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ABSTRACT In Long-Term Evolution (LTE) and beyond systems, radio resource scheduling mechanism
plays one of the main roles in system performance maximization. From this perspective, due to the
conflicting quality requirements of different traffic types, providing a compromise among all performance
targets for heterogeneous traffic is difficult. Moreover, the centralized scheduling mechanism for the ever
growing number of users along with the massive variety of services, especially in overload states, is
infeasible due to the extensive cost of information acquisition and computations. In this paper, we design
resource scheduling policies for supporting the efficient delivery of heterogeneous traffic in overload
states of a cell. To this end, we cast the class-based bearer-level resource distribution problem as a
Proportional Fractional Knapsack model. The objective of the formulated problem is to meet Quality of
Service (QoS) requirements and provide fairness for all standardized service classes. Since the solution
of this problem is computationally expensive, due to the uncertainty and limited information on network
and user operation, we develop a Gaussian-based analytical model and drive a formula for simplified
computation of the weight of service bearers. Then, we propose Proportional Fractional Knapsack algorithm
for guaranteeing effective utilization of resources for heterogeneous traffic. Finally, performance evaluation
results are provided and demonstrate that the proposed scheduling approach can provide a significant
level of fairness, in balance with the QoS and throughput performance targets, comparable with optimal
ones.

INDEX TERMS Fairness, Gaussian weight, heterogeneous traffic, Proportional Fractional Knapsack,
Quality of Service, resource scheduling.

I. INTRODUCTION
To cope with the explosive surge of resource demand by
an increasing number of users and mobile traffic (ser-
vices), nowadays, cellular networks have adopted new
channel access technologies to improve system perfor-
mance. However, Long-Term Evolution (LTE) [1] and
LTE-Advanced (LTE-A) cellular networks still suffer from
numerous shortcomings [2] such as lack of a standard
resource scheduling method to technically support the fore-
seenmassive growth of heterogeneous traffic, associated with

distinct characteristics, while accomplishing all performance
targets.

On one hand, inasmuch as the Quality of Service (QoS)
and data rate requirements associated with different types
of traffic are in conflict, providing a compromise among
performance targets for heterogeneous traffic is a challeng-
ing issue. An efficient scheduling approach should satisfy
diverse data rate and QoS requirements for all different
new-emerging services. On the other hand, there is a give-
and-take among the performance targets, including fairness
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provisioning, QoS support and system throughput maxi-
mization. Typical performance-aware scheduling approaches
define a set of users and assign appropriate sub-channels or
resource blocks to these users, according to a performance-
specific target.

In addition to all these issues, system performance would
be severely deteriorated if the channel access and resource
scheduling approaches are not properly coordinated for over-
load states of the network. An efficient scheduling approach,
answering all performance targets, depends heavily on a big
amount of information such as users’ experienced through-
put, queues and channel quality information, and service-
specific characteristics. Access to all this information would
be infeasible for the base stations in overload states of the net-
work and particularly in the next generations of mobile com-
munication networks which contain a huge number of users.
This introduces further challenges to the resource scheduling
problem in overload states, especially for the next generation
of cellular networks, conveying heterogeneous traffic.

Therefore, resource scheduling approaches developed to be
used in traditional cellular networks are not efficient when
applied in forthcoming cellular networks; consequently, it is
imperative to look for the new efficient approaches that are
specifically tailored to the emerging networking challenges
and provide high performance communication systems for
the ever-growing users. In the following, the important
state-of-the-art of research on these problems are reviewed.

Performance-aware resource scheduling problems in
homogeneous traffic cellular networks, for two types of
real-time and non-real-time traffics have extensively been
studied [3]. Expected increasing application of real-time ser-
vices, such as online video streaming, over LTE and beyond
cellular networks has attracted a considerable amount of
research [4]–[7]. These kinds of applications are mostly
resource-hungry and critical in the view of scheduling.
A radio resource scheduling approach for multicast video
streaming applications, in a single-cell scenario, is presented
in [8]. The proposed approach is based on the subgroup-
ing techniques [9] which leverages multiuser diversity by
grouping users into different groups based on their Channel
State Feedbacks. Multicast video transmission in conjunc-
tion with user diversity is also considered in [10]. Therein,
it is investigated that the explicit provisioning of users’
channel conditions feedback to the eNodeB is infeasible.
Chiumento et al. [11], analyzed and compared a couple of
feedback reduction methods, for a wide range of resource
scheduling approaches and different scenarios. It was con-
cluded that a high rate of overall system throughput enhance-
ment can be achieved by using a proper feedback reduction
solution.

In LTE-A network, multiple Component Carriers (CCs)
aggregation technologies are used to provide larger chan-
nel bandwidth for resource-hungry services by aggregating
licensed and unlicensed spectrum bands [12]. It is clear that a
strong dependency between the resource scheduling approach
and users’ information reduces the method’s applicability;

since they require excessive amount of information, depend
on the number of users and available system resources,
imposing large computational cost in LTE-A networks where
each user perceives different levels of channel quality on
different CCs [13]. In this regard, heuristic resource schedul-
ing solutions, running in polynomial time, are preferred
for practical implementation [14]. These solutions make the
scheduling decision based on the objective of a formulated
optimization problem, including a single or multiple utility
function. The utility function is applied to quantify the max-
imum offered rewards of various radio resource allocations
in terms of dissimilar performance objectives, as addressed
in [15]. Most works focus on the throughput maximization
objective. For instance, Zhang et al. [16] optimized the for-
mulated Linear Programming scheduling problem to improve
system throughput and spectral efficiency; however, it has
been assumed that each user runs only one type of service at
the same time. Two-step resource scheduling algorithm, pro-
posed in [17], provides a trade-off between QoS and through-
put maximization by considering the performance concerns
from the perspective of both user and service provider, regard-
less of what application the user is running. As discussed
in [18], resource scheduling frameworks which rely on the
utility maximization concepts, can be used for general radio
resource scheduling problems by formulating them in differ-
ent ways, according to the performance target of the given
system.

In addition to the homogeneous services, radio resource
scheduling has also been studied for carrying heterogeneous
services. These works consider heterogeneous services in
different ways of categorizing [19]. Recently, [20] and [21]
considers different types of services into the Guaranteed Bit
Rate (GBR) and Non-GBR categories. One drawback of
these works is that they have not considered all standardized
service classes. More works on providing QoS guarantee for
GBR and Non-GBR service classes, with emphasis on over-
load states, include [22] and [23]. The proposed solutions
can distinguish intraclass and interclass-based traffic prior-
itization. Moreover, their applied utilization function is gen-
eral, including all QoS influential parameters. In addition to
capturing QoS requirements of heterogeneous traffic environ-
ment, this function contains adjust weight for each parameter
to assist service providers to control the level of service
provisioning for users as desired. However, in addition to the
quality of service degradation, Mobile bandwidth overload
may also cause unfair resource allocation, which is imperative
to be studied.

Despite recent advancements in LTE/LTE-A radio resource
scheduling approaches, most of them mainly concentrate on
especial aspects such as interference mitigation with lack
of concern for the other important aspects including fair-
ness and QoS provisioning in overload states (in terms of
number of users/amount of traffic), information shortage and
limited computational capacities. Here, we propose a down-
link scheduling approach for overload states of the network,
carrying heterogeneous traffic. In the following, distinctive
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novelty and contributions of this paper are summarized in
brief.
• To maximize system efficiency in terms of LTE per-
formance targets, we mathematically formulate the
scheduling problem of assigning resource blocks to the
service bearers as a multi-objective optimization prob-
lem in terms of throughput maximization, fairness pro-
visioning and QoS service guarantee. For adhering well
to the detailed specification of LTE standard [24], the
problem formulation differentiates the heterogeneous
traffic, according to their standardized classification and
takes individual service’s constraints and characteristics
into account. The standard specific QoS and data rate
constraints of each service bearer is required to assure
the QoS of different types of traffic.

• We cast the bearer-level class-based downlink schedul-
ing of heterogeneous traffic as a Proportional Fractional
Knapsack model. We assume that all performance tar-
gets have the same importance. Therefore, it leads us
to develop an algorithmic solution, called here Class-
based Proportional Solution, which provides all these
objectives in balance.

• Since resource allocation is opportunistic in nature and
users and their applied services appear in the net-
work randomly, their experienced throughput and chan-
nel characteristics are random variables. In this paper,
we consider LTE downlink scheduling for heteroge-
neous traffic in overload states where user’s chan-
nel information is a random variable. We develop a
new analytical model for weighting the service bearers
under users’ channel characteristics uncertainty.We then
derive a formula for success probability in this random
environment.

• A downlink resource scheduling algorithm, named Pro-
portional Fractional Knapsack algorithm is proposed in
two main phases. Through the first phase, resource-to-
class distribution is performed in the way that the fair
resource portion for each class of bearers is defined pro-
portionally. Through the second phase the resource-to-
bearer allocation is performed by allocating the defined
fair resource portion of each class to an optimal set of
bearers to meet QoS requirements of the bearers.

• Extensive simulation has been conducted assuming the
network contains all service classes, possessing a vari-
ety of throughput, delay/latency and loss requirements.
While comparing with other LTE overload-state down-
link scheduling solutions, we have proved the effi-
cacy of our proposed approach. Unlike many previous
works, the proposed resource scheduling approach is
distributed, does not require information on users’ chan-
nel characteristics, and does not depend on the specific
model of information acquisition; thus it is highly flex-
ible and offers more applicability in comparison with
state-of-the-art approaches.

The rest of the paper is organized as follows. Section 2
presents the network configuration, system model and

notation followed throughout the paper. In Section 3, we
describe the proposed bearer-level class-based downlink
scheduling model and analysis for heterogeneous traffic
while Section 4 presents the proposed Proportional Frac-
tional Knapsack algorithm. Simulation setup is described in
Section 5 and a performance assessment of our proposals is
provided in Section 6. Finally, Section 7 concludes the paper.

FIGURE 1. Performance targeted LTE downlink resource allocation.

II. SYSTEM MODEL AND PROBLEM FORMULATION
Here, we consider a single-cell downlink resource schedul-
ing scenario of the LTE cellular network, where the base
station (eNodeB) exploits OFDMA access strategy, to trans-
mit bearers from all different service classes to the units of
user equipment as depicted in Fig. 1. The dynamic resource
scheduling mechanism, relying on the bearer-level architec-
ture, contains two main phases of resource distribution and
resource allocation.

Let N = {1, 2, . . . , α} be set of the bearers waiting to be
scheduled by the set of the available system resource blocks
B = {1, 2, . . . , β} in t th Transmission Time Interval (TTI).
Note that we eliminate the time notation t for the simplicity
in what follows, unless an ambiguity arises. The 3GPP has
classified services and standardized the corresponding char-
acteristics of the service bearers into 9 Quality Class Indica-
tor (QCI) classes in Table 1 [24]. Suppose that n ∈ N denotes
index of a given bearer, waiting for resource scheduling. Each
bearer n is assigned to an individual service class with label
c ∈ C = {1, 2, . . . , γ } (γ = 9) and defined as nc. Table 2
presents the key notations used throughout this paper.

The aim of the eNodeB scheduling algorithm is to allocate
resources to these bearers in such a way that optimizes the
total system performance. The system performance is deter-
mined in terms of three main LTE targets, including through-
put maximization, fairness provisioning and QoS service
guarantee. Inasmuch as these targets are in conflict with each
other, the scheduling algorithm as a flexible solution must
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TABLE 1. Standardized QoS characteristics in QCI classes [24].

TABLE 2. Notations summary of.

provide a compromise among them. Therefore, the schedul-
ing problem of assigning resource blocks to the bearers can be
mathematically formulated as a multi-objective optimization
problem as follows.
• Throughput maximization: In terms of system per-
formance, the most common optimization objective for
LTE systems is to distribute resource blocks among
different service bearers in such a way that the overall
system throughput is maximized, as stated in

∀t, 1 ≤ t ≤ ϒ : max
∑
n∈N

∑
rb∈Bn

Rn,rb(t), (1)

where Bn ⊆ B is the set of resource blocks dedicated
to the bearer n to transmit data over them and Rn,rb(t) is
the achieved data rate by bearer n over the rbth resource
block at a given time interval t andϒ denotes the number
of time intervals.

• Fairness provisioning: If an optimal level of the total
system performance is provided without any concern
for fairness issue, it might prevent a satisfaction level
of performance for all users in the network. There-
fore, a fairness paradigm is needed to grant each user
a long-term and a certain amount of the total system

performance, as stated in

∀n ∈ N : lim inf
ϒ→∞

1
ϒ

ϒ∑
t=1

Rn(t) ≥ ϕnr̄, (2)

where Rn(t) denotes the overall data rate of bearer n at
time t . It is computed by summation of the bearer’s data
rate over whole set of resource blocks assigned to that
bearer at the given time (Rn(t) =

∑
rb∈Bn Rn,rb(t)). ϕn is

the minimum fraction of the total system throughput, r̄ ,
needed by bearer n, while ϕn ≥ 0 (ϕn = 0 when bearer n
does not have any packet to transmit) and

∑α
n=1 ϕn ≤ 1.

• QoS service guarantee: The third pertinent optimiza-
tion objective, QoS service guarantee, involves both
loss and delay minimization with their respective con-
straints. It implies that bearers’ average loss and delay
are intended to be minimized over multiple time inter-
vals defined as

∀n ∈ N : min
1
ϒ

ϒ∑
t=1

`αc (t) and min
1
ϒ

ϒ∑
t=1

dαc (t),

(3)

where dnc (t) and `nc (t) are measured packet loss and
delay of bearer n from QCI class c over time interval t ,
subject to

∀n ∈ N , c ∈ C : dnc < Dc, (4)

∀n ∈ N , c ∈ C : `nc < Lc. (5)

The constraints in Equations (4) and (5) states the pre-
defined per-class QoS constraints which are needed to
be met through the scheduling process. They imply that
packet error loss rate `nc and packet delay budget dnc
experienced by bearer n from QCI class c should be less
than predefined loss and delay thresholds, Lc and Dc
respectively.

III. MULTI-TARGETED SCHEDULING OF
HETEROGENEOUS TRAFFIC
As described in previous section an exact resource dis-
tributing solution is required to distribute resource blocks
fairly among the bearers, while keeping in check the QoS
and data rate requirements for every class of heterogeneous

VOLUME 5, 2017 3019



N. Ferdosian et al.: Multi-Targeted Downlink Scheduling for Overload-States in LTE Networks

traffic. To address this challenging issue, we formu-
late the resource distribution problem to the Propor-
tional Fractional Knapsack model and then try to solve
it by using a sampling solution through the following
sections.

A. PROPORTIONAL FRACTIONAL KNAPSACK MODEL
Class-based resource distribution scenario of heterogeneous
traffic can be mapped to a Proportional Fractional Knap-
sack model with minimal manipulation. Let consider that
n bearers are queued at the buffer of the eNodeB, waiting
to be resource allocated for transmission. Every bearer nc
has three different characteristics: class index c, size snc and
weight value ρnc . Suppose that there are αc bearers in each
class c, while summation of the bearers in all classes is equal
to the total number of bearers waiting for scheduling (i.e.∑γ

c=1 αc = α). Then size of each class, Sc, and the total
size of the whole queued bearers, S, are respectively defined
as

Sc =
αc∑
n=1

snc (6)

and

S =
γ∑
c=1

αc∑
n=1

snc . (7)

The desired solution must fill the knapsack with a capacity
equal to the number of available system resource blocks, β,
by the queued bearers, while satisfying the following
specifications.

1) The total profit of the chosen bearers should be
maximum.

2) The proportion of the number of selected bearers from
class c should be close to Sc/S.

3) The total size of the selected bearers should be less than
or equal to β.

Then according to these specifications, the correspond-
ing Proportional Fractional Knapsack model of the above-
mentioned resource distribution problem can be formulated,
in order, through the Equations 8, 9 and 10 in the following
definition.
Definition 1: The Proportional Fractional Knapsack model

of the fair resource distribution is defined by a finite set of
bearers N , a nonnegative real number B and two nonnegative
vectors ρ ∈ IRN and s ∈ IRN verifying

max
γ∑
c=1

αc∑
n=1

ωncρnc , (8)

min
{ γ∑
c=1

( ∑αc
n=1 ωncsnc∑γ

c=1
∑αc

n=1 ωncsnc
−

∑αc
n=1 snc∑γ

c=1
∑αc

n=1 snc

)}
, (9)

and

∀n ∈ N , 0 ≤ ωnc ≤ 1 :
γ∑
c=1

αc∑
n=1

ωncsnc ≤ B, (10)

where ωnc is the proportion of bearer n from class c, selected
for scheduling. �
Number of the resource blocks, which are required for

transferring data packets of the bearer n, defines the bearer
size snc . Further, the weight value of a given bearer which
indicates the maximum offered reward of that bearer for
scheduling, is computed by a normalized weighting func-
tion, compromising the QoS and throughput influential
factors.
Theorem 1: The Proportional Fractional Knapsack

problem of resource distribution, defined in Definition 1, is
an NP-hard problem.
Proof: A proof method for the NP hardness of the

0 − 1 Proportional Knapsack problem has been provided
in [25]. Since Definition 1 problem is the fractional version
of 0 − 1 Proportional Knapsack, with the only difference
that individual packets/bytes from the bearer queue can be
chosen without any force to choose all or nothing from each
bearer, therefore Proportional Fractional Knapsack problem
of resource distribution defined in Definition 1, is an NP-hard
problem too. �
Since the Proportional Fractional Knapsack problem of

resource distribution is NP-hard, tackling it by using a heuris-
tic procedure is a normal way. If we come up with a subset
of the highest weighted bearers such that, for each class the
proportion of the number of that class’s bearer selected for
scheduling, and the proportion of the number of that class’s
bearers waiting for scheduling is almost the same, and the
total size of the selected bearers not overloading the available
resources, then the problem is solved. Accordingly, we target
to find such a solution.

We assume that all three mentioned objectives have the
same importance. Therefore, it leads us to a solution that
provides all these objectives in balance. Let set H =

{ω1, ω2, . . . , ωα} indicates any feasible solution, here called
sample. First, we determine the size of each class inside
the sample by considering two later objectives (9) and (10);
then, find the optimal set of the bearers from each class,
fitting the predefined size of that class and satisfying the first
objective (8) in order to ensure that the optimal solution will
be found.

B. OBJECTIVE SIMPLIFICATION BY Gaussian WEIGHTS
In this section, we first show that the respective problem to the
objective of performance maximization stated in Equation (8)
is a complicated stochastic version of the Knapsack model
and then we try to overcome this problem and decrease the
computational complexity, by simplifying the objective func-
tion using the summer property of the weight value random
variable.

The main uncertainty in this stochastic optimization prob-
lem is the weight value of each bearer which is distributed
normally. Let consider the weight value of the bearers, at
any time interval t , is denoted by a random vector ρ(t) =
(ρn(t) : n ∈ N ). Therefore, the respective objective function
in Equation (8) with stochastic random weight values for
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every time interval t can be written as

max
γ∑
c=1

αc∑
n=1

ωncρnc (t), ρnc ≥ 0. (11)

Since ρ(t) are random values, we operate with expected ran-
dom values rather than the actual values.With this perspective
in mind, the expected value of ρ(t) is E[ρ(t)] =

∫
ρf (ρ)dρ ,

where E denotes the expected value operator and f is the
density function of the random vector ρ. The main difficulty
in every TTI is the number of scenarios to consider for
evaluating the objective function, containing many variables
and computations.

As already mentioned, the overall weight ρn for a given
bearer n can be calculated by using an aggregated nor-
malized weighting function which is a combination of
the normalized value ϑi of influential parameter i ∈
{delay, loss, queuedepth, priority, throughput}, and can be
defined as [8]

ρn(t) =
∑
i

pi. tanh(ϑi). (12)

In case of four former influential parameters, the respective
normalized values are computed by using the user itself infor-
mation and here we consider them as a known value A ≥ 0.
However in case of throughput parameter, the normalized
value is computed by utilizing the feed-back information
including CQI value and the past average throughput. Let
model the normalized value of bearers’ throughput by a ran-
dom vector R(t) = (Rn(t) : n ∈ N ), which can take value
in a finite set R(t) ⊂ [0,+∞) and for all t 6= t ′, Rn(t) and
Rn(t ′) are independent and have the same distribution. Here,
we consider the generalized form of the problem for ease of
exposition. Then by separating the known value A from the
stochastic random variable R(t), the aggregated normalized
weight function (12) can be written as

ρn(t) = An + Rn(t). (13)

Then by replacing ρn(t) and discarding index k for simplic-
ity, the consequent objective function (11) is redefined as

max
α∑
n=1

(
ωnAn + ωnRn(t)

)

= max
( α∑
n=1

ωnAn +
a∑

n=1

ωnRn(t)
)

= max
α∑
n=1

ωnAn +max
a∑

n=1

ωnRn(t), (14)

where E[Rn] =
∫
Rnf (Rn)dRn and f is the density function of

the random variable Rn. If we consider �(ω) as the resource
function which computes the expected optimal value of the
second stage of the objective function (14), and Rn as the only
resource variable with the coefficient equal to 1, then �(ω)

can be defined by

�(ω) = E
[

max
0≤ωn≤1

α∑
n=1

ωnRn

]

=

∫ α∑
n=1

ωnRnmax f (R1,R2, . . . ,Rn)dR1dR2 . . . dRn .

(15)

In each iteration, the solution technique needs to evalu-
ate many times the resource function which is an integral
of n variables. It results in big number of scenarios to con-
sider for evaluating the objective function, containing many
variables and computations.

We assume that the sample size of each class, computed
in previous section, is sufficiently big so that the central
limit theorem can be employed and R(t) of each bearer is
according to a known distribution and independent of other
bearers. The central limit theorem indicates that big number
of independent observations from any distribution tends to be
a normal distribution. Therefore, It follows from our assump-
tion and the central limit theorem, that Rn(t)s are normally
distributed. Consequently according to summation property,
if R1,R2, . . . ,Rn are independent Gaussian random variables
such thatRn ∼ N (µn, σ 2

n ) withmeanµn and variance σn, then
�(ω) :=

∑
ωnRn(t) follows a Gaussian distribution with

mean µ(ω) =
∑
ωnµn and σ 2

n (ω) =
∑
ω2
n(σn)

2. Then it
is easy to show that since �(ω) ∼ N (µ(ω), σ (ω)2) then we
can express � as follows [26].

�(ω) = µ(ω)9
(
µ(ω)
σ (ω)

)
+
σ (ω)
√
2π

exp
(
−µ(ω)2

2σ (ω)2

)
,

(16)

where9 denotes the standard normal cumulative distribution
function. Therefore, the optimization problem of (14) with
Gaussian weight values can be formulated by the �(ω) as

max
α∑
n=1

ωnAn +
(
µ(ω)9

(
µ(ω)
σ (ω)

)
+
σ (ω)
√
2π

exp
(
−µ(ω)2

2σ (ω)2

))
,

(17)

which is a concave function of binary variables, therefore it
can be computed quickly.

IV. CLASS-BASED BEARER-LEVEL
DOWNLINK SCHEDULING
A. PROPORTIONAL DISTRIBUTION SOLUTION
Recall that αc is the number of bearers in class c which
are selected for solution and ωnc (0 ≤ ωnc ≤ 1) is the
proportion of the selected bearer nc. Therefore, the sample
size for each class is denoted byUc, and can be demonstrated
in the following expression as

Uc =
αc∑
n=1

ωncsnc , (18)
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then the total sample size U , which is summation of the size
of all γ classes, is defined as

U =
γ∑
c=1

Uc. (19)

According to objectives (9) and (10), it is desired that

Uc/U = Sc/S, for c = 1, . . . , γ, (20)

and
γ∑
c=1

αc∑
n=1

ωncsnc = β. (21)

Then, by replacing U with β in Equation (20) we can calcu-
late the sample size Uc, for each class c = 1, . . . , γ , as

Uc = bβ/Sc Sc, for all c = 1, . . . , γ (22)

where bβ/Sc denotes the closet integer value to β/S. After
calculating the Uc, which is the number of bearers from class
k in the desired sample, we continue with the next step to
choose the optimal set of the bearers from each service class,
according to the first predefined objective, fitting theUc size.

B. PROPORTIONAL-FRACTIONAL-KNAPSACK (PFK)
ALGORITHM
This section introduces a resource scheduling algorithm in
two main steps. The detailed procedure is shown in the PFK
Algorithm 1. This algorithm initializes the bearers’ size snc ,
QoS (`nc , dnc ) and throughput parameters Rn(t) and updates
their values in each iteration. The actual updates of the bear-
ers’ parameters in the system is done to take into account the
effects of resource allocation, transmission rates, delays and
packet drops in the next scheduling iterations.

In the first step through lines 27, fairness-aware class-
based resource distribution is performed in the way that a
fair resource share for each class of bearers is defined, pro-
portional to their aggregated generated traffic. After classi-
fying the active bearers into standardized QCI classes, the
accumulated resource demand by each class is calculated by
summation of the bearers’ demands in that class, yielding the
class-based traffic distribution vector S = {S1, S2, . . . , S9}.
Then, by applying the proposed proportional resource distri-
bution solution, the fair share for each QCI class is computed.

Further to support the QoS requirements of the bearers in
LTE downlink multi-service system, in the second phase, the
classes’ resource share defined in the first phase are allocated
to the bearers of each class based on the bearers’ QoS require-
ments. All the system active bearers are sorted according to
their weight value in descending order. The weight value of
each bearer is computed by using the normalized weighting
function.

Then in each TTI, the bearer with the highest weight value
is selected to be resource allocated, if there is any unallo-
cated resources in the corresponding QCI class. The maxi-
mum amount of bits from each bearer, which are able to be
transmitted using the available resource blocks, is computed.

Algorithm 1 PFK Algorithm
Data: Set of available system resources β, a queue of n

bearers waiting for scheduling along with their
size snc , measured QoS `nc , dnc and throughput
parameters Rn(t).

Result: Allocating resources to the queued bearers
1 begin
2 Classify bearers into QCI classes;
3 for each QCI class c do
4 Compute the accumulated resource demand of

each QCI class c, using Sc =
∑αc

i=1 si;
5 Compute the proportional share (Uc) for each

QCI class c, using Uc =
⌊

β∑γ
j=1 Sj

⌋
Sc ;

6 end
7 calculate weight values of the queued bearers using

Equation (17);
8 sort bearers according to their ratio (ρnc/snc ) in

decreasing order and index them from 1 to α;
9 While all resource quotas are allocated OR no

bearers remained unallocated
10 for each queued bearer n indexed from 1 to α do
11 while Uc > 0 and n ≤ α do
12 if (Uc − snc ) ≥ 0 then
13 Uc− = snc ;
14 n+ = 1;
15 else
16 snc− = Uc;
17 Uc = 0 ;
18 end
19 end
20 end
21 end

After allocating the resources and transmitting the bearers’
packets if there is still any packet whose deadline was over
and not transmitted yet (due to lack of resource blocks),
it is dropped from the bearer’s queue. Then, based on the
arrived, transmitted, and dropped number of packets, the
sizes, losses and delays of the remaining packets are mea-
sured and updated. This loop continues till all the bearers
are resource allocated or no resource block is remained
unallocated.

V. SIMULATION ENVIRONMENT AND PARAMETERS
We consider an LTE cell under sequences of the overload
traffic, where the users are weighted for scheduling by apply-
ing the Gaussian weights and with the Knapsack policy being
the resource allocation algorithm. The goal of the scheduling
system is to efficiently distribute and allocate resources to
the users which gains the highest performance rewards in
term of QoS and fairness provisioning. Performance of the
proposed Gaussian-Knapsack scheduling approach is eval-
uated in comparison with the performance of Knapsack,
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TABLE 3. Simulation parameters.

Greedy-Knapsack and Priority-only algorithms as the refer-
ence approaches. Priority-Only algorithm serves the queued
bearers waiting for scheduling, according to the priority queu-
ing approach, so that the bearer with higher QoS priority
is served preferentially. The same simulation platform and
parameters, as stated in Table 3, are applied for all schedul-
ing strategies and performances are evaluated in different
scenarios. This simulation environment was implemented
based on the LTE cellular network characteristics, defined in
3GPP verification framework, while comprehending schedul-
ing aspects of eNodeB. The assumed 20MHz bandwidth
consists of 100 resource blocks per spectrum allocation in
time-frequency domain. The voice and data traffic were mod-
eled by means of the exponential distribution function and
aggregate self-similar pattern respectively.

Heterogeneous traffic scenarios are imposed, where there
is a mixture of different traffic types including all QCI classes
except QCI class 5, which has the highest Priority and inde-
pendent from the access network. The simulation analysis
considers transmission of multi-class bearers through the
eNodeB toward the users in its cell. To be realistic models, the
implemented scenarios are composed of a stochastic distribu-
tion of normal and overload time-intervals. During the normal
period, there is a set of 330 active users in a cell with different
kinds and number of service bearers. For implementing the
overload time interval, 50 users with single data bearer are
added to the existed traffic and they are eliminated at the
beginning of the normal state. The implemented overload
time intervals model scenarios, imposing extreme limiting
factors, such as a higher overhead for users’ channel quality
reporting, more computations for resource scheduling and
higher overhead for announcing the scheduling decisions.

VI. PERFORMANCE RESULTS AND DISCUSSION
To investigate the effectiveness of the proposed scheduling
algorithm, we compare it with other scheduling approaches
tailored for the overload-state downlink resource allocation
of LTE networks. These approaches have been adapted to our
considered heterogeneous environment, covering all different
classes of services. Then, we provide per-class results, rep-
resenting the performance evaluation of the proposed multi-
targeted scheduling approach in terms of fairness, QoS and

throughput. Inasmuch as, it is outlined in [22], no typical
traditional algorithm is optimal for all application classes
during the heavy load states of the LTE network; therefore,
a comparison of the proposed algorithm with the traditional
fairness- and QoS-ware approaches is not fine in this context.

A. PER-CLASS FAIRNESS
The first simulation analysis evaluates the fairness
provisioning of the PFK algorithm for heterogeneous ser-
vices. Inasmuch as each kind of service has dissimilar data
rate requirements, the level of fairness, provided by each
overload-state scheduling algorithm, is evaluated per service
class. In this regard, we measure fairness for each QCI class
separately by computing the Cumulative Distribution Func-
tion of the per-class Jain’s fairness index in two categories
of GBR and Non-GBR classes. As shown in Figures 2 and 3
respectively, PFK algorithm provides a better level of fairness
for all QCI classes, in compare with the reference scheduling
algorithms, while the most significant improvement belongs
to the GBR classes.

For QCI class 1 in Figure 2(a), the fairness index value
obtained by PFK is higher than 0.89, which is the biggest
range obtained by the algorithms, indicating that PFK algo-
rithm provides an optimal Quality of Experience (QoE) for
VoIP bearers, even when there is an excessive load on the
system.

In case of QCI class 2 in Figure 2(b), 85 % of the
bearers received a fairness of 0.73 or less when PFK was
used, while they received a fairness of 0.63 or less when
the Priority-Only and Knapsack algorithms were used.
As Figures 2(c) and 2(d) show, the PFK algorithm obtained
the best fairness value for QCI class 3 and compared
to the other algorithms, which all produced a smaller
amount of fairness especially for the higher percent of the
bearers.

In contrast, for the Non-GBR QCI classes, as can be seen
in Figures 3(a)-3(d), the difference between the PFK and
alternative scheduling algorithms is muchmore. For instance,
85 % of the bearers from QCI class 6 experience a fairness
of up to 0.67 by using the PFK, while for the Knapsack
and Priority-Only algorithms they experience fairnesses up
to 0.30. The main reason for this big improvement is because
of the distribution of resources among different services, pro-
portional to their traffic distribution over the network. Since,
the Non-GBR bearers, including TCP-based services, occupy
the biggest volume of the current systems’ traffic, the highest
fairness level by the PFK algorithm has been provided for
them by allocating the fair portion of resources proportional
to their size.

Overall, we can see that PFK outperforms the
Priority-Only algorithm for almost all QCI classes, with
the highest amount of improvements in contrast to the
Knapsack and Greedy-Knapsack algorithms. For the Knap-
sack and Greedy-Knapsack algorithms, the fairness results
for most of the QCI classes are very close. For the most
part, the Greedy-Knapsack algorithm benefits from the
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FIGURE 2. Per-class fairness for bearers from GBR classes: (a) QCI class 1, (b) QCI class 2, (c) QCI class 3, and (d) QCI class 4.

throughput-aware ranking function and produces bet-
ter results than the Knapsack algorithm, especially for
QCI classes 6-9.

The PFK improvements essentially benefit from the class-
based proportional technique applied to resource distribution,
where the QCI classes, with dissimilar characteristics and
different amounts of resource demand, negotiate, and coop-
erate with each other to make a fair decision. In contrast,
in the reference algorithms, the resource competition among
different service classes is accomplished in a selfish manner,
where each class’s performance desire is in conflict with
that of the others. Therefore, by combining the results of
Figures 2 and 3, it can be concluded that the division rule
applied in the PFK algorithm obtains an outcome with fair
service and ubiquitous coverage. Consequently, the through-
put of the system is not biased in favor of the specific kinds
of services.

B. PER-CLASS QoS AND THROUGHPUT
The QoS performance results are presented in terms of aver-
age packet loss and delay in addition to throughput for each

individual QCI class. Tables 4 to 11 show the percentage of
improvement obtained by the PFK algorithm with respect
to the reference algorithms. The average throughput, packet
loss, and delay for GBR classes 1-4, shown in Tables 4 to 7,
indicate that the proposed algorithm performs well enough to
ensure that GBR QCI classes 1-4 meet their QoS constraints
in terms of loss and delay, leading to a strong QoE for GBR
traffic.

As can be seen in these tables, the PFK algorithm obtains
improvements for GBR application classes, especially in
compare with the Knapsack and Priority-Only algorithm.
Moreover, the VoIP bearers, which correlate to QCI class 1,
are scheduled with no loss and almost no delay. The conversa-
tional video traffic from QCI class 2 and the rest of the GBR
bearers from QCI classes 3 and 4 also experience near zero
loss. In addition, the Non-GBR traffic for QCI classes 6 to 9
experience reasonable levels of loss and delay, although they
are impacted by the overload.

With respect to throughput performance, the PFK algo-
rithm achieves a less notable throughput improvement
with respect to the Greedy-Knapsack scheduling algorithm
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FIGURE 3. Per-class fairness for bearers from Non-GBR classes: (a) QCI class 6, (b) QCI class 7, (c) QCI class 8, and (d) QCI class 9.

TABLE 4. QoS and throughput evaluation, QCI1.

TABLE 5. QoS and throughput evaluation, QCI2.

because both of them use the same throughput-aware policy,
which is applied in an aggregate ranking function. More-
over, the better improvement in throughput acquired by PFK
with respect to the Priority-Only and Knapsack algorithms
indicates that these algorithms are not throughput-optimal.

TABLE 6. QoS and throughput evaluation, QCI3.

TABLE 7. QoS and throughput evaluation, QCI4.

TheGBR service bearers, especially those fromQCI classes 4
and 9, maintained a high level of QoE in terms of throughput
in the PFK scheduling algorithm. However, some tradeoffs
were also perceived. For instance, QCI classes 6, 7 and 8
were allocated less throughput, but the service traffic did not
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TABLE 8. QoS and throughput evaluation, QCI6.

TABLE 9. QoS and throughput evaluation, QCI7.

TABLE 10. QoS and throughput evaluation, QCI8.

TABLE 11. QoS and throughput evaluation, QCI9.

starve, even under overload states in the network. Everyday
TCP traffic, which is assigned to QCI class 9, experienced
a significant improvement in throughput compared to the
results of the Knapsack scheme.

The PFK’s strong bias toward providing fairness for all
classes of QCI excessively compromised the experienced
throughput and QoS over the region of interest (GBR
classes) and lower priority services (Non-GBR classes). Con-
sequently, results of the PFK algorithm indicate that this
scheduling strategy is the most effective for fine-tuning per-
formance targets across the various service classes.

VII. CONCLUSION
The presence of a huge number of mobile users, running het-
erogeneous traffic, increases the radio resource management
criticalities, due to the high dissimilarity of users’ channel
conditions and heterogeneity of data rate and QoS require-
ments of the different service classes. This paper addressed
LTE resource scheduling of heterogeneous traffic in overload
states of the networks where a huge number of traffic bearers
need to be served by the limited available radio resources.
An efficient resource scheduler in base station, answering
all system performance targets, needs enough information on
users’ operations and specified requirements such as user’s
throughput gains and service constraints. Access to all this

information would be infeasible for base stations, particularly
in emerging hierarchical networks containing a huge number
of users. To copewith the difficulty in information acquisition
and high computations, we proposed a Gaussian-based bearer
weighting method which simplifies the performance max-
imization objective. The Proportional Fractional Knapsack
scheduling algorithm was proposed, in which the highest val-
ued bearers from different service classes are scheduled for
resource allocation proportional to their distribution in a fair
manner. The simulation results demonstrate that fair resource
allocation in the downlink scheduling scheme among the QCI
classes with the same number of bearers is achieved along
with the QoS provisioning in terms of system loss and delay.
Future works will address the analytical validation of the
proposed scheduling approach and its investigation through
multi-operator shared systems.
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