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ABSTRACT Multiple-input-multiple-output (MIMO) radar image processing presents problems difficult to
address by modifying conventional monostatic radar methods as Fourier range migration. When the distance
between the transmitter and receiver is comparable to the target size, the single phase center approximation
is not accurate. Furthermore, if the antenna radiation pattern significantly deviates from a spherical wave,
the symmetries assumed in most range migration techniques are violated. We present a rapid Fourier-
based MIMO reconstruction called Fourier accelerated multistatic imaging (FAMI) suitable for massively
parallel computation that accounts for frequency-dependent radiation patterns, does not require the single
phase center approximation, and is able to dynamically adapt to different target support volume shapes.
FAMI is especially suitable for frequency-diversity antenna systems that use spectrally modulated coded
spatial radiation patterns.

INDEX TERMS MIMO, radar, imaging, Fourier, multistatic, reconstruction, GPGPU.

I. INTRODUCTION
Multiple-input multiple-output (MIMO) radar [1]–[3] have
become more attractive recently due to advances in elec-
tronic integration, signal processing, and antenna designs.
Real-time imaging applications such as vehicle navigation,
security checkpoint scanning, aerial surveillance, and robotic
motion planning benefit from the rapid data acquisition of
MIMO radars. However, MIMO radar imaging, especially
in indoor environments for which the size of the objects is
comparable to the size of the radar system, presents spe-
cial challenges that are rarely encountered by large-scale
radar systems. As the cross-range resolution depends on the
angle the antenna array subtends to the target, transmitters
and receivers may be located on nearly opposite sides of
the target in order to achieve a resolution limited by the
illumination wavelength. Furthermore, emerging methods of
radar imaging such as frequency diversity [4] use spectrally
coded antenna radiation patterns to determine the structure
of the target. Standard methods of radar image formation,
such as the range migration algorithm, often assume simple,
short dipole-like radiation patterns of the antennas rather
than complex radiation patterns, and furthermore use a single
phase-center approximation where measurements between a

distantly located transmitter and receiver are approximated as
if these measurements were recorded by a single transceiver
placed between the transmitter and receiver. While for a
single moving platform, such as an airplane or satellite, these
assumptions may be sufficiently accurate, for MIMO radars
these assumptions may produce significant error that pre-
vents satisfactory image formation. While image reconstruc-
tion algorithms such as backpropagation and direct algebraic
inversion can account for these effects, these are often too
slow for real-time imaging. We propose and demonstrate a
method of MIMO radar inversion called Fourier Accelerated
Multistatic Imaging (FAMI) that does not require a single
phase-center approximation, accounts for complex antenna
radiation patterns, and produces three-dimensional recon-
structions of targets, designed specifically for implementa-
tion with highly parallel processors such as general-purpose
graphics processing units (GPGPUs) so that the inversion
may be suitably rapid for real-time imaging on mobile plat-
forms with modest computational capability.

In order to understand why another method of radar
inversion is desirable, we examine existing radar inversion
algorithms. Broadly speaking, these can be grouped into
two categories, algebraic methods [5] and Fourier-based
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methods [6]–[9]. Algebraic methods use a model of elec-
tromagnetic scattering that is very general and can account
for nonuniform and distributed layouts of transmitter and
receiver antennas aswell as variations in the radiation patterns
of antennas. The simplest algebraic approach is imaging by
backpropagation, where the received signals are summed
backwards along the paths from the receiver to the source
coherently. Formally, if the linear operation relating the mea-
surements to the target susceptibility is called the forward
operator, backpropagation is applying the adjoint of the for-
ward operator to the measurements. This may be further
refined by using the forward and adjoint operators to imple-
ment a true least-squares or other regularized inverse prob-
lem, typically in an iterative reconstruction algorithm [10].
While very general, this method can be quite slow and
unsuitable for real-time imaging, and is therefore reserved for
situations for which the best possible reconstruction quality
must be achieved regardless of the effort. Algebraic meth-
ods can be optimized and accelerated for graphics process-
ing hardware, as was achieved on the Virtualizer simulation
framework [11], [12], but because of their generality, alge-
braic methods may fail to take advantage of approximations
or shortcuts that could speed the computation without causing
appreciable image degradation.

For more rapid computational image formation, methods
such as the Fourier range-migration algorithm are used. These
methods are extremely fast and efficient. Fourier migra-
tion exploits the fact that most radar antennas produce an
isotropic-like radiation pattern similar to a short dipole, and
that the measurements are taken by a collocated, monostatic
transceiver that is sampled at regular spatial and spectral inter-
vals. Because of the high symmetry of this situation, Fourier
integrals may be used to model diffraction, and therefore
fast Fourier transform methods may be used to accelerate
the inversion process. Unfortunately, this method becomes
increasingly hard to adapt when these symmetries are broken,
for example, when the measurements are no longer monos-
tatic or the antennas are no longer isotropic. While a nearly
co-located transmitter and receiver can be approximated
as being a monostatic transceiver positioned between the
two, i.e. the single-phase center or pseudomonostatic approx-
imation [13], [14], for large baseline MIMO arrays this
approximation is poor, and excluding measurements between
distant transmitters and receivers limits the potential recon-
struction quality. However, corrections may be made to
the single-phase center approximation for small displace-
ments between transmitters and receivers [15]–[18] to allow
a monostatic-like solution to be used. A further method
modifies the Stolt interpolation step [19] to account for
the separation in a bistatic baseline. Compressed sensing
methods [20], [21] employing basis pursuit to identify point
scatterers as well several other explorations of compressed
sensing applied to radar [22]–[25] can be accelerated using
FAMI, as many of these methods can use alternate methods
of implementing the forward and adjoint operator, and com-
pressed sensing methods help utilize available information

about object sparsity or support to further enhance the image.
Ideally, an algorithm should take advantage of all available
data and not itself limit the utility of the data. Therefore an
algorithm is desirable that could allow flexible placement of
transmit and receive antennas, as well as choices of their radi-
ation patterns, while still achieving the best computational
performance given the reduced symmetry of the problem.

Another consideration for a successful radar algorithm
is its suitability for implementation in parallel process-
ing hardware. As the limitations of central processing
unit (CPU) based computation have become apparent, other
models of computing have become more prominent such
as that of the parallel processing GPGPU. Other synthetic
aperture radar algorithms have already successfully been
implemented on GPGPUs, including backprojection
methods [26], [27], Kirchoff migration [28], range-Doppler
methods [29], Fourier range migration [30], and range cell
migration correction [31]–[33]. This relatively new model of
computation has been highly successful at speeding image
formation algorithms as well as graphics processing, but
have its own limitations that must be considered. In par-
ticular, while GPGPUs have many compute units that per-
form hundreds or thousands of floating point computations
simultaneously, these compute units usually share a com-
mon global memory. The latency and contention for access-
ing the common memory is a primary consideration when
designing an algorithm to be executed rapidly on a GPGPU.
GPGPUs are equipped with memory caches to mitigate
the latency and contention problems, so that designing the
algorithm to use cached memory rather than shared global
memory is crucial to achieving the best performance. Because
these caches are frequently designed to accelerate the types
of memory access patterns that would occur during graphics
processing, an algorithm that uses similar access patterns
better avails itself of the cache. More generally, an algorithm
suited to parallel processing minimizes the interdependencies
between computations so that calculations may be parceled
out to many processing units, minimizing the time that
processing units are idle waiting for the results of another
computation. It is with these goals in mind that a new radar
processing algorithm was designed.

In order to simplify the general problem of MIMO radar
image formation, a couple of assumptions were made. While
the positions of the transmitter and receiver antennas are not
constrained, the entire occupied volume of the target must be
in the radiation zone (far-field) of each antenna individually.
It is not required for the occupied volume to be in the far-field
of the antennas considered collectively, so this assumption
applies in many practical situations. In practice this means for
all antennas, if d is the extent of an antenna, λ is the wave-
length, and z is the range to the target from an antenna, then
z > 2d2/λ. Furthermore, a surface approximately aligned
to the cross-range directions through the occupied volume of
the target must be known. Ideally, this surface coincides with
the scattering front surface of the object. This may appear
to be a serious limitation, but such information may often
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be obtained by other means, such as structured illumina-
tion position sensors or ultrasonic transducers. Alternatively,
a combination of antennas may be used, some of which have
simple radiation patterns that may be used to locate this sur-
face using conventional ranging techniques, and others which
have complex radiation patterns to provide more information
about the structure of scatterers on this surface. This surface
serves as the focus surface of the image formation, so that
point scatterers on this surface are imaged without defocus,
and further away from this surface the point scatterers are
more defocused. Points that are within the Rayleigh range
1z of the surface for a given antenna array achieve the best
focus. For an antenna array with a total baseline length b,
1z = z2λ/b2. In the subsequent analysis of FAMI, a diffrac-
tion integral is approximated by the method of stationary
phase, and the points on the surface are the stationary points
at which the diffraction integral is evaluated and the most
accurate approximation is obtained.

One of the main benefits of FAMI is that is allows for
much of the flexibility of the algebraic inversion methods,
that is, nearly arbitrarily placed antennas with complex radi-
ation patterns, but utilizes Fourier transform techniques that
enable rapid computation. It may be considered a hybrid
of algebraic techniques and Fourier range migration. The
primary operation of the Fourier range-migration method that
achieves efficient computation is Stolt interpolation, which
is the resampling or discrete change-of-variables operation
in the Fourier domain. FAMI uses the same approach to
achieve efficient computation, but adaptively changes the
interpolation function to suit the geometrical configuration
of the transmit and receive antennas relative to the target
volume. In fact, when the target volume is in the far-field
of the entire antenna array baseline and not just the antennas
individually, FAMI simplifies to the standard radar ranging
image formation method, so that one of the main advantages
of FAMI is that interactions between the antennas in the near
field of the baseline are accounted for properly. Because of
this, FAMI produces correct results whether or not the target
is remote or even between antenna pairs, as long as the target
remains in the far-field of the antennas individually.

The motivation to develop FAMI is stimulated by
two developments: metamaterial structures that have complex
frequency responses, and the construction of antennas with
complex radiation patterns based on metamaterials [34], [35].
These antennas produce highly structured radiation patterns,
unlike the simple ordinary diverging beam of most SAR
systems, that change rapidly with frequency. Frequency
diversity [4] imagers takes advantage of these frequency-
dependent structured radiation patterns to form images of
remote objects, replacing mechanically scanned antennas
with faster electronically swept frequency scanning. How-
ever, as these radiation patterns are complex, methods that
assume high symmetry such as Fourier methods are generally
not useful for these imagers, and the algebraic techniques tend
to be computationally burdensome. FAMI was developed in
part to make frequency diversity imaging more practical and

suitable for real-time computation. As one of the intended
applications of frequency diversity imagers is checkpoint
security scanners, the reconstruction timemust be sufficiently
fast as to not cause any delays in screening. As frequency
diversity and FAMI acquires data and reconstructs images at
near video rates, passengers may be screened more quickly.

The paper is organized into several sections. Section II for-
mally specifies the problem to be solved and derives a mathe-
matical solution for the image formation problem. The basic
implementation of this solution based on the derivation is
discussed in Section III. Section IV explains how FAMI may
advantageously be implemented on GPGPU hardware, with
the mathematical operations mapped to graphics primitives
offered in the GPGPU computing model, and then provides
a specific example based on the NVIDIA Corporation(Santa
Clara, CA) Compute Unified Device Architecture (CUDA)
GPGPU hardware. FAMI is then tested in simulation in
section V, where a known algebraic-based method, the Vir-
tualizer, is used to compute synthetic measurements from
simulated targets, and these measurements are then used by
FAMI to reconstruct the target from the measurements.
Finally, in section VI an analysis of the results is performed
to offer conclusions about the performance of FAMI and
potential further improvements.

II. DERIVATION OF FAMI
To derive FAMI, a scalar approximation is used. It may
be generalized to fully three-dimensional vector fields by
using the dyadic product of the transmit and receive fields
rather than their simple product, a tensor-valued susceptibility
of the target, and a vector current density for the antenna
sources. However, as these considerations do not change the
computation except to add additional degrees of freedom to
be acccounted for, a scalar solution is sufficient to derive
and demonstrate FAMI. Furthermore, the single scattering
(or first-Born) approximation is used to derive the scattering
from the target. The limitations of the first Born approxima-
tion have been explored [5], [36].

FIGURE 1. A diagram of the geometry of a transmit (blue) and receive
(red) antenna, showing the target (a cube), and the surface of stationary
points (pink dots). The coordinate r′ is in the space of the field radiated
by the transmit antenna, the coordinate r′′ is in the space of the field
radiated by the receive antenna, with r being in the space of the target.
The transmit and receive antennas have source densities ρi and ρj
respectively.

The MIMO imaging system is defined by a number of
transmit and receive antennas and a target contained with
a target volume, as shown in Fig. 1. The target is assumed
to be nonmagnetic and measurements are unchanged upon
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exchange of a transmit and receive antenna. The transmit
and receive antennas are indexed by i and j, respectively.
The transmit antennas radiates a field Ei(r; k) into the tar-
get volume, and the receive antenna detects a radiated field
given by Ej(r; k), with r being the coordinate in the target
volume, and k being the illumination spatial frequency. The
radiation patterns of the antennas are the far fields of the
antennas distant from the source. The antenna field exci-
tation is described by a generally three-dimensional (3-D)
source distribution ρi(r′; k) and ρj(r′′; k), which r′ and r′′

being the position in the space of the transmit and receive
antennas, respectively, and si and sj denote the phase center
of the antenna radiation patterns. Using convolution with the
three-dimensional Green’s function of the Helmholtz equa-
tion, the field excited by the source distribution is given by

Ei(r; k) =
∫
V

ρi(r′; k)
exp

(
ik|r− si − r′|

)
4π |r− si − r′|

d3r ′ (1)

The volume V corresponds to be volume that contains the
target. It is assumed that for all antenna positions r′ and all
target positions r, that

∣∣r− si − r′
∣∣ > d2k/π , so that the far-

field approximation may be applied to evaluating Eq. 1. The
far-field approximation is

∣∣r− si − r′
∣∣ ≈ |r− si| −

r′·(r−si)
|r−si|

,
which applied to Eq. 1 yields:

Ei(r; k) =
exp (ik|r− si|)
4π |r− si|

×

∫
V

ρi(r′; k) exp
[
−ik

r′ · (r− si)
|r− si|

]
d3r ′ (2)

In the single scattering approximation, the detected power
received at antenna j scattered from the object after being
illuminated by antenna i is given by

Pij(k) =
i2π2

η0k

∫
V

χ (r)Ei(r; k)Ej(r; k)d3r (3)

where η0 is the impedance of free space, and χ (r) is the
susceptibility of the target to be imaged. A derivation of this
equation may be found as Eq. 18 in Ref. [4] in the scalar
approximation. Inserting the far-field approximation of Eq. 2
for the transmit and receive fields as a function of transmit
field position r′ and receive field position r′′:

Pij(k) =
i2π2

η0k

∫
V

χ (r)

×
exp (ik|r− si|)
4π |r− si|

∫
V

ρi(r′; k)

× exp
[
−ik

r′ · (r− si)
|r− si|

]
d3r ′

×
exp

(
ik|r− sj|

)
4π |r− sj|

∫
V

ρj(r′′; k) exp

×

[
−ik

r′′ · (r− sj)
|r− sj|

]
d3r ′′d3r (4)

To express Eq. 4 in the spatial Fourier domain, the 3-DFourier
transform of the source distribution of the antennas is found
as a function of spatial frequency q:

ρ̃i(q; k) =
∫
V

ρi(r′; k) exp(ir′ · q)d3r ′ (5)

Inserting the Fourier transforms of the source distributions to
simplify the far-field radiation patterns:

Pij(k) =
i

8η0k

∫
V

χ (r)

×
exp (ik|r− si|)
|r− si|

ρ̃i

(
−k(r− si)
|r− si|

; k
)

×
exp

(
ik|r− sj|

)
|r− sj|

ρ̃j

(
−k(r− sj)
|r− sj|

; k
)
d3r (6)

The phases due to propagation from the phase centers from
both antennas to a point in the volume may be combined
together:

Pij(k) =
i

8η0k

∫
V

χ (r)

×
exp

[
ik
(
|r− si| + |r− sj|

)]
|r− si||r− sj|

×ρ̃i

(
−k(r− si)
|r− si|

; k
)
ρ̃j

(
−k(r− sj)
|r− sj|

; k
)
d3r (7)

To simplify further, the Fourier transform of the object q is
found as a function of the spatial frequency q. The position r0
is the nominal center of the object, and q0 is the nominal cen-
ter spatial frequency of the object. In practice, if the volume
containing the object is known, r0 is placed close to the center
of the volume, for example, at its centroid. Similarly, q0 is
chosen by examining the Fourier support volume of the target
susceptibility that is accessible by a particular antenna and
object configuration [4], and choosing q0 to be at the centroid
of the support volume. The parameters r0 and q0 are chosen
to minimize the sampling and computational burden, but do
not influence the results.

χ (r) =
1

(2π)3

∫
χ̃(q) exp [−i(r−r0) · (q+ q0)] d3q (8)

Inserting this Fourier transform into Eq. 7,

Pij(k) =
i

8η0k

∫
V

1

(2π)3

×

∫
χ̃ (q) exp [−i(r− r0) · (q+ q0)] d3q

×
exp

[
ik
(
|r− si| + |r− sj|

)]
|r− si||r− sj|

×ρ̃i

(
−k(r− si)
|r− si|

; k
)
ρ̃j

(
−k(r− sj)
|r− sj|

; k
)
d3r

(9)
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To further simplify this, the integration order between the
r and q variables is reversed:

Pij(k) =
i

64π3η0k

∫
χ̃ (q) exp [ir0 · (q+ q0)]

∫
V

× exp [−ir · (q+ q0)]
exp

[
ik
(
|r− si| + |r− sj|

)]
|r− si||r− sj|

×ρ̃i

(
−k(r− si)
|r− si|

; k
)
ρ̃j

(
−k(r− sj)
|r− sj|

; k
)
d3rd3q

(10)

For convenience, the vector t = r− (si+ sj)/2 is defined rep-
resenting the center position between the transmit antenna i
and receive antenna j, as well as their difference in position
1sij = (sj − si)/2:

Pij(k) =
i

64π3η0k

∫
χ̃ (q) exp [ir0 · (q+ q0)]

∫
V

× exp
[
−i
(
t+

si + sj
2

)
· (q+ q0)

]
×
exp

[
ik
(
|t−1sij| + |t+1sij|

)]
|t−1sij||t+1sij|

×ρ̃i

(
−k(t−1sij)
|t−1sij|

; k
)
ρ̃j

(
−k(t+1sij)
|t+1sij|

; k
)

×d3td3q (11)

Examining Eq. 11, there is a rapidly varying propagation
phase term:

φ(t) = −
(
t+

si + sj
2

)
· (q+ q0)

+ k
(
|t−1sij| + |t+1sij|

)
(12)

If the other parts of the integrand can be assumed to be
slowly spatially varying compared to this phase term, the
method of stationary phase may be used to approximate this
integral. The order parameter to which the stationary phase
approximation is applied to is k as k → ∞, however, both
the radiation patterns of the antennas and the phase term
depend on k . In the far-field of an antenna, the radiation
pattern of the antenna, which does not include the propagation
phase, varies on a much larger spatial scale than the prop-
agation phase, which varies on a scale given by the wave-
length. In practice, this means that the length 1/k is much
smaller than the spatial scale over which the antenna radiation
patterns ρ̃i(q; k) vary. Therefore, while the antenna radiation
patterns do vary spatially, the variation of the propagation
phase term dominates the integral, and the method of station-
ary phase may be applied.

To O(1/k), the phase propagation term is approximated
by a quadratic function in the method of stationary phase,
so that the integral in Eq. 11 becomes a multidimensional
Gaussian integral. The value of the parts of the integrand that
do not rapidly vary are approximated by a constant value at
the positions twhere∇φ = 0, which are the stationary points.

These stationary points are denoted by tp. The oscillations
caused by the phase propagation term tend to cancel out of
the variations in the slowly varying components away from tp.
The gradient of the propagation phase term is

∇φ = −(q+ q0)+ k
t−1sij
|t−1sij|

+ k
t+1sij
|t+1sij|

(13)

There are in general a continuous curve of stationary points tp
that satisfy the equation ∇φ = 0. Consider one such point tp.
To find the stationary phase approximation, the quadratic
approximation to the phase is found which transforms the
integrand into a Gaussian integral as detailed in Ref. [37]. The
quadratic approximation to the stationary phase expanded
about the stationary point is:

φ(t) = −
(
tp +

si + sj
2

)
· (q+ q0)

+ k
(
|tp −1sij| + |tp +1sij|

)
+
1
2

(
t− tp

)T H
(
t− tp

)
with H = I

(
k

|tp −1sij|
+

k
|tp +1sij|

)

− k

(
tp −1sij

) (
tp −1sij

)T
|tp −1sij|3

− k

(
tp +1sij

) (
tp +1sij

)T
|tp +1sij|3

detH = k3
(

1
|tp −1sij|

+
1

|tp +1sij|

)
×

1
|tp −1sij|

1
|tp +1sij|

×

1− ((tp −1sij
)T (tp +1sij

)
|tp −1sij||tp +1sij|

)2
 (14)

Inserting this quadratic approximation to φ(t) into Eq. 10
and holding the remainder of the integrand constant at the
stationary point, the result is

Pij(k) =
i

64π3η0k

∫
χ̃ (q) exp [ir0 · (q+ q0)]

∫
V

× exp
[
−i
(
tp +

si + sj
2

)
· (q+ q0)

+ik
(
|tp −1sij| + |tp +1sij|

)
+
i
2

(
t− tp

)T H
(
t− tp

)]
×
(∣∣tp−1sij

∣∣ ∣∣tp+1sij
∣∣)−1 ρ̃i (−k(tp−1sij)

|tp−1sij|
; k
)

×ρ̃j

(
−k(tp +1sij)
|tp +1sij|

; k
)
d3td3q (15)
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The 3-D multidimensional Gaussian integral over t is now
evaluated as

Pij(k) =
−1

8π3/2η0k

∫
χ̃ (q) |detH|−1/2

× exp
[
i
(
r0 − tp −

si + sj
2

)
· (q+ q0)

+ ik
(
|tp −1sij| + |tp +1sij|

) ]
×
(∣∣tp −1sij

∣∣ ∣∣tp +1sij
∣∣)−1

×ρ̃i

(
−k(tp−1sij)
|tp−1sij|

; k
)
ρ̃j

(
−k(tp+1sij)
|tp+1sij|

; k
)
d3q

(16)

Unfortunately, to perform the integration of q, the station-
ary point tp must be found by solving ∇φ = 0. As mentioned
previously, there is in fact a continuous curve of solutions tp,
and in general solving for tp as a function of q is difficult.
It is here where physical insight can help solve the problem.
The stationary points correspond to the positions in the target
where particular plane-wave components of the transmit and
receive fields interact. If there are points of the target that
are already known, rather than finding the stationary point tp
based on the Fourier component q, we can parameterize the
Fourier component q as a function of the known position tp.
This way, only the portions of the calculation that are needed
to determine the susceptibility in the target volume are per-
formed, rather than over all Fourier components q, as most
combinations of these components do not contribute to the
scattering in the target volume. The integral of Eq. 16 is
reparameterized as a function of tp:

Pij(k) =
−1

8π3/2η0k

∫
V

χ̃ (q)

× exp
[
i
(
r0 − tp −

si + sj
2

)
· (q+ q0)

+ ik
(
|tp −1sij| + |tp +1sij|

) ]
× |detH|−1/2

(∣∣tp −1sij
∣∣ ∣∣tp +1sij

∣∣)−1
×ρ̃i

(
−k(tp −1sij)
|tp −1sij|

; k
)

×ρ̃j

(
−k(tp +1sij)
|tp +1sij|

; k
) ∣∣∣∣ ∂3q∂tp3

∣∣∣∣ d3tp (17)

with q calculated from tp as given by Eq. 13:

q = k
tp −1sij
|tp −1sij|

+ k
tp +1sij
|tp +1sij|

− q0 (18)

However, the calculational effort of Eq. 17 has not been
significantly reduced from the model of Eq. 3. To further
reduce the effort, consider two stationary points tp are near
each other and the corresponding two plane-wave compo-
nents of the transmit and receive antennas that interact at

each point given by qi =
−k(tp−1sij)
|tp−1sij|

and qj =
−k(tp+1sij)
|tp+1sij|

respectively. If the two stationary points are separated in the
range direction, as radiation patterns in the far-field tend to
vary slowlywith range, the same two plane-wave components
interact. If the two stationary points are separated in the
cross range direction, the radiation patterns of the antennas
may vary significantly. Therefore rather than integrating over
the entire volume V , one may choose a surface S that is
primarily aligned to the cross-range directions. This reduces
the dimensionality of the integral from three-dimensional to
two-dimensional (2-D), significantly reducing the computa-
tional effort. Rewritten as a 2-D integral:

Pij(k) =
−1

8π3/2η0k

∫
S

χ̃ (q)

× exp
[
i
(
r0 − tp −

si + sj
2

)
· (q+ q0)

+ ik
(
|tp −1sij| + |tp +1sij|

) ]
× |detH|−1/2

(∣∣tp −1sij
∣∣ ∣∣tp +1sij

∣∣)−1
×ρ̃i

(
−k(tp −1sij)
|tp −1sij|

; k
)

×ρ̃j

(
−k(tp +1sij)
|tp +1sij|

; k
) ∣∣∣∣∣∂2q∂t2p

∣∣∣∣∣ d2tp (19)

In general, the Jacobian determinant

∣∣∣∣ ∂2q∂t2p
∣∣∣∣ depends on the

exact shape of the surface S. However, as it is not a phase
factor, approximation of this determinant do not greatly affect
the target reconstruction. To look for a suitable approxima-
tion, examine the case of monostatic imaging, so that 1sij =

0 and q = −2ktp/|tp|. In this case

∣∣∣∣ ∂2q∂t2p
∣∣∣∣ ≈ 4k2

∣∣tp∣∣−2.
To account for the distance from the transmitter and receiver
antennas, but approximating the angle between tp−1sij and
tp + 1sij as small, the determinant may be approximated as∣∣∣∣ ∂2q∂t2p

∣∣∣∣ ≈ 4k2|(tp − 1sij)(tp + 1sij)|−1. This approximation,

however, is expected to fail when the transmitter and receiver
are on opposite sides of the target. Inserting this approxima-
tion to the Jacobian determinant:

Pij(k) =
−k

2π3/2η0

∫
S

χ̃ (q)

× exp
[
i
(
r0 − tp −

si + sj
2

)
· (q+ q0)

+ ik
(
|tp −1sij| + |tp +1sij|

) ]
× |detH|−1/2

(∣∣tp −1sij
∣∣ ∣∣tp +1sij

∣∣)−2
×ρ̃i

(
−k(tp−1sij)
|tp−1sij|

; k
)
ρ̃j

(
−k(tp+1sij)
|tp+1sij|

; k
)
d2tp

(20)
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FIGURE 2. A diagram showing the plane-wave components of the
transmit and receive antennas that contribute to the reconstruction in the
vicinity of a stationary point rp. Only the plane-wave with the spatial

frequency −
k(rp−si )
|rp−si |

radiated from the transmit antenna is incident on

the point rp, and only the spatial frequency −
k(rp−sj )
|rp−sj |

can be received

from the field scattered by volume of the target centered at the point tp.

Therefore only the spatial frequency q = −
k(rp−si )
|rp−si |

−
k(rp−sj )
|rp−sj |

can be

probed of the target for this particular stationary point.

Eq. 20 is now in a form that may be efficiently calculated. The
surface of stationary points tp may be selected to minimize
the computational effort as they may be placed in the vicinity
of the target. Furthermore, only a two-dimensional surface of
points in the three-dimensional target volume are required.
Unlike Eq. 3, which integrates a highly oscillatory Green’s
function and therefore must be sampled at subwavelength
intervals to produce an accurate result, Eq. 20 operates in the
Fourier space of the target, and therefore the reconstruction
may be limited to reduce the computational burden without
aliasing. The parameters r0 and q0 allow the Fourier trans-
form of the object χ̃ (q) to be stored and processed with the
minimum number of samples by offseting the target in real
space and frequency space to a known center position and
center spatial frequency at which the target is reconstructed.
Finally, operations in the Fourier space of the antenna and
target map well onto the geometric operations intrinsic to
real-time graphics rendering.

To understand themeaning of the stationary phase approxi-
mation in this case, we consider two antennas and a particular
stationary point rp = tp +

si+sj
2 , as shown in Fig. 2. As the

entire target, including the stationary points in the target
volume, are in the far-field of the antennas, only one plane-
wave component is incident on the stationary point from each
antenna. All of these plane-wave components are on a sphere
of k radius from the origin of the Fourier space of the fields.
For the transmit antenna, the plane-wave component with the
spatial frequency − k(rp−si)

|rp−si|
is incident on the target, while

the receive antenna only captures the plane-wave compo-
nent − k(rp−sj)

|rp−sj|
scattered from the target around the region

of the stationary point. Therefore only the spatial frequency
q = − k(rp−si)

|rp−si|
−

k(rp−sj)
|rp−sj|

of the object can be probed using
this stationary point for this transmit and receive antenna
pair.

III. IMPLEMENTATION OF FAMI
Eq. 20 is an approximation to Eq. 3 with the stated approx-
imations, however, additional implementation details must
be specified to numerically perform the computation. The
implementation used in the simulation is described here and
provides good accuracy and performance and is suitable for
GPGPU computation. Both the forward operator of Eq. 20 to
calculate the measurements Pij(k) from the target susceptibil-
ity χ̃ (q) and the adjoint is provided which is used to calculate
an estimate of χ̃ (q) from Pij(k).

For the implementation it is assumed that the antennas
are two-dimensional, planar antennas with their surfaces
normal to the range direction. As the field produced by a
three-dimensional antenna can be produced by an equivalent
source on a surface, a planar source may always be found
that reproduces the three-dimensional antenna field. By trans-
forming the antenna fields to a common coordinate system
and storing these transformed fields, the computational effort
of transformation need only be performed once for a particu-
lar antenna configuration. Rotating the fields to a common
coordinate system may be performed by representing the
fields as plane waves, and interpolating the uniformly spaced
spatial frequencies sampled in the new coordinate system
as a function of the old coordinates using a rotation matrix
to relate the spatial frequencies of the new and old spatial
frequency vectors. It is easiest to leave the phase center of
the antenna unchanged and rotate the fields around the phase
center. If vector-valued polarized fields are used, the polariza-
tion must be rotated at the same time using the same rotation
matrix. As it is the plane-wave representation of the radiation
pattern that must be stored to apply Eq. 20, the transformed
plane-wave representation of the antenna patterns needed for
FAMI are directly obtained.

To avoid confusion because of the large number of
variables used, Table 1 lists the specified quantities that
represent the antennas and target based on the physical
parameters of the MIMO radar system, and Table 2 is a
table of the quantities that are derived from the quanti-
ties of Table 1. The x and y dimensions are the cross-
range directions, and the z dimension is the range direction.
As Eq. 20 operates on the Fourier transforms of the antenna
radiation patterns ρ̃i(q; k) and target susceptibility χ̃ (q),
these are represented by a uniformly sampled, spatially
bandlimited function. The antenna radiation patterns are
sampled in the cross-range range direction at intervals of
1X and1Y as the array ρnm,ij, where n andm are the sampled
indices −Nx/2 ≤ n ≤ Nx/2 − 1 and −Ny/2 ≤ m ≤
Ny/2− 1, i is the index of the illumination spatial frequency
ki, and j is the index of the antenna. The discrete Fourier
transform with respect to n and m is the quantity ρ̃nm,i, with
the spatial frequencies in the cross-range direction sampled
at intervals of 1Qx = 1/(Nx1X ) and 1Qy = 1/(Ny1Y ).
Therefore a particular sample of the antenna’s discrete
Fourier transform represents a spatial frequency qnm,ij =

1Qxnx̂+1Qymŷ+
√
(ki/2π )2 − (1Qxn)2 − (1Qym)2ẑ so
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TABLE 1. Definitions of quantities.

that the spatial frequency is on the k-sphere corresponding to
radiated waves.

Likewise, the target susceptibility is stored as a nx×ny×nz
three-dimensional array χijk , which is sampled at regular
intervals 1x and 1y in the cross-range direction, and 1z
in the range direction, with the indices−nx/2 ≤ i ≤ nx/2−1,
−ny/2 ≤ j ≤ ny/2 − 1, and −nz/2 ≤ k ≤ nz/2 − 1. The
3-D discrete Fourier transform of this target susceptibility is
stored as χ̃ijk , with the spacing of spatial frequencies in the
cross-range direction being 1qx = 1/(nx1x) and 1qy =
1/(ny1y), and in the range direction being 1qz = 1/(nz1z).
Therefore a sample of the spatial frequency of the object
represents the spatial frequency qijk = 1qx ix̂ + 1qyjx̂ +
1qzk ẑ. Finally, the list of stationary points that correspond to
the target surface are given by tp.
With the relevant quantities defined, a description of the

forward operator is now given (as shown in the pseudocode
labeled Algorithm 1 below). As a precalculation step for
both the forward and adjoint operators, the discrete Fourier
transform of the source density of the antennas ρnm,ij may be
stored as ρ̃nm,ij. The first step of the method is to calculate
the 3-D discrete Fourier transform (usually using the Fast
Fourier Transform) of the sampled susceptibility χijk as χ̃ijk .
To calculate the measurements Pijd from χ̃ijk , the following

TABLE 2. Derived quantities.

sum is performed:

Pijd =
∑
tp,kd

−kd
2π3/2η0

χ̃ (q)

×ρ̃i

(
−kd (tp−1sij)
|tp−1sij|

; k
)
ρ̃j

(
−kd (tp+1sij)
|tp+1sij|

; k
)

× exp
[
i
(
r0 − tp −

si + sj
2

)
· (q+ q0)

+ ikd
(
|tp −1sij| + |tp +1sij|

) ]
× |detH|−1/2

(∣∣tp −1sij
∣∣ ∣∣tp +1sij

∣∣)−2
with q = kd

tp −1sij
|tp −1sij|

+ kd
tp +1sij
|tp +1sij|

− q0 (21)

The sum of Eq. 21 is performed over all stationary points
and frequencies. One complicating factor is that the spatial
frequencies q on which the susceptibility χ̃ (q) is sampled
do not generally correspond to known samples, rather these
are in between known samples. Therefore a method of inter-
polation is needed to estimate the desired samples from the
known samples, for example, nearest neighbor or trilinear
interpolation. The indices of the spatial frequencies of the
sampled Fourier transform χ̃ijk are given by i = (q · x̂)/1qx ,
j = (q · ŷ)/1qy, and k = (q · ẑ)/1qz. As q depends on the
position of the stationary point tp as well as the phase centers
si and sj, the samples of χ̃ (q) required are determined by the
geometry of the antenna and target positions. Physically, this
is because the available Fourier space that may be sampled
of the target is determined by this geometry, and therefore
one may not arbitrarily choose the Fourier space support of
the object. Interpolation must also be performed to calculate
ρ̃i(·) as these are also sampled on a uniform grid, and the
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frequencies −kd (tp−1sij)
|tp−1sij|

and −kd (tp+1sij)
|tp+1sij|

do not necessarily

correspond to these samples, for example using a nearest
neighbor or bilinear interpolator.

Algorithm 1 Forward operator
1: Pijd ← 0.
2: Take the 3-D discrete Fourier transform of χabc to yield
χ̃abc.

3: for all antenna pairs i, j, stationary points tp and
frequencies kd do

4: Calculate q = kd
tp−1sij
|tp−1sij|

+ kd
tp+1sij
|tp+1sij|

− q0
5: Calculate

Pijd ← Pijd + χ̃ (q) −kd2π3/2η0

ρ̃i

(
−kd (tp−1sij)
|tp−1sij|

; k
)
ρ̃j

(
−kd (tp+1sij)
|tp+1sij|

; k
)

exp
[
i
(
r0 − tp −

si+sj
2

)
· (q+ q0)+

ikd
(
|tp −1sij| + |tp +1sij|

)]
|detH|−1/2

(∣∣tp −1sij
∣∣ ∣∣tp +1sij

∣∣)−2
6: end for

The adjoint operator is somewhat more complicated
because of the interpolation step. The linear operation cor-
responding to the adjoint is given by

χ̃ (q)=
∑

i,j,tp,kd

−kd
2π3/2η0

Pijd

×ρ̃i

(
−kd (tp−1sij)
|tp−1sij|

; k
)∗
ρ̃j

(
−kd (tp+1sij)
|tp+1sij|

; k
)∗

× exp
[
−i
(
r0 − tp −

si + sj
2

)
· (q+ q0)

− ikd
(
|tp −1sij| + |tp +1sij|

)]
× |detH|−1/2

(∣∣tp −1sij
∣∣ ∣∣tp +1sij

∣∣)−2
(22)

In practice, one would like to calculate χ̃ (q) on a uniform
grid to apply the inverse 3-D Fourier transform to recoverχijk .
However, as noted during calculation of the forward operator,
the samples of Fourier data depend on the stationary point
and target positions and therefore are generally not sampled
uniformly. While for the forward operator, samples of the
Fourier data may be interpolated, for the adjoint operator the
samples must be updated. As the samples are stored on a
uniform grid, a method is needed to update the samples on
a uniform grid given updates of spatial frequencies q that do
not correspond to samples on the grid. This operation may
be seen as the adjoint operation of the interpolation step.
An interpolator takes a weighted sum of samples surrounding
a spatial frequency to produce an estimate of the susceptibility
at that spatial frequency. To update a spatial frequency using
the adjoint of the interpolation step, one adds the weighted
susceptibility at that spatial frequency to the samples that
determined the susceptibility to be updated. As interpolators
generally apply the largest magnitude weights to samples
nearest to the interpolated point, the adjoint of the interpolator

adds the largest contribution of the interpolated points to
samples near the point.

In practice, this may be achieved by updating two arrays,
a cumulative array of samples χ̃ ′abc in the Fourier space,
and a corresponding cumulative array of weights wabc. The
cumulative array of weights accounts for the contributions of
each updated point to a given sample. The functionW (q,qr )
is the magnitude of the weight of a point at qr to a sample at
point q, which is usually a decreasing function of |q− qr |.
The pseudocode of the algorithm to implement the adjoint
operator using the cumulative array of weights to perform the
adjoint interpolation step is given in the below pseudocode
labeled Algorithm 2:

Algorithm 2 Adjoint operator
1: χ̃ ′abc← 0, wabc← 0.
2: for all antenna pairs i, j, stationary points tp and frequen-

cies kd do
3: Calculate q = kd

tp−1sij
|tp−1sij|

+ kd
tp+1sij
|tp+1sij|

− q0

4: Calculate a = round
(

q·x̂
1qx

)
, b = round

(
q·ŷ
1qy

)
, and

c = round
(

q·ẑ
1qz

)
with round being the nearest integer

function.
5: Calculate qr = a1qx x̂+ b1qyŷ+ c1qzẑ
6: Accumulate susceptibility
χ̃ ′abc← χ̃ ′abc+

W (q,qr )Pijd −kd
2π3/2η0

ρ̃i

(
−kd (tp−1sij)
|tp−1sij|

; k
)∗
ρ̃j

(
−kd (tp+1sij)
|tp+1sij|

; k
)∗

exp
[
−i
(
r0 − tp −

si+sj
2

)
· (q+ q0)−

ikd
(
|tp −1sij| + |tp +1sij|

)]
|detH|−1/2

(∣∣tp −1sij
∣∣ ∣∣tp +1sij

∣∣)−2
7: Accumulate weights wabc← wabc +W (q,qr )
8: end for
9: Divide weights χ̃abc← χ̃ ′abc/wabc, with the case 0

0 = 0.
10: Take the inverse 3-D discrete Fourier transform of χ̃abc

to yield χabc.

The sampling of stationary points tp must be sufficiently
dense to ensure that all points χ̃abc are updated within the
Fourier support of the object at least once.

IV. ADAPTATION OF FAMI TO A GPGPU
One of the practical benefits of the algorithms described
in section III is the correspondence of operations to those
accelerated by GPGPU hardware. Because many of the oper-
ations on the sampled susceptibility and antenna functions
are similar to those already designed into GPGPU hardware,
especially texture mapping, texel retrieval, and projection
operations, the same hardware logic that is used to retrieve
and cache textures may be used to retrieve and cache antenna
radiation patterns and the sample susceptibility. The plane-
wave components of the antenna radiation patterns may be
retrieved and projected in the same way rays are rendered to
the computer display by the GPU, with the main difference
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being that while rays for display are represented by a vector
of color channel values (e.g. red, green, blue, and alpha),
the representation of the field amplitude of a plane-wave
component is a floating-point complex number. As modern
GPGPU hardware internally represents quantities using float-
ing point arithmetic, the texture mapping hardware is easily
adapted to representing the plane-wave representation of an
electromagnetic field.

Examining this correspondence further, during the dis-
play of three-dimensional objects, GPGPU hardware projects
polygons to the display by traversing a list of visible points
on the surface of each polygon, retrieving the corresponding
texel to each point, and then overlaying the retrieved texels
with the pixels already on the display. The forward and
adjoint operations have a similar structure. Instead of the
traversed points being the visible points on the polygonal sur-
faces of the object, the stationary points tp correspond to the
front surface of the object to be reconstructed. The ‘‘display’’
to which the results are accumulated corresponds to Pij(k)
for the forward operation, or χ̃ (q) for the adjoint operation.
The textures fromwhich texels are retrieved correspond to the
plane-wave representation of the antenna radiation patterns.
The implementation of the forward and adjoint operators is
similar to the pixel processing pipeline already present in
the GPGPUs.

Therefore in order to advantageously use the GPGPU pixel
processing pipeline components to accelerate FAMI, one
should put the antenna far-field radiation pattern samples
ρ̃nm,ij into 3-D textures as a function of plane-wave com-
ponent indices n and m and frequency i, with the far-fields
for each antenna j in separate textures. As the texture units
are designed to cache texels based on their proximity to each
other in the texture, and typical access patterns of FAMI tend
to sequentially retrieve samples that are near each other in
space and frequency, the caching of the antenna radiation
patterns as texels results in fewer cache misses during texel
retrieval. As the penalty for a cache miss is high for modern
GPGPUs, it is crucial to tailor the memory access patterns
to best exploit the cache. Furthermore, the input vectors,
which are χ̃ (q) for the forward operator, and Pij(k) for the
adjoint operator, may also be stored in textures to improve
the caching of these as well.

Because of the superposition principle of the forward and
adjoint linear operators, the computation may be parceled
to multiple GPGPU units and the result of the calculations
of each GPGPU summed to yield the final result. This
is analogous to how the Scalable Link Interface (SLI) is
used to render graphics to the same display using multiple
GPGPUs. The work of computing the operator for different
antenna pairs i and jmay be distributed to different GPGPUs.
By having each GPGPU operate on different antenna pairs,
the memory cache in the GPGPU can be dedicated to acceler-
ating access to only the antenna radiation patterns needed for
its portion of the computation. As the speed of computation
is usually limited by the available memory bandwidth rather
than the number of available compute units, one of the main

FIGURE 3. A diagram of the overall system, showing the layout of the
transmit antennas (red) and receive antennas (blue). At the left, an
example of the amplitude of the radiation pattern of a receive is shown
at three frequencies separated by 90 MHz to demonstrate the rapid
variation of radiation pattern with frequency.

benefits of using multiple GPGPU units is that each has an
independent memory bus that can simultaneously access and
cache its own copy of the antenna radiation patterns. Because
FAMI is embarassingly parallelizable if different antenna
patterns may be distributed to different compute units, the
computation speed tends to scale well with added GPGPUs,
with the limitations in scaling dominated by the need to
distribute and retrieve the results of computations. For real-
time applications, the communication between the GPGPUs
must be carefully designed as to minimize the latency as the
latency may begin to dominate the reconstruction time.

V. IMAGE FORMATION USING THE GPGPU
IMPLEMENTATION
To implement and demonstrate FAMI, the algorithm was pro-
grammed as NVIDIACUDA 8.0 and C++. The implementa-
tion of FAMI closely follows the descriptions of Sections III
and IV. The GPGPU hardware consisted of four NVIDIA
Geforce GTX 1080 graphics processors in a SLI config-
uration, which were contained in an Intel Core i7-5930K
CPU personal computer with 128 gigabytes of random access
memory (RAM). The software is interfaced to as a MATLAB
MEX file. The compilation used Visual Studio 2013 under
Windows 7, and GCC 4.8.4 under Linux 3.13 as well as the
nvcc CUDA 8.0 compiler. As the typical speed of the adjoint
image formation process is less than 200 ms, the latency
introduced by MATLAB is a significant component of the
processing time, however, MATLAB was used because it is
a convenient platform for prototyping numerical algorithms.
It is likely that a real-time practical implementation would not
use MATLAB.

The simulated system has been described previously, a dia-
gram of which is shown in Fig. 3. Briefly summarized, the
system consists of 24 transmit antennas and 72 receive anten-
nas, operated at 100 uniformly spaced frequencies between
17 and 26 GHz. Each of the 24 transmit antennas is nearly
identical and produces similar radiation patterns as frequency
is varied, and the 72 receive antenna produces radiation pat-
terns nearly identical to each other but different than that
of the transmit antennas. The antennas are high Q planar
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FIGURE 4. A diagram of the receiving antenna (left) and the transmitting
antenna (right) showing the layout and shape of the radiating apertures,
as well as the ‘‘zig-zag’’ line of vias that define the boundary of the cavity.

resonators that have radiating apertures on them in a Mills
cross array pattern, with two 8 cm long rows of apertures
oriented horizontally and separated by 8 cm vertically on the
transmit antennas, and two 8 cm long columns of apertures
oriented vertically and separated by 8 cm horizontally on the
receive antennas. The apertures on all antennas are vertically
oriented slots as to primarily transmit and receive in the
vertical polarization so that a scalar approximation to the elec-
tromagnetic field may be used which corresponds to the
electric response and material susceptibility in the vertical
direction. Due to the irregular cavity shape of the transmit
and receive antennas, the phase and amplitude of the radiation
from the apertures varies in a fixed, pseudorandom pattern
as the frequency is varied. The strong variation in radiation
pattern with frequency enables frequency-diversity imaging
techniques to be used with this system. A diagram of the
antennas is shown in Fig. 4

The antennas are arranged on a planar surface 2 m by
2 m in size. The object is nominally 1.3 m from the antenna
surfaces. The far-field distance from each antenna is 0.85 m,
so the object is in the radiation zone of all the antennas.
The depth of field of the 2 m by 2 m aperture is approx-
imately 13 mm, so that the best image is formed within
about one wavelength from the surface of the stationary
phase points. The layout of the transmit and receive antennas
is shown in Fig 3. This particular geometry of transmit
and receive antennas is designed for security checkpoint
scanning [38], [39], and therefore as a test object we chose
a model of a human form to test FAMI. A mesh of uniformly
scattering susceptibility points are placed on the surface of the
human form to model the skin surface reflectivity. As flesh is
largely reflective at the frequencies used, the reconstruction
should be close to the subject’s surface, and therefore the
stationary points should be placed near the skin. This surface
may be located approximately in practice by using a machine
vision system to illuminate the subject and determine the
shape of the visible surface which is meshed into a list of
stationary points.

A couple of modifications were made to the algo-
rithm to produce a reconstruction similar to the previous
Virtualizer software. First, the factor of |detH|−1/2 in Eq. 20

that accounts for the relative orientation of the station-
ary point to the transmit and receive antennas is changed
to |detH|1/2 in the forward and adjoint operators. When
the − 1

2 exponent is used, the Hessian factor is singular
when the transmit and receive antennas are nearly colocated,
which produced singular features on the stationary phase
surface. As an inverse of the forward operator would tend
to compensate for the Hessian factor, the reciprocal of the
Hessian factor, the 1

2 exponent, was applied instead. A second
improvement takes advantage of the fact that the objects are
surface objects, and therefore scattering points tend to be near
other scattering points. After the adjoint operation was calcu-
lated, an ‘‘envelope function’’ was applied that convolves the
magnitude of the susceptibility of the object with a Gaussian
kernel:

χE (r) =
1

(2πr0)3/2

∫
V

∣∣χ (r′)∣∣ exp(− ∣∣r′−r∣∣2
2r20

)
d3r ′ (23)

where r0 is a window size, usually a few resolution cells
in width. The susceptibility χ (r) is then multiplied by this
envelope function χE (r), and then normalized to have the
same squared magnitude signal as before multiplying by the
envelope function. The effect of this nonlinear filter is to
prefer points with high magnitude that are near other points,
and suppress others. For surface objects, this filter greatly
reduces the noise and concentrates energy onto a surface.

To serve as a benchmark for FAMI’s performance, the
Virtualizer, a tool for the simulation and reconstruction of
coherent images that performs Eq. 3 directly, which is also
optimized for GPGPU acceleration, is used. Unlike the FAMI
implementation, the Virtualizer code does not take advantage
of multiple GPUs for computation. To reconstruct the target,
the Virtualizer performs the sum of Eq. 3 for each point to
be reconstructed in a volume. The volume conforms to the
surface of the target and extends in range several wavelengths
away from the target towards the antenna array. The Vir-
tualizer creates a lookup table and partitions the volume to
efficiently store the three-dimensional radiation patterns of
the antennas at each frequency for rapid retrieval to minimize
GPGPU memory bandwidth consumption [12]. On the other
hand, the sum of Eq. 20 need only be performed over the sur-
face of stationary points on the surface of the target rather than
in a volume, but the volume is reconstructed near this surface.
Only the far-field radiation patterns of the antennas need to be
stored, rather than three-dimensional radiation patterns. For
FAMI, the stationary points on the surface of the target were
placed in a rectangular grid at half a wavelength, or 7.5 mm,
intervals. To reconstruct the edges of the object, the surface
of the stationary points must be extended 3 to 4 wavelengths
beyond the edge in order that constructive interference occurs
on the surface at the boundary and destructive interference
outside the boundary, so that the reconstruction on the surface
is well-defined.

For comparison, we first image a simple target, consisting
of an array of point-scatters seperated by a distance of 10 cm
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FIGURE 5. A comparison of the least-squares reconstructions of a
multi-scatter point target using the Virtualizer (left) and the FAMI
reconstruction (right). The dynamic range for plotting is 20 dB.

FIGURE 6. A comparison of the least-squares reconstructions of a 1 cm
resolution target using the Virtualizer (left) and the FAMI reconstruction
(right). The dynamic range for plotting is 20 dB.

from each other in the cross-range. Imaging of the point-
scatter target is important in that it enables the analysis of the
transfer fuction of the system by means of the point spread
function (PSF). For image reconstruction, least-squares tech-
nique is used. The least-squares solution is 5 iterations of the
conjugate gradient algorithm applied to the normal equations,
with each iteration applying the forward and adjoint operators
once for both the Virtualizer and FAMI, the results of which
are shown in Fig. 5.

Analyzing the reconstructed images in Fig. 5, it is evi-
dent that both reconstructons are similar. The full-width-
half-maximum (FWHM) values for the Virtualizer and FAMI
reconstructions are obtained to be 5.02 mm and 5.06 mm,
respectively. A significant advantage of the FAMI algorithm
can be appreciated when the reconstruction times are com-
pared. While the Virtualizer reconstruction takes 5.71 s, the
FAMI completes the reconstruction in 0.2 s, corresponding
to a speed-up by a factor of 96.5% when compared to the
Virtualizer.

Following the imaging of the multi-point scatter target,
imaging of a 1 cm resolution target is performed. Similar to
the point scatter target, the least-squares technique is used
for image reconstruction (5 iterations). The Virtualizer and
FAMI reconstructed images of the resolution target are shown
in Fig. 6.

Analyzing Fig. 6, it can be seen that both the Virtualizer
and the FAMI reconstruct a clear outline of the resolution
target. While the Virtualizer reconstruction takes 9.21 s, the
FAMI completes the reconstruction in 0.28 s, 97% faster in

TABLE 3. Summary of timing of algorithms for reconstruction of
2D targets (least-squares reconstruction, 5 iterations).

TABLE 4. Summary of timing of algorithms for reconstruction of the
human form target.

FIGURE 7. A comparison of the matched-filter reconstructions of the
Virtualizer (left) and the FAMI reconstruction (right). The dynamic range
for plotting is 20 dB.

comparison to the Virtualizer. A comparison between the
Virtualizer and FAMI reconstruction times for the multi-
point scatter and 1 cm resolution targets is given in Table 3.
It should be noted here that both the multi-point scatter target
in Fig. 5 and the resolution target in Fig. 6 are 2D planar
targets defined in the cross-range plane. As a more realis-
tic and complicated target, finally, we image an object of
human form, which extends in both the range and cross-range
planes (3D).

For this analysis, different from the 2D targets, two recon-
struction methods are used; matched-filter (adjoint opera-
tion) and least-squares (adjoint and forward operations). The
reconstruction of the human form target using just the adjoint
operation is shown in Fig. 7. The two reconstructions look
very similar, however, FAMI required 0.28 s rather than
7.2 s to perform the adjoint operation when compared to
the Virtualizer. The least-squares solution (5 iterations) is
demonstrated in Fig. 8. FAMI completes the reconstruction
in 2.6 s, while the Virtualizer completes the task in 121.7 s,
so that FAMI requires 2.1% of the time. A summary of
timings is given in Table 4.
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FIGURE 8. A comparison of the least-squares reconstructions of the
Virtualizer (left) and the FAMI reconstruction (right). The dynamic range
for plotting is 20 dB.

VI. CONCLUSION
FAMI is a multistatic radar imaging algorithm that is able to
adapt to large separations between transmitters and receivers
and highly irregular radiation patterns. It is readily paralleliz-
able, and adaptable to GPGPU processing as it can utilize
built-in features such as texturemapping to accelerate compu-
tation. It is nearly capable of real-time video-rate processing,
and to our knowledge, there are no other suitable algorithms
for MIMO radar processing in real-time when using com-
plex radiation patterns or irregularly spaced antennas. While
fast data acquisition is possible using electronic frequency
scanning, without a suitable rapid reconstruction method, the
goal of real-time radars for security checkpoint screening or
navigation can not be realized. Methods such as FAMI may
make metamaterial-based antenna imagers sufficiently fast to
become integral parts of the nascent ubiquituous millimeter-
wave radar systems.
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