motor
imagery [37]–[39], [62], [69], the classification accuracy for
single mode EEG was 74.7% in the present study, which is

better than 56.8% for single mode fNIRS. Thus, in terms
of classification accuracy, an fNIRS-based BCI on its own
may not be a viable alternative to an EEG-based BCI. How-
ever, in combination with EEG, we found that fNIRS can
significantly enhance BCI performance for most participants,
as well as provide more accurate classification accuracy for
participants otherwise unable to operate a solely EEG-based
BCI. For example, participantWZY exhibited a classification
accuracy of 58.3% and 43.1% for single mode EEG and
fNIRS, respectively, which increased to 75.0% for bimodal
EEG-fNIRS. Thus, for participants (and patients) unable to
operate a single mode BCI, a bimodal EEG-fNIRS system
may provide a viable alternative.

We suggest two main reasons for why the bimodal
EEG-fNIRS-based BCI achieved better performance than
that for single mode EEG and fNIRS. First, because every
brain imaging method suffers from its particular limitations
(e.g. EEG from spatial resolution; fNIRS from temporal res-
olution), EEG-fNIRS bimodal measurement is partly able to
overcome these limitations by focusing on their individual
strengths [39], [70]. Second, the combination of modali-
ties can exhibit synergistic effects by exploiting the com-
plementary information from multiple data sources. EEG
collects the electrophysiological signals, whereas fNIRS col-
lects the cerebral blood flow and oxygen metabolism sig-
nals from neural activity, respectively. These approaches
complement each other both in quality (increases in the
information sources) and quantity (increases in the data
dimensionality). In the present study, we implement feature-
level fusion by combining EEG and fNIRS features together,
which provides more features for classification and reduces
failure since interference does affect EEG and fNIRS sig-
nals simultaneously [71]. In the present study, we focused
on motor imagery-based BCI. A number of previous stud-
ies have also confirmed that EEG-fNIRS combinations pro-
vide improved classification results for other event-related
potential-based [72] and steady-state visual evoked poten-
tial (SSVEP)-based BCIs [35]. Thus, we consider bimodal
EEG-fNIRS to be an effective method to improve classifica-
tion performance in BCI applications.

In previous EEG-fNIRS BCI studies using motor imagery,
most of them used large number of EEG-fNIRS channels.
For example, Kaiser et al. [36] used six EEG electrodes and
52 fNIRS channels (17 emitters, 16 detectors) to achieve
an average accuracy of 76.7%, Khan et al. [37] used six
EEG electrodes and 17 fNIRS channels (six emitters, six
detectors) to achieve an average accuracy of 66.0%, whereas
Lee et al. [38] and Fazli et al. [39] used 37 EEG electrodes
and 24 fNIRS channels (eight emitters, 16 detectors) cov-
ering the frontal, motor, and parietal areas, with an accu-
racy of 61.3% and 83.2%, respectively. Yu et al. [69] used
32 EEG electrodes and 64 fNIRS channels (32 emitters,
32 detectors) near the motor area to achieve an accuracy of
59.7% for EEG and 52.8% for fNIRS classification, whereas
Almajidy et al. [73] used eight EEG electrodes and 20 fNIRS
channels (eight emitters, eight detectors) to provide 77.0%
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averaged accuracy. Further, Yin et al. [61] used 21 EEG elec-
trodes and 24 fNIRS channels (10 emitters, eight detectors)
to achieve 89.0% averaged accuracy. By comparison, In the
present study, we used three EEG electrodes and 10 fNIRS
channels (six emitters, six detectors), which provided 81.2%
averaged accuracy.

Compared with previous reports, our study used the fewest
EEG electrodes and fNIRS probes, but obtained the highest
accuracy. This is likely due to the efficacy of our proposed
PSR+CSP method, which uses PSR to reconstruct few-
channel EEG signals into multichannel signals before send-
ing them to CSP. Using the grid search method to optimize
m and τ for PSR, the optimized reconstructed multichannel
signals were obtained, which were combined with CSP to
provide optimal results. Further, although the classification
accuracy for the singlemode fNIRSwas not as high as that for
EEG, the bimodal feature fusion of EEG and fNIRS features
provided higher classification accuracy.

V. CONCLUSION
In the present study, we developed a highly accurate,
few-channel, electroencephalograph (EEG) and functional
near-infrared spectroscopy (fNIRS) bimodal BCI system.
To improve the performance, we applied phase space recon-
struction (PSR) to reconstruct the few-channel system into
an equivalent multichannel system. After this transformation,
common spatial pattern (CSP) was applied to the few-channel
system. The EEG and fNIRS features were fused and clas-
sified with the support vector machine (SVM) method. The
classification accuracy for the bimodal EEG-fNIRS system
was 81.2%, which was 6.5% and 24.4% higher than that
for the single mode EEG and fNIRS systems, respectively.
We suggest that PSR+CSP is an effective method to obtain
high classification accuracy for a few-channel BCI system.
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