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ABSTRACT FPGA-based accelerators have recently evolved as strong competitors to the traditional
GPU-based accelerators in modern high-performance computing systems. They offer both high computa-
tional capabilities and considerably lower energy consumption. High-level synthesis (HLS) can be used to
overcome the main hurdle in the mainstream usage of the FPGA-based accelerators, i.e., the complexity of
their design flow. HLS enables the designers to program an FPGA directly by using high-level languages,
e.g., C, C++, SystemC, and OpenCL. This paper presents an HLS-based FPGA implementation of several
algorithms from a variety of application domains. A performance comparison in terms of execution time,
energy, and power consumption with some high-end GPUs is performed as well. The algorithms have been
modeled in OpenCL for both GPU and FPGA implementation. We conclude that FPGAs are much more
energy-efficient thanGPUs in all the test cases that we considered.Moreover, FPGAs can sometimes be faster
than GPUs by using an FPGA-specific OpenCL programming style and utilizing a variety of appropriate
HLS directives.

INDEX TERMS High-level synthesis (HLS), FPGA, GPU, OpenCL, low-power low-energy computations,
parallel computing.

I. INTRODUCTION
Modern electronic devices like smart phones are required to
perform a variety of tasks ranging from simpler text messag-
ing tomore computationally intensivemultimedia operations.
This has resulted in the development of heterogeneous sys-
tem architectures in modern system-on-chip (SoC) designs.
Such systems mitigate the issues encountered by multi-
core scaling (using several homogeneous cores), stemming
mainly from the so called memory wall and Von Neumann
bottleneck [1], [2]. Designs with such heterogeneous archi-
tectures essentially consist of a combination of multi-core
processors and a variety of hardware accelerators to speed up
the execution of computationally intensive tasks [3].

Graphical processing units (GPUs) offer higher floating
point throughput, a favorable architecture for data parallelism
and higher memory bandwidth than processors. These prop-
erties make them good candidates to be used as accelerators
in modern high performance computing (HPC) systems [4].
TheHPC systems usingGPU-based accelerators however, are
inefficient in terms of power consumption [5].

Modern field programmable gate array (FPGA) devices
in comparison to GPUs can provide reasonable processing
speed while consuming only a fraction of their operating
power [6].Moreover in comparison tomulti-core CPUs, there
is a continuously widening performance gap favoring FPGAs
from one generation to the next, especially with regards
to HPC or data center applications. The enhanced perfor-
mance combined with a superior power efficiency results
in increased performance-to-power-efficiency of FPGAs in
comparison to both GPUs and CPUs [7]. These capabilities
of FPGAs have been acknowledged by several big data com-
panies such as Microsoft and Baidu, as is evident from their
decision to use FPGAs rather than GPUs as accelerators in
their data servers [8], [9].

One of the main hurdles in the utilization of FPGAs
for acceleration, however, is the complexity of program-
ming them. FPGAs are generally programmed using one
of the hardware description languages (HDL) such as Ver-
ilog or VHDL used by hardware designers. This limitation
however can be tackled by a technique called high-level
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synthesis (HLS). HLS enables designers to program an
FPGA using high-level languages e.g C, C++, SystemC or
OpenCL. This in turn reduces both verification and design
time in comparison to HDL design.

This work is devoted to a detailed analysis, by using a num-
ber of algorithms from a variety of application domains, of the
design complexity, performance and energy-per-computation
trade-offs that can be achieved by accelerating massively
parallel applications on GPUs and FPGAs.

In this work, acceleration is done at a coarse-grained level.
The algorithm is partitioned into functions which must be
accelerated, called kernels, and a code that manages their
input/output data and coordinates their execution, called host
code. A kernel in this work is written in the Open Computing
Language (OpenCL), and is implemented onto Xilinx FPGA
devices by using the SDAccelTM tool chain from Xilinx.
This includes both a compiler for host code and the Vivado
HLS high-level synthesis tool. It also uses logic and physical
design tools from the Vivado Design Suite [10], [11] for the
kernels.

During the work, we noticed that optimizing OpenCL
code for FPGA implementation by using SDAccel requires a
comparable amount of effort to optimizing it for GPU imple-
mentation [12]. The main difference between optimizing for
a GPU and for an FPGA lies in the different architectures
of the targeted hardware platforms. In case of a GPU, the
programmer tries to achieve the best mapping of an appli-
cation onto the fixed hardware architecture. For an FPGA on
the other hand, the task is to guide the compiler to generate
optimized compute and memory architectures for each kernel
in the application [12]. This implies that the usual problem of
writing OpenCL code, namely the fact that it is very difficult
to optimize it for different GPU architectures, is exacerbated
even further when targeting it for FPGA implementation
because the architecturemust be adapted to the code and vice-
versa. However, as we will argue in this paper, the advantages
in terms of energy consumption per kernel execution, and
sometimes in terms of performance, more than justify the
additional effort.

OpenCL is a parallel programming language which is built
upon C/C++ and hence can be ported very easily from
C/C++ [13]. It exposes the architectural features of the GPU,
namely the distinction between global memory implemented
in external DRAM, local memory implemented in on-chip
SRAM, and private register files, in an intuitive form, that is
easy to exploit even by software programmers who are used
to the ‘‘flat’’ memory models used by languages like C or
Java.

OpenCL has been developed by the Khronos group to
create applications to be executed on heterogeneous plat-
forms. This portability of OpenCL gives it an edge over the
very similar Compute Unified Device Architecture (CUDA)
programming framework, which can only be used to pro-
gram NVIDIA GPUs. Unfortunately, as mentioned above,
OpenCL does not offer automatic performance portability
across multiple devices. This implies that even though a

specific OpenCL code can be executed on multiple devices,
its performance would differ from one device to another
especially due to the increasing architectural complexity of
both GPUs and FPGAs. The Xilinx OpenCL high-level syn-
thesis tool, namely Vivado HLS, has been used in this work
to optimize the code for execution on the Xilinx FPGAs.
It requires significant manual annotations of the code with
both standard and Xilinx-specific OpenCL attributes in order
to achieve a good level of performance.

Modern high-performance GPUs have very high-
bandwidth DRAM interfaces, which typically outperform
those of FPGAs implemented using comparable technolo-
gies. Moreover, external DRAM access consumes a signif-
icant amount of power. This means that the data organization
for FPGA-bound implementations must be carefully opti-
mized to use on-chip resources, even for kernel-to-kernel
communication. For this reason, SDAccel offers an on-chip
global memory implementation option that is quite advan-
tageous for kernels that can stream data among them using
very efficient on-chip buffers. In general, a performance
advantage over GPUs can be achieved only for computations
that require little overall external DRAM access. In any case,
FPGA implementations require much less energy per compu-
tation than GPUs because the control structure is hardwired,
and thus does not require to fetch and decode instructions.
Moreover, the on-chip memory architecture can be tailored
much more specifically to the application at hand, by using
just a few high-level synthesis directives, thus leading to
dramatically reduced multiplexing energy costs.

Note that, although the synthesis engine can process both
OpenCL and C/C++ kernels, the coding requirements are
slightly different for the two languages. On the one hand, ker-
nels written in OpenCL do not require any additional anno-
tations to be implemented on the FPGA, and attributes are
used only to further optimize cost and performance. On the
other hand, kernels written in C/C++ require HLS-specific
pragmas to be used to define the HW protocol used for the
memory interfaces for input/output function arguments, in
addition to pragmas used for optimization. We used C/C++
for one of the algorithms, namely Monte Carlo simulation,
in which multiple executions of the kernel code do not need
to share data and which requires efficient implementation
of trigonometric functions that are not yet available for
OpenCL models.

A. MOTIVATION
This section of the paper describes the main motivation
behind carrying out this research by estimating the annual
savings in energy costs that we can obtain by utilizing FPGAs
rather than GPUs as accelerators. We consider Algorithm 2
from the K-nearest neighbor (KNN) algorithm as an example
to do this analysis. This implementation is explained later
in section IV-B1.

TheGPU in this case roughly consumes about 100W,while
the FPGA implementation that we consider in this section
consumes about 3W.We estimate that the DRAM (e.g. 16GB)
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could bring the FPGA power consumption to about 10W.
At about 10 cents per KWh, this means a saving of about 100$
per year in energy costs alone, ignoring cooling costs [14].
While at the current FPGA costs, this would not make them
directly economical alternatives, things would change once
they are produced in the same massive amounts as GPUs.

B. CONTRIBUTION
This research aims to investigate, with an extensive set of case
studies drawn from a variety of application areas, the issues
encountered when implementing and optimizing an applica-
tion, originally written in non-hardware specific OpenCL or
C/C++, on Xilinx FPGAs. It is also aimed at emphasizing
the different compilation flows for code to be executed on
a GPU and an FPGA, stemming from their different archi-
tectures. While GPUs due to their fixed architecture support
just-in-time compilation, FPGAs have a much more flexible
architecture. On one side they allow a much broader design
space exploration, by exploiting various macro- and micro-
architectural optimization options. On the other side, they
require a much longer synthesis, place and route time than
allowed by just-in-time compilation. The OpenCL standard
thus allows, and the SDAccel tool exploits, offline compila-
tion of the OpenCL code to be executed on an FPGA.

Finally, it is shown by comparing the performance of the
algorithms on various platforms that the code executing effi-
ciently on an FPGA is significantly different in several key
aspects from the one leading to the best implementation on a
GPU, even though the target platforms offer a similar memory
architecture. This difference in performance is because of
(1) their different DRAMmemory access bandwidths, (2) the
use of pipeline rather than SIMD parallelism, thus alleviating
the thread divergence problem, as well as (3) the optimiza-
tions offered by the HLS tools that are available only for
FPGA implementation.

II. RELATED WORK
This section summarizes past work on the use of FPGA-based
accelerators in modern HPC systems, with a specific focus on
our selected design test cases.

The authors of [13] describe the performance comparison
of a complex computer vision algorithm for linear structure
detection by considering a CPU, a GPU and an FPGA. They
show that the Xilinx Spartan LX150 FPGA beats both the
AMD Radeon HD6870 GPU and Intel Core i7 CPU in terms
of power and speed. They have ported the code from CPU
to GPU by using OpenCL and have used VHDL code to
program the FPGA. The code translation effort has also been
analyzed and obviously found to be higher for the RTL based
FPGA design than for the GPU implementation through
OpenCL. In our case however, we have used HLS for FPGA
implementation directly from the OpenCL code executing
on the GPU. This greatly reduces the design effort while
enabling us to generate several hardware implementations
from a single OpenCL code by providing various directives
to the HLS tool.

A very thorough comparison of several hardware accelera-
tors by considering multiple implementations of the quantum
Monte Carlo application has been performed in [4]. A range
of programming languages e.g. CUDA, Brook+, OpenCL,
C++ and VHDL have been considered on a variety of
implementation platforms e.g. Intel multi-core processors,
multiple GPUs from NVIDIA and Radeon and a Virtex 4
LX160 FPGA from Xilinx. NVIDIA GPUs in combination
with CUDA have been found to give the best performance in
this study while the FPGA performance was the worst for a
considerable number of computations. The main reason for
this, as indicated by the authors is using an old FPGA against
very powerful GPUs and CPUs. Here again, the authors
mention the issue of programming FPGAs via VHDL, which
took them almost a year.

Several techniques to accelerate the KNN algorithm were
surveyed in [15], where the author advocated a parallel
implementation due to its high computational costs and the
opportunity to parallelize large portions of the algorithm.
A brute force implementation of the KNN algorithm utilizing
the CUDA language and the CUBLAS library was acceler-
ated on a GPU-based hardware platform in [16] and [17].
The results were compared to an extremely optimized
C++ library implementation and a huge speed up was
observed.

An OpenCL implementation of the KNN algorithm on
an FPGA-based heterogeneous system architecture was pre-
sented in [18]. The OpenCL compiler from Altera was used
in that case for the FPGA implementation. Several different
hardware platforms were used to perform experiments. They
included an Intel Core i7-3770 processor, an AMD Radeon
HD7950 graphics card and a Stratix IV 4SGX530 FPGA
fromAltera. The authors found their FPGA-based implemen-
tation to be more power/energy efficient as compared to both
CPU- and GPU-based implementations. The GPU however
managed to beat the FPGA in terms of execution time, most
likely because of its comparatively higher global memory
access bandwidth.

The option pricing problem is widely studied due to both its
practical applicability in the financial market and the oppor-
tunity to solve it via stochastic Monte Carlo simulations. This
method is computationally intensive and easy to parallelize.
For example, FPGA-based acceleration was found to be 30X
faster than the corresponding CPU-based implementation
in [19]. A 4X reduction of the overall design effort by using
a high-level language description was also demonstrated.
The analysis of another pricing option (the European bar-
rier option) was implemented on several different hardware
platforms in [5] and the FPGA-based implementation was
found to offer a better balance between performance and
energy as compared to the corresponding GPU-based imple-
mentation. In [20], the study of the Black-Scholes model and
Heston models was applied to European vanilla option. The
authors found the FPGA-based accelerators to outperform the
GPU-based ones in terms of both power consumption and
execution time.
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Two different hardware implementations of the bitonic
sorting network were presented in [21]. The high perfor-
mance design in that case utilized a single memory port using
a streaming permutation network (SPA), thus resulting in a
memory and energy optimized implementation on a Xilinx
Virtex-7 platform. A significant performance improvement
was also achieved in [22] by proper pipelining of differ-
ent stages of the sorting network. In [23], the Bitonic sort
algorithm was compiled for a GPU-based hardware platform
by using CUDA, where optimizations were done mainly to
reduce the number of global memory accesses and the num-
ber of kernel launches.

FPGAs are hence considered as a viable option as an accel-
erator instead of GPUs especially when energy-per-operation
is the main concern. Researchers at Baidu are thus consid-
ering FPGAs for accelerating their deep learning models for
image search [8]. Microsoft’s Bing search engine also uses
Altera FPGAs as accelerators in combination with traditional
microprocessors from Intel [24]. Foreseeing the possibility of
a greater usage of FPGAs in data centers in the near future,
Christoforos Kachris states in a recent issue of EETimes that
‘‘In a sign of the times, four out of the five keynote presenta-
tions at FPL 2016, a major FPGA conference in Europe, were
given by large companies such as IBM, Intel and Microsoft
focused on the efficient deployment and use of FPGAs in
data centers.’’ [25]. Keeping in view this market trend and
the general perception of complexity of FPGA programming,
two of the major FPGAmanufacturers Altera and Xilinx have
recently introduced tools to enable the designers to program
their respective FPGAs directly using C, C++, SystemC
and OpenCL code [10], [26]. There is hence a considerable
interest on this topic in the design community. This provided
us with a motivation to perform an extensive study in this
regard.

III. METHODOLOGY
A. FPGA IMPLEMENTATION
This section of the paper gives a brief overview of the
OpenCL programming framework, including its platform and
memory model, followed by a detailed description of the
design flow starting from the OpenCL code and terminating
with final FPGA implementation.

1) OVERVIEW OF OpenCL
As stated before, OpenCL is a parallel programming lan-
guage, supported by a compilation framework and libraries,
for programming multi-core and heterogeneous compute
platforms [27], [28]. OpenCL offers functional portability
thus enabling code execution on various supported devices,
requiring only minimal modifications to the host code. The
programming language is based on C99 and supports both
data-parallel and task-parallel programming models [29].

The OpenCL platform model includes both a (possibly
multi-core) CPU, called host, and massively parallel accel-
erators, called devices, that can take the form of GPUs
and FPGAs. The host is responsible for setting up the

environment to enable the OpenCL kernels to execute on one
or more devices. In terms of OpenCL, a device represents
any supported hardware platform that can be used to accel-
erate the compute intensive portions of an application i.e. the
kernels. An OpenCL device consists of compute units (CU),
each further divided into processing elements (PE) as shown
in Fig. 1.

FIGURE 1. OpenCL platform and memory model.

Several concurrent executions of the kernel body (called
work-items) take place on multiple processing elements. The
work-items are further grouped into work-groups, which are
being executed by compute units. The memory is broadly
divided into host (i.e. CPU) memory and device (i.e. GPU
or FPGA) memory. The device memory is further divided
into private memory (specific to each work-item), local mem-
ory (shared by all the work-items in a work-group) and a
global/constant memory (shared by all the work-groups).
Access to global memory is the slowest (since it typically
resides in external DRAM) while private memory is the
fastest (since it is typically allocated to register files), while
local memory often resides in on-chip SRAM. Global mem-
ory however, is the largest in size while private memory is the
smallest. The OpenCLmemorymodel is also shown in Fig. 1.

The work-items that compose an OpenCL kernel can be
executed in an out-of order manner, in order to ensure high
performance on a variety of platforms with different num-
bers of CUs [30]. Thus, the OpenCL standard uses a three-
level synchronization and collaborationmodel. The execution
order of different kernels is completely determined by the
host code, either by calling them sequentially, or by using
synchronization callbacks that notify the host code when
a given kernel has completed execution. The execution of
different work-groups within a kernel is completely unsyn-
chronized, thus they must read and write different areas of
global memory, and they cannot cooperate in any manner.
Finally, the programmer can use explicit barriers to ensure
local and global memory consistency for work-items within a
work-group. A barrier represents a checkpoint within a work-
group. All the work-items belonging to that work-group must
reach it before any of them can proceed beyond it [10].

2) FPGA DESIGN FLOW
Fig. 2 shows the complete flow of operations performed by
the SDAccel tool from Xilinx to take OpenCL code and

2750 VOLUME 5, 2017



F. B. Muslim et al.: Efficient FPGA Implementation of OpenCL HPC Applications via HLS

FIGURE 2. SDAccel based FPGA design methodology flow.

implement it on an FPGA. The very first step in the flow is
to take the OpenCL code and verify its functional correctness
by performing a software (SW) based simulation called CPU
emulation. This is the fastest part of the design flow and
enables a fast verification of the design functionality. Both
the host and kernel code in CPU emulation are run on the
x86 based processor [10].

This step typically requires one to add a testbench to
the host code, which provides the inputs to and checks
the outputs from the algorithm. The testbench generates or
reads from files the stimuli to drive the inputs of the design
under test (DUT), and monitors its outputs, thereby validat-
ing the functionality of the DUT. Once the functionality is
verified, the performance of each individual kernel i.e. the
performance of an individual compute unit and its resource
usage are estimated. This gives an early idea of the final
performance gains, by taking into account the target hard-
ware device as well as the generated compute units for the
execution of the application.

SDAccel generates hardware from anOpenCL kernel at the
level of work-group. Multiple compute units can be instanti-
ated and driven by the host code, in order to improve perfor-
mance. Each work group can execute its work items either
in pipelined fashion, or by unrolling them, or both. Typically
pipelining provides the best cost/performance trade-off, but
sometimes either the loops over thework items, or some of the
loops nested within them, can be further unrolled to improve
performance.

Then RTL simulation, also called hardware (HW) emu-
lation in the context of this flow, is used to verify that the

compute units created for all the kernels are functioning
correctly and to analyze their overall performance. While
CPU emulation takes care of the functional correctness of
the application, its performance is verified by HW emulation.
The logic implementation for each compute unit needs to
be generated by SDAccel before HW emulation and hence
this step takes more time as compared to the CPU emula-
tion. It runs Vivado HLS under the hood to generate the
custom logic for the application, thereby attempting to max-
imize performance while minimizing resources at the same
time. VivadoTM Integrated Design Environment (IDE) is used
thereafter in the build system step to connect the generated
custom units to the infrastructure IPs provided by the target
hardware, such as the processor interface used to pass argu-
ments to the kernel, to start it, and to wait for its comple-
tion, as well as the DDR DRAM interface [10]. The final
step is to package the generated system for deployment on
FPGA-based boards.

3) FPGA-SPECIFIC OpenCL OPTIMIZATIONS
During the FPGA implementation flow, the parallelism
offered by the FPGA can be exploited by using sev-
eral HLS optimization directives offered by SDAccel. The
(reqd_work_group_size) attribute defined in the OpenCL
standard is strongly recommended in case of an FPGA-based
implementation. This attribute is meant to specify the size
of the problem space corresponding to a single execution of
the kernel compute unit. This attribute specifies the work-
item loop iteration count which in turn can be used by the
HLS tool to optimize performance during the generation of
custom logic for the kernel. Moreover, the memory access
throughput can be improved by utilizing vector data types
(when required) instead of the C structs [10].

The SDAccel-based flow can pipeline both the work-item
loops as well as any explicit loops in the kernel. Pipelining is
better than loop unrolling for loops accessing global memory,
as in our case, because of their ability of better matching the
limited number of global memory ports available. The limited
number of global memory ports may result in data access
conflicts, thereby limiting the performance gains obtained by
loop unrolling, and serializing potentially parallel loop iter-
ations [31]. SDAccel supports unrolling both explicit loops
and implicit work-item loops in case of OpenCL.

As mentioned before, the performance efficiency on
FPGAs is reduced in case of applications dominated by
DRAM accesses. This is because of the significantly
higher global memory access bandwidth of modern GPUs
in comparison to that of current FPGAs. On the other
hand, the internal bandwidth to move the operands and
results of application-specific ALUs is in the order of ter-
abytes/sec (TB/s), which makes FPGAs a suitable platform
for high performance computing. SDAccel offers several
options in order to minimize the number of off-chip memory
accesses and implement more efficient interfaces to DDR in
order to exploit the inherent parallelism offered by FPGAs.
Some of these are described here.
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FIGURE 3. (a) Traditional global memory buffer vs (b) On-chip global memory buffer.

FIGURE 4. Illustration of OpenCL region with multiple compute units.

• Performing global to local memory copy and vice-versa
in bursts. Large bursts improve efficiency, as the mem-
ory access overhead is shared across large amounts of
data being transferred [12].

• Using a dedicated memory port for each global array,
thus leading to reduced memory access conflicts.

• Using ‘‘on-chip global memory’’ for inter-kernel com-
munication and avoiding excessive transfers to DDR, as
shown in Fig. 3 and used in section V-A. This option
automatically maps the global memory buffers used
merely for inter-kernel communication, to the on-chip
block RAMs. It should be noted that otherwise the global
memory buffers are mapped to external slower DRAMs.

• Using on-chip pipes (FIFOs) that allow data streaming
between two kernels.

SDAccel creates a customized area on the FPGA called
OpenCL region (OCL region) which allows exploiting the
OpenCL parallel model by implementing multiple compute
units of the same kernel with multiple work groups, as shown
in Fig. 4. SDAccel enables FPGA designers to take advan-
tage of multiple work groups by instantiating them sepa-
rately on the FPGA fabric and executing them in parallel.
This improves overall performance by increasing bandwidth
utilization and enhances parallelism on a coarse-grained
level.

B. POWER ANALYSIS
The power consumption of an FPGA is estimated by using the
power analysis features of VivadoTM. Vivado allows power
analysis through all the stages of FPGA design starting from
logic synthesis to placement and routing. The power estima-
tion in this work is performed post routing, which is the most
accurate as it is based on the exact logic and routing resources
read from the already implemented design database [32]. The
complete power analysis flow utilizingVivado power analysis
features is shown in Fig. 5. This work uses the vector-based
approach to estimate the power in case of an FPGA, where the
switching activities are captured using a Switching Activity
Interchange format (SAIF) file which then is used to obtain
more accurate power reports.

GPU power estimation on the other hand was performed
by using the NVIDIA SystemManagement Interface (nvidia-
smi). This is a command line utility that exploits the
NVIDIA Management Library (NVML) to profile NVIDIA
GPUs [33].

IV. EXPERIMENTAL SETUP AND DESIGN TEST CASES
Several different algorithms are considered for implementa-
tion on heterogeneous platforms consisting of a multi-core
processor and different accelerators (e.g. FPGAs or GPUs)
as depicted in Fig. 6.
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TABLE 1. Target platforms comparison.

FIGURE 5. Power estimation and analysis flow.

A. EXPERIMENTAL SETUP
The experimental setup considers three target devices to run
our applications. Two of them are GPUs while one of them is
an FPGA.

1) GPUs
A GPU consists of several parallel processing elements as
shown in Fig. 6. These are responsible for executing the
kernel functionality concurrently in the form of work-items.
The most important properties affecting the performance of
a GPU are the number of cores, the clock frequency and the
memory access bandwidth. All the kernels targeting GPUs in
this work are written in OpenCL, while the host code uses the
OpenCL C/C++ API developed by the Khronos group. The
two GPUs used in this research work are the GTX960 and
Quadro K4200, both by NVIDIA. These are listed in Table 1.
The minimum clock period tclk for the two GPUs is given in
the table as well.

2) FPGA
For FPGAs to be used as accelerators, their interface protocol
needs to be given special consideration. The design flow in
our case, as mentioned before, uses HLS to directly program

the FPGA from high-level code. Fortunately, the SDAccel
and Vivado HLS tools take care of the SW and HW side of
the interface protocol respectively. The FPGA board consid-
ered in this work is an Alpha data ADM-PCIE-7V3 with a
Virtex-7 690t FPGA, whose specifications are also listed in
Table 1. The clock period for the FPGA, and hence its power
consumption, depends on the design. In all the test cases
that we considered, we instantiated the maximum number
of work-groups that can fit on the FPGA while keeping the
design routable.

B. DESIGN TEST CASES
A number of commonly used algorithms from a variety of
application domains are considered for acceleration on the
target platforms. In order to compare the performance of
the OpenCL compiler with that of the CUDA compiler for
the GPUs, we also converted one of our kernels, namely
the K-Nearest Neighbor algorithm, to CUDA. We did not
observe any significant difference in performance on theGPU
platforms. Thus we did all the remaining design experiments
using OpenCL, since that language is more portable across
platforms. The various test cases are described here briefly.

1) K-NEAREST NEIGHBOR ALGORITHM
K-Nearest Neighbor (KNN) is an important classification
algorithm used in a variety of applications such as pattern
recognition, computer vision and machine learning. It is used
to find the k nearest neighbors of a given query point among
a set of reference data points. Typically, training datasets
are quite large, hence resulting in a large computation cost
for this algorithm [16]. Fortunately, the algorithm is highly
parallelizable and hence can be accelerated considerably by
exploiting the parallel architectures of GPUs or FPGAs. The
algorithm includes the following steps:

1) For given number n of points in the reference data set R
and a given query point q, find the n distances between
the query point and each point in the reference data
set. The distance in our case is the squared Euclidean
distance.

2) Sort the n distances while preserving the corresponding
indices of the points in the reference data set R.

3) Return the k points in the reference data set R corre-
sponding to the smallest k distances obtained after the
sorting step.

The baseline code in this work is based on the paral-
lel implementations from [34], [35] which contain highly
optimized code for execution on GPU-based platforms. Two
different implementations of the algorithm are considered
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FIGURE 6. A typical heterogeneous system architecture.

and their execution speed, energy and power are compared
on GPUs and an FPGA. The implementations mainly differ
based on whether the neighbor’s estimation is done on the
CPU or on the accelerator. In the case where it is done on
the CPU, the CPU execution time is also measured while
calculating the execution time of the algorithm. The two
implementations are presented here.
• Algorithm 1
This implementation performs a parallel execution of
the distance calculation task of the algorithm on the
device (GPU/FPGA), while the nearest neighbors esti-
mation takes place on the host. The distance calculation
task is the most easily parallelizable part of the algo-
rithm, as separate independent points are read from the
reference data set for calculating distances. The imple-
mentation uses global memory only, hence performance
mainly depends on the accelerator global memory band-
width. It is illustrated in Algorithm 1.

• Algorithm 2
This implementation performs both the distance calcu-
lation as well as the nearest neighbors estimation task on
the device in two separate kernels namely ‘‘DISTANCE
CALCULATION’’ and ‘‘NEIGHBOR ESTIMATION’’
respectively. It uses an optimization option offered by
SDAccel called ‘‘On-chip global memories’’ to map
the global memory buffers used merely for inter-kernel
communication, to the on-chip block RAMs. This opti-
mization is depicted in Fig. 3. The pseudo-code for this
implementation is given in Algorithm 2.
It is efficient when k is much smaller than the number
of points in R, because it can use a very simple and fast
streaming algorithm to find the k smallest elements in a
large vector of distances.

2) MONTE CARLO METHODS FOR FINANCIAL MODELS
The Monte Carlo method (MC) is widely used to solve
complicated mathematical and physical problems such as
stochastic differential equations or multiple-particle models.
Typically, it involves plenty of random number generations
and intensive parallel computations. These two features of

Algorithm 1 Distance Calculation on Device and Neigh-
bor Estimation on Host
Input: A query point q and R, a set of reference points;
Output: Indices of the k reference points with the

smallest distance from q;
1 Begin
2 On device:
3 function DISTANCE CALCULATION
4 for each reference point r ∈ R do
5 compute the distances between q and all points

r ∈ R;
6 end
7 end function
8 On host:
9 function NEIGHBOR ESTIMATION

10 sort the distance vector;
11 print the indices in R of the k smallest elements of the

sorted distance vector;
12 end function
13 End

the MC method make it suitable for acceleration by GPUs
or FPGAs.

In this paper, the MC method was applied to two famous
financial pricing models, namely the Black-Scholes model
and the Heston model. Both models consider a risk-free asset
with a fixed interest rate and a risky asset (also known as a
stock) with a price that is subjected to geometric Brownian
motion as shown in (1). In the Black-Scholes model, the
volatility of the stock price is a constant value, while in the
Heston model, the volatility is also modeled by a stochastic
differential equation as shown in (2).

dS = rSdt +
√
VSdz1 (1)

dV = κ(θ − V )dt + σv
√
Vd(ρz1 +

√
1− ρ2z2) (2)

In (1), (2), z1, z2 are twoWiener processes, ρ is the correlation
factor between them and

√
V is the volatility of the stock

price. In (2), θ is the long-run mean variance, κ is the speed
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Algorithm 2 KNN on Device Using Multiple Kernels
Input: A query point q and R, a set of N reference

points;
Output: k smallest distances with their indices in a

single work-group;
1 Begin
2 On device:
3 declare global distance array ‘‘dist’’ for inter-kernel
communication;

4 function KERNEL1: DISTANCE CALCULATION
5 for each reference point r ∈ R do
6 compute all distances between q and all points r ∈ R

and save in ‘‘dist’’;
7 end
8 end function
9 function KERNEL2: NEIGHBOR ESTIMATION
10 declare a local variable ‘‘dmin1’’;
11 for i = 0 to k − 1 do
12 declare and initialize variables ‘‘dmin’’ and

‘‘location’’;
13 if (i == 0);
14 then
15 initialize ‘‘dmin1’’ to 0;
16 end
17 for j = 0 to N − 1 do
18 if (dist[j] < dmin and dist[j] > dmin1);
19 then
20 dmin = dist[j];
21 location = j;
22 end
23 if (j == N − 1) ;
24 then
25 dmin1 = dmin;
26 print index in R corresponding to the

neighbor i.e. ‘‘location’’;
27 print distance corresponding to the location

i.e. ‘‘dmin’’;
28 end
29 end
30 end
31 end function
32 End

of mean reversion (the rate at which V reverts to θ ) and σv is
the standard deviation of the volatility V .
For a short time 1t << 1, V can be assumed constant.

Thus the numerical solution for (1) is achieved by applying
Itô’s Lemma, as shown in (3), which demonstrates the relation
between the stock price at time (t +1t) and t . (4) is the
numerical solution for (2). It is obtained by applying Euler
discretization [36] with full truncation scheme [37] avoiding
negative values.

St+1t = Ste(r−
1
2V
+
t )1t+ε1

√
V+t
√
1t (3)

Vt+1t = V+t + κ(θ − V
+
t )1t + ε0σv

√
V+t
√
1t (4)

ε0 = (ρε1 +
√
1− ρ2ε2) (5)

where ε1, ε2 ∼ N (0, 1) and V+t = max(Vt , 0).
Traders in the derivative market calculate the payoff price

according to their contracts and the behavior of the risky
assets at the end of a preset time. The mechanisms that traders
use to estimate the payoff prices are called options. The
options implemented for solving the pricing problem in this
article include vanilla options (such as the European Vanilla
option) and exotic options (such as the Asian option and the
Barrier option).

In order to apply the numerical method, the preset time of
an option has been uniformly partitioned into M steps. The
stock price (and stock volatility) at each time step is estimated
by (3) (and (4)). The procedure that calculates all the prices
along the time partitions is called a ‘‘path simulation’’. Thou-
sands of path simulations are performed in order to estimate
the probabilistic distribution of the payoff price of the given
assets and options. In the following, the total number of the
path simulations is denoted by N .
The total computation time Ts for sequential execution is

proportional to N and M , as shown in (6).

Ts = tc · N ·M (6)

where tc is the average execution time to finish the computa-
tions of one iteration and can be used as an overall measure
of performance. A large amount of high-quality independent
random numbers according to the standard normal distribu-
tion are generated by the Mersenne-Twister (MT) algorithm
and the Box-Muller (BM) transformation, as in the previous
studies.
• Algorithm 3
This algorithm represents the kernel code for both the
GPU- and FPGA-based accelerators. 1 Optimizations
have been applied in order to accelerate the algorithms
on a GPU- or on a FPGA-based hardware. For instance,
the outer-most loop in this algorithm could be partially
unrolled due to the independence of each path simula-
tion. The unroll factor is denoted by Nu and the host-
kernel architecture is shown in Fig. 7. As far as the path
simulator is concerned, Fig. 8 presents the detailed data-
flow for the Heston model applied to the European bar-
rier options. As can be seen in Fig. 8, the stock price and
volatility at each time partition are evaluated from their
initial values. Each evaluation involves two independent
random numbers and a barrier-checking phase.
On FPGA, the kernel can be further accelerated by
pipelining the inner-most loop as shown in Fig. 9. Since
the dependency between V n

m+1 and V n
m and the depen-

dency between Snm+1 and Snm, the initiation interval (II)
depends the longest latency of these two computations.

1As mentioned above, the algorithm was modeled in c++ for FPGA
implementation in order to circumvent some temporary inefficiencies of the
OpenCL floating point libraries for trigonometric functions in SDAccel.
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Algorithm 3 Payoff Price Estimation, Heston Model
Input: Parameters of a stock and an option such as

initial stock price, strike price, etc.
Output: Payoff price Ppayoff ;

1 Begin
2 On device:
3 function PAYOFF CALCULATION
4 initialization
5 for nth path ∈ N independent paths do
6 for mth ∈ M partitions along time do
7 generate ε1tm and ε2tm by MT algorithm and BM

transformation;
8 compute Stm by (3);
9 compute Vtm by (4);
10 S = option(S, Stm ); //function depends on the

kind of the option implemented;
11 end
12 Pn = p(Pn,Pstrike); //payoff price for nth path
13 end
14 Ppayoff = mean(Pn); //average payoff price over N paths
15 end function
16 End

FIGURE 7. Diagram for host-kernel data flow.

FIGURE 8. Diagram for path simulator.

By swapping the order of the nested loops, the depen-
dency is removed, due to the independence of each path,
and better performance can be achieved, as shown in
Fig. 10 while more memories are required to store the
temporary data. The optimization for the random num-
ber generation is done by partitioning the state arrays

FIGURE 9. Pipeline of the inner-most loop of kernel.

FIGURE 10. Optimized pipelining with small initiation interval.

FIGURE 11. Illustration of a simple sorting network.

in order to increase the parallelization of the process as
discussed in [20]. We eventually achieved an initiation
interval of 2 for the flattened loop. So the time tc can
be roughly estimated by (7) and (8) for the two models
respectively [20].

tB.Scholesc =
tclk
Nu

(7)

tHestonc =
2tclk
Nu

(8)

where tclk is the clock period of the FPGA. Then the
energy consumption for each time step could be esti-
mated by Ec = Pd tc, where Pd is the power of the given
device.

3) BITONIC SORTING ALGORITHM
Sorting is a fundamental operation that is widely used in
the field of computer science, including high performance
data center applications. Among many sorting algorithms
that have been devised, bitonic sorting is one of the fastest
known sorting networks. In general, the term ‘‘sorting net-
work’’ identifies a sorting algorithm where the sequence of
comparisons is not data-dependent, thus making it suitable
for parallel hardware implementation. A simple example of
sorting network is depicted in Fig. 11, with five compara-
tors and four inputs. The comparators in a layer can work
concurrently.

The depth and number of comparators are key parameters
to evaluate the performance of a sorting network. The depth
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FIGURE 12. Bitonic sort network with eight inputs (N=8). It operates
in 3 stages, it has a depth of 6 (steps) and employs 24 comparators.

of a sorting network is the maximum number of comparators
along any path. If all the comparisons in each layer are done in
parallel, the depth of the network is proportional to the total
execution time. The bitonic sort network shown in Fig. 12,
is one of the fastest comparison sorting networks, where
the depth and number of comparators are mathematically
represented by (9) and (10) respectively.

D(N ) =
log2N .(log2N + 1)

2
(9)

C(N ) =
N .log2N .(log2N + 1)

4
(10)

Bitonic sorting is a recursive divide-and-conquer algorithm
that is based on the notion of bitonic sequence, i.e. a sequence
of N elements in which the first K elements are sorted in
ascending order, and the last (N − K ) elements are sorted
in descending order (i.e. the K − th element acts as a divider
between two sub-lists, each sorted in a different direction), or
some circular shift of such an order.

Bitonic sorting first divides the input into pairs of keys and
sorts them into a set of bitonic sequences. It then repeatedly
merges and sorts pairs of adjacent bitonic sequences, until the
entire sequence is sorted [23].
• Algorithm 4 & 5:
Algorithm 4, executed on the host i.e. a CPU, iterates
the execution of three kernels described in Algorithm 5
to complete bitonic sorting in three phases. In the first
phase, the algorithm partially sorts an arbitrary input
array to obtain a set of bitonic sequences. In the sec-
ond and third stages respectively, the algorithm merges
bitonic sequences repeatedly until a fully sorted array is
produced. All the comparisons (i.e. all the work items)
in each kernel execution can be performed in parallel
and independent from each other. This makes the whole
algorithm suitable for parallel implementation.

V. RESULTS
A. K-NEAREST NEIGHBOR ALGORITHM
The experiments with the KNN algorithm are based on the
data set from [38]. The data set contains data from ‘‘Unisys
corporation’’ consisting of the floating point locations (lat-
itudes and longitudes) of a series of hurricanes. It is used

Algorithm 4 Host Code for Bitonic Sorting Execution
Input: A vector of N keys to be sorted;
Output: A sorted vector;

1 Begin
2 On host:
3 SORTLOCAL(Input, Output);
4 for size = 4 ∗Work_Group_Size to N do
5 multiply size by 2;
6 for stride= size

2 to stride > 0 do
7 divide stride by 2;
8 if stride >= 2 ∗Work_Group_Size then
9 MERGE LOCAL(Input, Output, size,

stride);
10 end
11 else
12 MERGE GLOBAL(Input, Output, size, stride);
13 end
14 end
15 end
16 End

by the KNN algorithm to find the k nearest hurricanes to a
specified query point. The value of k is usually very small in
comparison to the number of points n in the reference data
set. It has been set to 5 in all our experiments. The number of
points in the reference data set is about 0.3 million.

The FPGA implementation of the KNN algorithm has
been optimized by using several optimizations offered
by SDAccel and described in section III-A3. The
(reqd_work_group_size) attribute has been used in both
implementations to specify the number of work-items in a
work-group. 2-element vector data types were used in both
cases (instead of C structs) to read the 2-dimensional data
points, thereby improving the memory access throughput.
Another optimization common to both implementations is
the use of burst transfers to read data from the off-chip global
memory.Moreover, loop pipelining has been used both for the
explicit as well as work-item loops to improve throughput.

The GPU versus FPGA results in terms of execution time,
energy and power consumption for Algorithm 1 are presented
in Table 2. The resource utilization for the FPGA is also
presented. This implementation uses the accelerators only for
distance calculation between the query point and all the points
of the reference data set. The nearest neighbor identification
on the other hand is done on the CPU, hence the CPU time is
added to the table as a part of the total KNN execution time.

As evident from Table 2, both GPUs in Algorithm 1
perform faster than the FPGA due to their comparatively
higher DRAM access bandwidth. The FPGA however con-
sumes considerably smaller energy and power in comparison.
As mentioned earlier, power analysis in case of FPGA is
done by using simulation vectors in Vivado, while in case of
the GPU, it is based on the results obtained by utilizing the
NVIDIA system management interface utility.
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Algorithm 5 Bitonic Sorting Kernels

1 On device:
2 Begin
3 function KERNEL1: SORT LOCAL(Input, Output)
4 for local_id = 0 to Work_Group_Size− 1 do
5 copy a block of data from global to local memory

with the size of work_group;
6 for size = 2 to size < Work_Group_Size do
7 multiply size by 2;
8 for stride = size/2 to stride > 0 do
9 divide stride by 2;

10 perform comparison on each pair and swap
them if they are not sorted;

11 end
12 end
13 for stride = Work_Group_Size to stride > 0 do
14 divide stride by 2;
15 pos = 2 ∗ local_id − (local_id&(stride− 1));
16 compare and sort each pair;
17 end
18 write back sorted array to global memory with the

size of work_group;
19 end
20 function KERNEL2: MERGE LOCAL(Input, Output,

size, stride)
21 for local_id = 0 to Work_Group_Size− 1 do
22 read one pair in each work item;
23 perform comparison on each pair and swap them if

they are not sorted;
24 write back sorted pair to the global memory;
25 end
26 function KERNEL3: MERGE GLOBAL(Input, Output,

size, stride)
27 declare and initialize a private variable global_stride;
28 for local_id = 0 to Work_Group_Size− 1 do
29 copy a block of data from global to local memory

with the size of work_group;
30 for stride = global_stride to stride > 0 do
31 divide stride by 2;
32 perform comparison on each pair and swap them

if they are not sorted;
33 end
34 end
35 End

The performance comparison for Algorithm 2 is shown
in Table 3. This implementation uses the ‘‘on-chip global
memories’’ optimization option offered by SDAccel to map
the global memory buffers used for communication between
multiple kernels to the block RAMs and to stream communi-
cation between them if the kernel code structure allows it.
A global memory buffer called ‘‘dist’’, as shown in
Algorithm 2, has been used for inter-kernel communication.
This is an automatic optimization offered by SDAccel, if it

TABLE 2. Performance and energy analysis of KNN Algorithm 1.

TABLE 3. Performance and energy analysis of KNN Algorithm 2.

detects a global memory buffer which does not need to be
exposed to the host.

The FPGA implementation in this case is considerably
faster than both GPUs. Themain reason is the fact that the two
kernels must use slow DRAM on the GPU to communicate,
while on the FPGA they can use the faster on-chip streaming
SRAM. This of course also reduces dramatically power and
energy consumption with respect to the GPUs. The FPGA-
based implementation of NEIGHBOR ESTIMATION is also
faster than the GPU-based one because pipeline-based paral-
lelism can efficiently handle conditionals. On the other hand,
conditionals that cannot be converted to predicated form
cause the so-called ‘‘thread divergence’’ problem on GPUs.
This is because on a Single Instruction Multiple Data pro-
cessor those work-items for which a condition is false must
stall while those where the condition is true are executed, and
vice-versa.

B. MONTE CARLO METHODS FOR FINANCIAL MODELS
This section presents the results of implementing two finan-
cial models applied to the European vanilla option, the Euro-
pean Barrier option and the Asian option, and then comparing
them across platforms in terms of performance and energy
consumption. Single precision floating point variables are
used as the basic data type in these experiments in order
to guarantee a fair comparison between the two platforms.
In the future, fixed-point variables may also be used to further
accelerate the algorithms on the FPGA.

1) BLACK-SCHOLES MODEL
I European vanilla option
For the Black-Scholes model, the European vanilla
option is simple enough not to require to partition the
preset time. So a large amount of paths can be simulated
in a reasonable time. tc and Ec are demonstrated in
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TABLE 4. Performance and energy analysis of black scholes european
vanilla option.

TABLE 5. Performance and energy analysis of black scholes asian option.

Table 4. Moreover, the table also shows the resource
utilization information on the Virtex-7-series FPGA.
Apparently, the Virtex-7-series FPGA has the best per-
formance and least energy consumption among the
three accelerators. Instead, GPU K4200 is the slowest
and most power-consuming platform. The Virtex-7-
series FPGA is 2X faster than K4200 for this algorithm.
In addition, the device power of this FPGA is only 11%
of the GTX960.

II Asian option
For the Black-Scholes model applied to the Asian
option, the preset time is partitioned into 1024 seg-
ments. Table 5 presents the performance, energy con-
sumption and resource utilization on the three accelera-
tors. Also in this case, the FPGA is the best choice from
the aspects of both power and performance. Virtex-7
is at least 2X faster than the GTX960 and consumes
only 13% of the energy. Compared to the European
vanilla option, performance is gained by a faster clock,
which on the other hand consumes more power.

2) HESTON MODEL
I European vanilla option Table 6 shows the details on
performance, power, resource utilization, etc. of the
Heston model applied to the European vanilla options.
Compared to the Black Scholes model, more time and
energy are required to do the same amount of path sim-
ulations, due to the higher complexity. The GTX960
has better performance but worse energy profile than
the K4200 in this case. The Virtex-7 is 4X faster than
the GTX960 and uses 7% of the GPU energy for this
algorithm.

II European barrier option
As can be seen from Table 7, the Virtex-7 FPGA again
beats both GPUs in terms of performance and power.

TABLE 6. Performance and energy analysis of heston european vanilla
option.

TABLE 7. Performance and energy analysis of heston european barrier
option.

TABLE 8. Performance and energy analysis of bitonic sort without
synthesis directives.

TABLE 9. Performance and energy analysis of bitonic sort with
FPGA-specific synthesis directives.

Compared to the GTX960, the FPGA has 5X perfor-
mance and consumes only 8% of the energy for the
same amount of workload.

C. BITONIC SORTING ALGORITHM
The baseline source codewas provided byNVIDIA and it was
optimized to be executed on GPU-based platforms. However,
SDAccel has been utilized to optimize the source code further
for implementation on a Xilinx FPGA.

Performance of the sorting algorithm is mainly limited
by the off-chip memory accesses on the FPGA fabric,
which demands a dedicated memory architecture to generate
high performance RTL from OpenCL source code. On the
other hand, GPUs with comparatively higher memory access
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FIGURE 13. Execution time and energy-per-computation ratios between FPGA and GPU.

TABLE 10. Summary of results.

bandwidth can yield efficient performance at the cost
of higher energy consumption, especially for such global
memory access intensive algorithms. Several optimizations
offered by SDAccel to reduce global memory accesses have
been described in section III-A3 and utilized to get the desired
performance in this case.

Table 8 presents the performance, resource and energy con-
sumption of the FPGA-based implementation obtained with
the default synthesis strategy used by Vivado HLS i.e. pri-
oritizing resource minimization. This implementation how-
ever, suffers from performance problems. The performance is
improved by utilizing the performance optimizations offered
by SDAccel discussed before, i.e. by using:

1) On-chip global memories between the first and sec-
ond kernel, because the communication between them
follows a streaming pattern (data are consumed in the
same order as they are produced).

2) Burst accesses to global memory whenever a kernel
accesses sequentially adjacent locations.

3) Multiple compute units.

Besides these techniques, which mainly target bandwidth
utilization improvement and memory access efficiency, some

complementary optimizations were made as well. Local
arrays were partitioned, loops were unrolled and work-items
were fully pipelined, thus resulting in high performance RTL
at the cost of higher resource utilization. Performance com-
parison of the optimized bitonic-sort algorithm in terms of
execution time and power/energy consumption on the various
hardware platforms is presented in Table 9. The execution
time on the FPGA in this implementation has decreased
significantly as compared to the FPGA implementation of
Table 8, but the power/energy consumption increases due
to increased resource utilization. With regard to the targeted
GPUs, this implementation is as performance efficient as the
best performing GPU i.e. GTX960 and beats the K4200GPU.
Moreover, this FPGA implementation is also more energy-
efficient as compared to its GPU counterparts.

D. SUMMARY
Table 10 summarizes the best execution time and energy
consumption for the GPU and FPGA implementations of our
test cases. It shows that while performance is comparable,
energy-per-operation is almost always significantly in favor
of the FPGA. Pareto-optimal implementations (in terms of
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execution time and energy consumption) of each algorithm
are identified as well in this table by using a bold font. The
results are also depicted graphically in Fig. 13, where all the
bars below identity depict the test cases with FPGA outper-
forming the GPU in terms of execution time and energy-
per-computation, while those above identity show cases in
which the GPU outperforms the FPGA. It should be obvious
that FPGA-specific optimizations of theOpenCL code, which
was originally optimized for the GPUs, deliver significantly
better results than out-of-the-box code.

VI. CONCLUSIONS
This paper performs an extensive analysis of the prospect
of using high-level synthesis for implementing FPGA-based
accelerators in modern HPC systems. Several algorithms
from a diverse range of application domains were selected
to perform this analysis. A performance comparison with
a couple of high-end GPUs was performed as well. All
but one of the test cases i.e. Monte Carlo simulation, were
described in OpenCL for FPGA implementation. The Monte
Carlo simulation kernel was written in C/C++ since its
multiple executions did not require sharing data between
them. It was concluded that FPGAs (mainly due to their
hardwired control structure) offer greater energy efficiency
in comparison to GPUs. Moreover, we were able to obtain
more efficient implementations in terms of execution time
as well, by performing some FPGA-specific optimizations.
These mainly reduce the accesses to global memory, since its
bandwidth for modern GPUs is considerably higher than for
FPGAs.Moreover, algorithms with a large number of branch-
ing operations e.g. the one represented by the ‘‘NEIGHBOR
ESTIMATION’’ kernel shown in Algorithm 2, can adversely
effect the performance of GPUs due to thread divergence
but can still be pipelined on FPGAs, thus leading to higher
execution speeds.

Several options offered by the SDAccel tool from Xilinx
were utilized to optimize the application code for FPGA
implementation. They mainly included pipelining work-
items and using on-chip global memory buffers for inter-
kernel communications rather than using the traditional
slower off-chip DRAM-based global memory buffers. Burst
memory accesses were used for accessing the off-chip global
memory resulting in higher efficiency, since the access over-
head is shared between larger amounts of data being trans-
ferred. Concurrency on the FPGA was exploited further by
splitting the overall kernel computations into smaller chunks
and executing them in parallel using multiple compute units.
All these optimizations were complemented by the conven-
tional HLS-based datapath optimization options e.g. pipelin-
ing and unrolling both the explicit and the implicit loops in
the kernels (i.e. the loops over work-items). We intend to
exploit the findings from this research activity in the future
to enhance the level of automation in existing HLS tools
to obtain high performance energy-efficient acceleration of
kernels written in non hardware-specific OpenCL by using
FPGA-based platforms.
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