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ABSTRACT In this paper, we present a novel Data-Flow architecture for MATLAB. This architecture
provides thread-level pipelining of MATLAB functions as well as general concurrency support. The proposed
approach yields a significant speedup of current MATLAB implementations that rely on streaming data
or employ data-dependent operations. Following the development of increased CPU core counts, this
proposed framework will provide additional benefit only as this trend continues. A performance analysis
of the proposed framework is performed, and we are able to demonstrate high-level throughput gains of
specific applications. Discussions on implementation guidelines, as well as limitations of the framework,
are proposed in this paper. Through the use of this tool, we have demonstrated a 802.11a receiver employing
Software-Defined Radio hardware running in real time. From the user’s perspective, this tool requires
interaction only from the MATLAB language, handling all threading and data transfer without user inter-

vention.

INDEX TERMS Software-defined radio, dataflow, HPC.

I. INTRODUCTION

With modern consumer CPU architectures growing in core
count instead of higher core frequencies, system throughput
can be efficiently maximized by expanding an algorithm
over many cores. The applications of interest to the authors
are with respect to signal processing, but such ideas can be
expanded to other high performance compute applications,
such as machine learning, data science, financial analysis,
and other similar applications. Signal processing naturally fits
into this coding architecture for applications such as signal
recovery, tracking, and decoding. In these applications, the
tasks can be pipelined, providing increased throughput or
reduced output latency, assuming the algorithm is spanned
over many cores instead of a single thread.

Parallelism can be performed in computation at many dif-
ferent levels: At the lowest level, modern single CPU cores
can execute several basic operations simultaneously with
single instruction, multiple data (SIMD) specialized com-
mands [1], or more generically known as vector commands.
Programming with a domain-specific language (DSL) pro-
vides fast development and natural problem formulation, but
can be limiting on actual computational features. In this paper
we focus primarily on MATLAB [2], but other DSL’s such as
R [3] and Octave [4] share in the fact that they provide limited

multicore exploitation. This can be even difficult to realize in
more general languages that maintain scientific libraries such
as Python [5] with SciPy [6]. It is important to note that behind
many functions in these languages/products are implementa-
tions of external BLAS (level 3) libraries that use multiple
threads to do parts of basic vector and matrix operations in
parallel [7], and even higher level functionality is available
through OpenMP or pthreads [8] in these products.

With the growth of research areas such as Big Data and
Machine Learning, it has become more important to utilize
parallelism when possible. As a result, we have seen the
introduction of Google’s TensorFlow project [9], Apache
Beam [10], and migrations to functional programming lan-
guages that naturally fit into flow based architectures [11].
Algorithmic acceleration has seen explosive growth in the
hardware sectors with GPU and FPGA accelerators becom-
ing more common, and their software architectures (CUDA,
OpenCL, HDL/Verilog) becoming easier to use [12].

Focusing on MATLAB specifically, parallelism exploita-
tion has been introduced in many forms but can be cate-
gories into two main areas. First are highly data indepen-
dent implementations, where work can be spread over many
cores and many machines. The two main projects in this
area include pMATLAB [13] and MathWorks’ own Parallel
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Computing Toolbox [14]. Second are alternative MATLAB
language compilers, which convert MATLAB code into
C/C++4, fortran, or specialized kernels which are paral-
lelized. Such designs include MATISSE [15], MEGHA [16],
and StencilPaC [17]. Additional extensions have been added
to MEGHA introducing runtime thread management with
Intel’s Threading Building Blocks [18].

In this paper, we present an architecture to expand
MATLAB in order to enable Data-Flow (DF) based paral-
lelism and general concurrency for the purpose of stream
processing acceleration and task concurrency. We provide
a user configurable flowgraph, where functions produced
from MATLAB are run concurrently and pass data between
one another. The goal of this framework is to handle the
threading and data passing between MATLAB functions, so
that developers can focus on algorithmic aspects of their code
rather than handling data flow and threading. MATLAB is a
dominant tool in data sciences, engineering, and many other
fields, reaching the top ten of IEEE’s Spectrum programming
languages [19]. Currently, MATLAB does not offer any DF
or simpler cascaded tasked based parallelism that are avail-
able to the user. Expanding MATLAB to include this frame-
work can provide significant acceleration of current scientific
work, without difficulties of other languages/frameworks that
do provide this capability.

A. CONTRIBUTIONS
This work provides the following contributions:

o Implementation of a novel DF framework via the
MATLAB environment with significant language
support.

o Performance analysis of the proposed framework itself
and application level speedups possible over current
serial code.

o A simplified workflow designed to fit algorithms and
current MATLAB code into this framework, including
load distribution over the cores of a given machine.

« Discussions on the limitations of the proposed frame-
work and the drawbacks of utilizing some of the associ-
ated tooling.

« Presentation of a case study application of a 802.11a
receiver implemented using this proposed framework.

Il. PARALLEL ARCHITECTURE SYSTEMS

This work focuses on providing a DF parallelism framework
to MATLAB, which we call MATLAB Data-Flow (MLDF).
The goal of MLDF is to increase computational perfor-
mance, but also limit latency through careful thread orches-
tration. DF, which can have several meanings in computing,
is defined in this work as the division of computational stages
into concurrent tasks that can have dependent or indepen-
dent execution. Formally, a DF model consists of governing
graph, where the nodes of the graph are computations, and
connections between the nodes represent the data dependen-
cies between the computations [20]. DF from a simplistic
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viewpoint is a combination of task and data based paral-
lelism, utilizes both techniques in a cascaded arrangement
to increase numerical computation through more general
parallelism and concurrency. First, it is important to under-
stand the differences between task parallelism (TP) and the
more commonly implemented data parallelism (DP). In DP
applications, we assume the same operations are performed
on different sets of data in parallel across multiple cores.
DP traditionally does not share state or handle data depen-
dence across threads or processes, and such operations are
considered very computationally expensive. In task based
parallelism, each concurrently running operational unit can
have a different function. Generally TP is the simultane-
ous execution on multiple cores of many different functions
across the same or different datasets. Unlike data parallel
functions, task parallel functions can be cascaded together
in series, essentially pipelining operations, analogous to an
assembly line. Existing frameworks such as OpenMP [8]
provide this functionality through parallel for-loops in the
case of DP, and as jobs or spawns in the case of TP. However,
data handling can be limited or expensive in these libraries,
with projects like gnuradio [21] or Cilk [22] providing more
finely controlled data passing during inter-thread operations.
Such problems have been researched extensively in the liter-
ature for more general languages (C/C++) with specialized
implementations [23]-[25]. Now the goal in this work is
to leverage this knowledge for an appropriate integration
with MATLAB.

However, since this research is targeted at MATLAB users
specifically, it is important to understand the performance
benefits of DF. We approach this from the extreme perspec-
tives of DP and TP. Each implementation has their advantages
and drawbacks, but for fairness when comparing DP to TP
we assume that the number of DP cores is equal to the
number of TP functions, unless otherwise specified. When
core communication is overlooked, DP and TP will always
meet or outperform non-parallel implements, but this will be
considered later in this work as well.

Add Subtract

Square

Multiply

Core 0

Add Square | Multiply | Subtract ‘ Core 1

Add Square | Multiply | Subtract ‘Corez

FIGURE 1. Data parallelism realization for equation (1) on a four core
system. In the case of a streaming application the buffer block will be
utilized to delay input data until four samples are available.

To provide a better understanding between these parallel
architectures, let us consider a simple example. Note that in
a real-world scenario the operations would be much more
computationally intense. Fig. 1 and Fig. 2 contrast the dif-
ferent structures of parallelism for an evaluation of a simple
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FIGURE 2. Cascaded task parallelism realization for equation (1) on a
four core system. If we condition on each core having a different function,
this realization is the most efficient.
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example equation:
fO) =30+ 1) — 4, (1

where we wish to compute four realizations given different
input values (x). As you can see in Fig. 2, we split the work of
each core to be a specific mathematical operation. Therefore,
all data passes through each core. In Fig. 1, we instead
supply different data to each core. The design or selection of
parallel sections is not always simple to address or optimize
due to mismatches in core count and available operations.
Therefore, depending on the computational requirements of
the algorithms, implementations of TP and DP can perform
differently. From an implementers perspective, DP can be
more easily applied to problems due to its lack of additional
communication required between cores.

If all data to be processed is available at the start of the
simulation, then DP has an obvious advantage, since there is
no startup latency. This provides a direct speedup of ~N, over
the single core alternative where N, is the number of available
cores. However, this type of scenario is not always possible.
For example, streaming applications generate data over time
and tend to have latency or data dependency requirements.
The amount of data to be processed in these types of appli-
cations can also be unknown. First, let us assume that the
overall system is streaming based and is able to operate
in real-time. We will also assume that DP must launch all
processing threads at the same time, requiring the buffing of
incoming data. Therefore, with TP the time between new data
arrivals At, and the largest processing time of any individual
core/function for that much data A¢rp yax must have the fol-
lowing relation: At, > AtTP,MAX+AtTP,OH- Where AtTP,OH
is the overhead for block data passing. For DP, the processing
time of any individual core for that much data Afpp must
have the following relation: At, > Atpp/N. + Atpp.oH.-
Where Atpp.on is the DP overhead. This is true since DP
is able to buffer at most N, data units. Now, the combined
TP stages have equal latency as a single DP thread/process
Zle Atrp . = Atpp, where K is the number of TP stages,
but the per data unit latency is different.

Furthermore, under these real-time requirements we can
determine the average latency to process a unit of data. Note,
for real-time applications the overall system throughput is
bound by the data arrival rate. For the DP and TP cases where
K = N, the mean real-time processing latencies t;a7 gr for
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data processed by the system are:

N¢:Atrp,on + Atpp TP
AT RT = 1 Ne—1
N ano nAt, + Atpp + Atpp.oy  DP.

@

In Equation (2) we observe the startup or buffering latency of
DP as (N, — 1)At, + Atpp.oH.
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FIGURE 3. Processing analysis for a streaming type application
comparing the performance of three implementation: data parallel (blue),
task parallel (green), and single threaded where no parallelism is
exploited (black). Data arrives at the system every one time unit and
takes two unit to be processed.
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FIGURE 4. Processing analysis for a off-line type application, where all
data is available initially. Three implementations are compared: data
parallel (blue), task parallel (green), and single threaded where no
parallelism is exploited (black). Data parallelism can utilize all
processing units (four) initially.

Now, in the case of non-streaming applications with a fixed
dataset that is entirely available at the start of a simulation, we
provide a processing comparison to streaming applications in
Fig. 3 and Fig. 4. In Fig. 3, DP needs to buffer inputs while TP
can use them right away providing lower latency on average.
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In Fig. 4, the throughputs are purely bound on Azpp and for
equal comparison we define Atpp = N Atrp yax. When
bounded by Af, the average throughput is better for TP, but
when unbounded DP is better performing. This discrepancy
in performance purely comes from the buffering that occurs
in the system and processing lengths. However, if we remove
this buffering constraint and allow DP to launch threads as
data is made available, DP and TP will perform equally.
Nonetheless, for many applications the segmentation of data
with appropriate boundaries will not always be possible.

A. LIMITATIONS

Given these insight on the structures and relative performance
of DP and TP to non-parallel operations, we can consider the
disadvantages of these implementations. The first and most
obvious is the overhead required, which is depicted as the
gray sections between blocks in Figs. 1 and 2. Due to the
asynchronous nature of threads, data must be passed between
them in a safe method. This safety comes at the cost of speed.
To reduce these overheads, we can either reduce the number
of independent threads or increase the data passed at a given
time. These have two downsides, first by reducing the number
of threads we may not effectively utilize all processing cores.
Second, by increasing the data passed between threads we
increase the per-data unit latency. To provide gains over non-
parallel implementations, for processing B data units we must
maintain the following relation:

BAtpp > Atyar grr(TP)
+ (B — 1)(Atrp x + Atrp,oH)- 3

For useful applications the system should handle a large
amount of data units (B > 1).

When comparing DP and TP, DP implementations tend to
be more load confining, but have a reduced communication
overhead. From Figs. 1 and 2, we have 8 and 16 communica-
tions, respectively. In applications where we have an inherent
data dependency, it may not be possible to have efficient
data sizes evenly passed to DP threads. TP provides more
flexibility and naturally handles data dependency. In partic-
ular, TP performs well when data passing between blocks is
event driven and not deterministic, such as when streams of
data have task boundaries that have time dependence. This is
obvious for communication receiver algorithms which rely on
all past data in order to perform actions. Such state sharing is
difficult with DP, and comes with a significant performance
penalties.

Since MLDF is a combination of TP and DP, we can uti-
lizes the advantages of each. Primarily, we can cascade blocks
where data dependency exists, and arrange other operation in
parallel where there is no dependence. This independence did
not exist in the first example we looked at in Equation (1), but
instead becomes obvious in an alternative example:

fx)=2x*+x—1. )

Here in Equation (4), we can compute the squaring operation
and multiplication concurrently with the subtraction, but the
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FIGURE 5. Mixed parallel flow for Equation (4), exploiting data parallel
and task parallel advantages.

final addition can only be done once all others have com-
pleted. This concurrency flow is illustrated in Fig. 5. The
considered Equations (1) and (4) are used here as simple
examples to demonstrate concurrency of mathematical oper-
ations, and in our implementation we restrict these parallel
components to the MATLAB functions only. In a realistic
implementation, the operations outlined in Fig. 5 should be
replaced by computationally intensive functions, since pass-
ing data between these concurrency/threaded domains is not
without penalty. This measured penalty will be discussed later
in Section IV-A of this paper. The defining aspect of this
comparison comes down to data dependency. Whenever data
dependence is required that portion of an algorithm should
use TP, but without that requirement DP can be used.

Ill. IMPLEMENTATION

Now that we have a general understanding of the certain
parallel architectures, we will examine how DF was imple-
mented through the MATLAB language. This will include
the underlying threading model, cross-thread data sharing,
and integration with MATLAB Coder. Once the implemen-
tation details have been provided we will move on to the
performance analysis of applications and the underlying
architecture.

A. MATLAB INTEGRATION AND RELATED WORK

In this work, we expand MATLAB through the code gen-
eration tool to provide DF. As stated before, since DF is a
super set of TP and DP, we get those extreme cases for free.
However, the general DF framework provided here can take
advantage of both TP and DP within the same implemen-
tation using this framework. To provide concurrency with
efficient data sharing, this DF framework must implement
threading. Nonetheless, since MATLAB does not inherently
have threading tools that are exposed to users in the MATLAB
language,! and MATLAB’s interpreter is not thread safe.
Therefore, an alternative approach or language domain must
be considered. Existing approaches in the literature have uti-
lized external or custom compilers of the MATLAB language,
where single vector operations are scaled across cores [18].
Alternatively, code replacement has been used to speedup
individual functions or a language subset [15], [17], and even
with targeting of hardware [16], [26]. These approaches do
provide significant speedup, however they only provide an

1 par-for relies on process forking for concurrency and cannot be used for
general concurrency.
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extremely limited subset of MATLAB’s functionality. This
is especially true when considering MATLAB’s toolboxes,
which have extensive system object use [27]. The usage of
such toolboxes has become the main use cases of the product,
beyond just matrix math.

All of the discussed approaches for providing DF-like par-
allelism to MATLAB involve C/C++ generation/translation,
which we utilize here in this framework to provide access to
threading libraries. However, instead of relying on a custom
compiler we utilize MATLAB Coder, which has extensive
(but not complete [28]) support for the MATLAB language.
Inspirationally, this is how MATLAB provides data paral-
lelism for one other built-in function dspunfold. Therefore,
like dspunfold in this proposed framework, all functions must
support Code Generation (CG) [29]. This framework only uti-
lizes threading at the function level, since that is the minimum
entry point for CG with MATLAB Coder. Building on top
of MATLAB Coder has a clear advantage over custom com-
pilers like MEGHA and MATISSE, since it is developed by
MathWorks and will grow with the ever changing MATLAB
language.

From the generated code, we provide C++- libraries, addi-
tional code, and tooling to automatically generate wrappers
around these MATLAB generated functions (MGF). The
header files produced by MATLAB Coder are parsed to
extract the relevant function prototypes used in these wrapper
functions. The wrapper functions create a common API for
passing data between there eventual threads. The resulting
code is tied together with a single source file describing the
flow of data between functions, which we call the flowgraph.
The C/C++ flowgraph is also automatically generated from
a custom MATLAB class, which allows users to specify
function level interactions, namely which functions pass to
data to and receive data from which functions. In essence, this
framework manages C/C++4 code produced by MATLAB
Coder and provides the threading infrastructure to parallelize
the desired functions into a controlling graph. Structurally,
each MGF is encapsulated with a wrapper functional which
is a parameter of a generic C++ class. These classes, which
we call Workers, launch a thread at runtime to process data
in and out of these functionals independently. These Workers
are combined into a secondary class called Graph who is
responsible and manages all Workers.

This work utilizes the build systems already present within
MATLAB Coder, providing even Makefiles when custom
code needs to be edited or manipulated out of the scope
of the auto generation process. From the perspective of a
user, there is no necessary interaction required outside of
MATLARB itself. Therefore, no knowledge of thread handling
and efficient data transfer is required. However, function
per thread separation is solely up to the user and will more
than anything determine performance. Overall this frame-
work provides function level parallelism, which is defined
by the user. This function level point of parallelism is very
different than the existing literature, which focuses on more
instruction parallelism. We believe that this function level
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parallelism can be desirable since it limits latency and over-
head compared with a more granular level of parallelism with
a larger number of thread interactions. However, this can be
application specific.

It is important to discuss other existing tools within
MATLAB in order to differentiate their functionality from
this work. Those tools are primarily par-for and dspunfold.
par-for is an extremely useful simulation tool for data parallel
tasks, and will scale to clusters of computers. par-for relies
on process forking and requires strict data independence
between operations. Utilizing these tools also disables some
of the built-in thread spawning functions such as fft and eig in
favor of their single threaded options. Data communication is
also rather expensive when working directly in MATLAB but
is reduced when CG is applied over these functions. On the
other hand, dspunfold is purely thread based but is only for
data parallel tasks like par-for. dspunfold can automatically
take advantage of data independence for the operation to be
threaded, but only applies to a single function. That function
must also support CG. dspunfold does not create free-running
threads, instead they are explicitly launched for each call
to a function utilizing dspunfold, thus relying on OpenMP
under the hood. Both dspunfold and par-for are very useful
tools that can provide significant speedup in DP applications.
In the proposed implementation, threads only join the main
thread at end of execution. Since this work desires to limit
latency, and in essence thread overheads, this is an alterna-
tive to thread re-spawning. [22] can be used to implement
threading in a similar way. However, to limit dependencies the
threading model used was developed in house from boost [30]
primitives, which are already a MATLAB dependence. This
provided us with full knowledge of thread interaction without
relying on external tools.

B. CODE ARCHITECTURE

Similar to other DF architectures, MLDF is completely char-
acterized by a top-level flowgraph. This flowgraph com-
pletely describes function boundaries in the form of blocks,
data passing between blocks in the form of connections, as
well as sources and sinks inherently. Blocks without connec-
tions are called floating blocks. Application examples will
focus on signal processing tasks, but as stated previously,
can be extended to other applications. Fig. 7 provides a
simple flowgraph that generates a signal, adds noise, filters
the signal, and finally saves it to a file. The visual flowgraph
was also automatically generated from line 16 of MATLAB
code in Fig. 6, implemented by Graphviz [31].

Each of the blocks in the graph runs in their own thread,
making them free-running. Blocks themselves can be con-
sidered identical from the perspective of the graph except
for three properties: (1) the processing algorithm the block
is assigned, (2) the number of inputs ports, and (3) the
number of output ports. These three parameters, which are
provided by the user, allow for automatic parsing of the
MGF’s function prototypes for template generation. Ports
are simply protected FIFO queues of object pointers that
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%% Simple Flowgraph
g = GraphGenerator;

Add Blocks To Graph
.AddBlock ('src',0,1)
.AddBlock ('awgn',1,2)
.AddBlock ('filter',1,1)
.AddBlock ('sink',2,0)

Q QQQ o°

Connect Blocks In Desired Order
.Connect ('src_0',0, 'awgn_0",0)
.Connect ('awgn_0"',0, 'sink_0",0)
.Connect ('awgn_0',1, 'filter_0"',0)
.Connect ('filter_0',0,'sink_0",1)

)
o

Q QQQ

.DrawGraph(); % Visualize Graph
.Build(); % Compile Graph
.Run(); % Run Flowgraph

>
«Q

g
9

FIGURE 6. MATLAB flowgraph code for implementation of a simple noise
filtering exampling. The MATLAB class GraphGenerator only contains five
user visible methods, all of which are shown here.

stc 0 —f awgn 0 — —® sink 0
~—al W]
filter 0

FIGURE 7. Flowgraph visualization shown when invoking the DrawGraph
method as shown in Fig. 6. The end result is provided in a MATLAB figure.

are shared between blocks. The queues are type agnostic,
which is generally a requirement when working with code
produced by MATLAB Coder, due to its heavy use of custom
type definitions. The queues only handle data pointers and
never perform expensive data copies. Additionally, queue
access was implemented in two flavors, a locking, and a non-
locking style in order to reduce contention. Due to the fact
that the queue model here is a single consumer and single
producer between all blocks, we were able in include an
efficient non-locking scheme based on [32]. In essence, we
are taking advantage of memory barriers and ring buffers. Not
all processors support such instructions, therefore the locking
implementation is more portable. During operation when data
is added to a queue by a block, that block is responsible for
signaling downstream blocks. This prevents wasteful polling,
as well as queue backlogging. Since the flowgraph generation
process will enforce this threading model, queues will only be
mapped to one consumer and one producer. Therefore, if the
same data needs to be passed to different blocks downstream,
an additional port should be added to the producing block to
support this case. This is essentially performed by copying the
necessary data in the source function in MATLAB. Under this
enforcement side effects of data manipulation downstream
can be ignored.

The graph itself manages block startup, shutdown, and
any runtime management that is required, such as bench-
marking. However, to limit overhead or performance penal-
ties the graph does not interact with the blocks during
runtime by default. Additional flags need to be set
with the GraphGenerator class in order to enable these
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runtime options. Other projects, like gnuradio, utilize the
graph to help manage flow between blocks during startup.
The overall goal of this work is to minimize graph work, as
well as latency between block information passing. There-
fore, significant effort was put into optimizing inter-thread
data passing. As a result, the blocks themselves can have
only three states: waiting for new data, processing data, and
passing data forward. State transitions only occur when all
inputs or outputs are available, depending on the state. Again,
when we utilize non-locking queues there should never be
contention based waiting. A significant difference between
this architecture and others, such as OpenMP jobs, is that
this framework does not continually launch threads. This
occurs once at the start of the flowgraph, and all threads are
maintained for the life of the flowgraph.

In this framework, it is possible to implement scenarios
where the producer block can run faster than the consumer
block. If left unchecked, this would create an ever increasing
input queue for the consumer block, consuming all system
memory. To prevent this, back-pressure is provided at a con-
figurable queue depth. Again, this is also provided through
the GraphGenerator interface. When queues reach this level,
the producer block will sleep periodically and poll the queue
until space have freed up. This empirically has proven to
be better performing in terms of latency than relying on
conditional variable signaling between threads. During this
period of time when the queue has reached the maximum
queue depth additional computations are not performed on
the producer and will remain in this state until data has been
removed from the queue by the consuming thread.

C. MATLAB CODE GENERATION

Since 2011, MATLAB has been able to generate C/C++
code for a large portion of their functions [28], providing
ISO compliant full C/C+4-+ source code with no obfuscation
through compiled libraries. However, CG is not simple to
utilize, and has caveats of its own. This is especially true
if the source MATLAB code is not strict about memory
management. To help you handle that level of complexity, we
have a recommended workflow that we have used to guide
code to fit into the eventual MLDF architecture:

1) Confirm current MATLAB code has been tested and
provides correct numerical results.

2) Splitall code into separate functions that you wish to be
individually threaded. Utilize assertions for all function
inputs. Make sure again that this code provides correct
numerical results, matching original implementation.

3) Utilizing coder.screener, evaluate each function to
check for CG compatibility. Make necessary correc-
tions where necessary. Again check numerical outputs
of functions for correctness.

4) Now that functions are ready for CG, the flowgraph
can be formed with the custom classes provided. These
classes utilize the MATLAB build system and gen-
erate additional files used for wrapping MLDF’s and
connecting them together. This class also provides
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a visual representation of the flowgraph by utilizing
Graphviz.

5) Generate all code and build executable using the sim-
ple interface from the custom provided classes. The
end product is a single executable, which is addressed
through the Run method of the GraphGenerator class.”

Making code viable for CG primarily involves making mem-
ory allocation strict and removal or replacement of certain
functions. It is also important to note that each function will
be re-entered, therefore persistence should be utilized for
additional speedup. This is true of code executed in MATLAB
as well. In summary, this process involves only writing
MATLAB code and enforces the CG of functions.

Once the Run method of the graph is called MATLAB’s
main thread will be consumed by this operation, and will
remain blocked until the graph completes or is killed. The
graph does not call back into MATLAB’s interpretor because
it is not thread safe and would inherently cause blocking if
MATLAB?’s interaction was required. Therefore, all functions
assigned to the graph are free running and require only data
on their input buffers to trigger computations.

IV. TESTING AND EVALUATION

As mentioned in Section I, we primarily focus on signal pro-
cessing and communication applications. Therefore, much
of our testing focuses around these type of computations.
This work originally provided a mechanism for providing
concurrent operations for a communications system rather
than a performance framework. However, when spreading
work over threads we learned that significant performance
enhancements could be gained, and attention was shifted
to a more general framework. Therefore, to understand the
speedup possible from this framework we provide testing
from two perspectives. The first is from the top-level appli-
cation of a flowgraph and the speedup provided over a non-
concurrent implementation. The second is from under the
hood of the framework itself, showing the consequences of
managing concurrency. All tests outline in this sections are
run on a Dual Xeon E5-2690v3, with 24 physical cores
(48 Threads) at 2.60 GHz.

A. FRAMEWORK TESTING

We first examine the latency between blocks, specifically
how long it takes for data to be added to the shared queue
object between a pair of blocks and then popped off the
same queue. In this scenario, we use a simple flowgraph with
two blocks, a producer, and consumer sharing one connec-
tion. This is tested under two scenarios, the first where the
source block produces data at a much slower rate than the
downstream block can process it. Second, the source block’s
mean production interval is made roughly equivalent to the
downstream block’s mean consumption interval. Examining
a case where the downstream block is much slower provides

2The Run method simply uses the system command within MATLAB to
call the associated compiled graph. Overall providing a simplified interface
to the produced executable from MATLAB.
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no perspectives on the framework, since the performance is
solely gated on the processing time of the downstream block.
Under the condition that the shared queue has already been
filled. It also may be considered a poor design where down-
stream blocks are slower than upstream blocks in a constant
streaming data scenario, since thread CPU utilization will be
reduced. For an additional comparison, we provide results
from our generic lock-based implementation to understand
the benefits of the non-locking model. For all these tests
we utilize a maximum queue depth of 300 pointers between
blocks. However, this depth was never reached during testing.
These tests were performed in series so there was no compe-
tition between threads in terms of resources, and for context
only three threads were spawned at a given time including:
the source block thread, the consuming block thread, and the
monitoring main graph thread.

|

09 - 8
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Slow Source 7

—*— 1x10 % DP Adds
—>—2x10 % DP Adds

0.8 -

0.7

CDF

0.5 -
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Transfer Time (ns) %104

FIGURE 8. Transfer latency between blocks for 10 iterations for locking
queue design. Double precision additions are provided as references to
the cost of an individual transfer on average. Their reference are provided
as vertical lines since on a modern CPU they are roughly deterministic
operations.

Now given the implemented tests described above, these
provide performance information relative to contention con-
ditions between blocks. Since queues between blocks are
shared resources, there is always a natural contention. Data
manipulation between blocks only involves pointer move-
ment, therefore no data copies occur. As a result, the transfer
latency between blocks is not dependent on actual size or type
of the data transfered. With this knowledge, Fig. 8 provides
the results of 10° transfers for each of the test scenarios
using the locking-queues. We utilize the chrono library within
the C++ Standard Library to provide high resolution time
information for these tests. For reference, we computed the
average time to complete 100 , 10* and 2x10* double pre-
cisions additions to the same memory location on the same
machine averaged over 10° iterations. The transfer times
for the Fast Source (FS) are almost deterministic and better
performing than the Slow Source (SS). At first, this is counter
intuitive since there is less contention between blocks in the
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FIGURE 9. Transfer latency between blocks for 108 iterations for
non-locking queue design. Double precision additions are provided as
references to the cost of an individual transfer on average. Their
references are provided as vertical lines since on a modern CPU they are
roughly deterministic operations.

SS case. The reasoning behind this slowdown comes from
the signaling delay that occurs when the downstream block
sleeps if no data exists in the queue. Therefore, the sleeping
block must wait for a signal from the conditional variables
associated with the monitored mutexes. In the FS case, the
block does not enter this sleep state as often, since the
queue will have data ready to be process more often initially.
Similarly, Fig. 9 provides the results for the non-locking case,
and performs two orders of magnitude faster on average.
In this case, the FS has more variation as expected due to
the additional contention, but the SS is almost deterministic.
The cases considered here are the most optimal since each
block only has one port. The performance here will degrade
since exiting the waiting for data state will require data from
multiple threads.

B. FLOWGRAPH TESTING

Now that we have understanding of the low level thread
interaction between concurrent functions, we can explore top-
level speedup over single threaded non-concurrent versions.
The goal is to understand system performance, in the form
of data throughput, under significant computational tasks.
To examine this we considered an FFT of length 2> over
complex double precision data as the basic unit of compu-
tation. This was chosen to represent an intensive workload
over a large amount of data.

To evaluate the performance of this function, testing mea-
sured the processing time of 10° randomly generated complex
vectors of length 2! (matching the FFT size). Across the tests
we cascaded additional copies of the FFT baseline function
to increase complexity of the problem, ranging from 2 to
22. To remove the effects of the random vector generation,
both the single threaded (ST) and multi-threaded (MT) ver-
sions were written in the MLDF framework. In the ST case,
one block contained the random vector generation code, and
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FIGURE 10. Throughput testing of cascaded FFT operations in the single
threaded mode (bottom) and the MLDF implementation (top). These tests
were run for two cascaded FFT’s to twenty-two FFT’s. The random vector
generation (Vec Gen) was put into an independent thread to remove the
additional computation required for those operations.
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FIGURE 11. This test compares an increase in cascaded FFT operations in
the MLDF case, the single threaded standard case, and an idealized case
which has no communication overhead. At each number of cascaded
FFT's the system processed 10> random complex double precision vectors

of length 215 Each test was run four times, with little variance between
them.

a second contained a loop over multiple FFT’s. In the MT
case, the additional FFT’s are applied in additional blocks.
This comparison between the ST and MT implementation is
shown in Fig. 10, with each block representing an individual
thread. Fig. 11 provides the results of this test averaged
over several iterations for each number of FFT’s cascaded.
Showing almost no variance in the results in both ST and MT
cases. As can be seen, the MT scales significantly better than
the ST version. As the number of FFT’s does increase, but
so does the processing time and individual overhead between
blocks. Since the test machine does have 24 physical cores,
no bottlenecks are observed. For reference an idealized result,
which is simply an application of equation (2), is provided
as well in Figure 11. This result would be attained if there
was no communication overhead required between threads.
However, as the flowgraphs become more complex and
threads outnumber cores, performance evaluation will
become difficult to predict. The ST case simply scales lin-
early with the increased workload, and will be independent
of core count.

The speed advantage in Fig. 11 is substantial, but it is
important to discuss side effects of the speedup. TP will have
a constant latency through the system equal to the required
N computations plus communication overhead between
threads. On the other hand, if DP was applied to this problem,
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each input vector would have a varying latency. This was
theoretically presented in Section II. The single thread case
grows in latency since each subsequent vector must wait for
each preceding vector to pass through all N FFT’s before
beginning computation.

V. DESIGNING FOR DATAFLOW

We examined the low-level consequences of using the MLDF
architecture and the top-level performance gains it can pro-
vide. However, when implementing algorithms within this
framework special consideration and thought needs to be pro-
vided to function placement and division. Multiple DP and TP
sections of algorithms can exist but their implementation is
not always necessary, since DF does have overhead. In Fig. 8
it was demonstrated under the best circumstances we can
incur a penalty of ~250ns per block transfer. Further synchro-
nization of multiple port blocks can substantially increase
this delay. Therefore, to minimize this effect computations of
an individual block should take considerably longer than the
data transfers. If the computation is not complex, in practice
we will increase the amount of data passed per transfer to
the block. Since this penalty is fixed, increasing the data to
be processed will only increase the computation time of the
block.

A second important aspect to consider is load distribution
and gating that can occur. For cascade blocks specifically,
when upstream blocks are significantly slower than down-
stream blocks this creates block starvation conditions. This
will limit core utilization. A similar effect can happen in
reverse when downstream blocks are much slower, causing
upstream blocks to wait on full queues. Implementations
should strive to balance work across blocks as much as possi-
ble, but at the same time without thread flooding and choking
the processor. We typically approach this by first setting a
target throughput rate, and then distributing the algorithm
among more blocks until we reach our target.

A. LIMITATIONS

We have examined the possible speed up advantage of this
MLDF framework, but there are consequences to using this
framework specifically through the use of MATLAB Coder
for code translation. First of all, in many circumstances CG
does provide speed up over interpreted MATLAB code since
it is compiled. However, for highly optimized built-in func-
tions of the MATLAB language there can be a degradation.
This comes from the fact that CG produces generic C/C++
code that does not heavily utilize vectorization or other SIMD
type operations. Common advice in MATLAB is to vectorize
code, which can provide increased speed up, since under
the hood MATLAB will take advantage of processor spe-
cific extensions for vectorizations. However, this capability
does not always translate into generated code with MATLAB
Coder. Through the natural progression of this work we have
examined a large amount of generated code, and have found
that vectorization can be even tied to data size of each compu-
tation. For example, when low level mathematical operations
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are performed on vectors, there is a greater probability of
insertion of specific BLAS calls to replace loops in the result-
ing generate code when the vectors contain large number
of elements. This is also dependent on the operation itself
and the profile selected by MATLAB Coder. Other projects
can directly generate to SIMD and parallelized code from
MATLAB code [15], [17], but as discussed previously,
have very narrow language support. It may be possible to
re-vectorize the produced code, but due to the level of obfus-
cation it will be very challenging. Nonetheless, MATLAB
Coder is a proprietary tool and MathWorks provides no doc-
umentation on the internal CG process or access into the
generation process.

Besides limited vectorization in generated code, plots and
scopes are not available in any form of CG. Leaving only file
outputs and textual feedback. It is important to note that plots
and scopes in interpreted mode do cause additional latency
in the system and hinder performance in the general sense.
We are actively exploring other solutions to this problem,
since scope can be invaluable for debugging. In this spirit,
we are also considering hooks back into MATLAB at runtime
through the MEX API [33].

B. REACHING REAL-TIME

With the limitations understood and known possible speed
increases available, we implemented a real-time 802.11a
receiver in MLDF framework. This work was based upon a
serial implementation which is now available as part of the
WLAN System Toolbox [34]. To reach the real-time objec-
tive, the flowgraph needed to handle a data throughput of
20 x 10° double precision floating point numbers per second
at the most intensive sections. Data was provided into the
flowgraph by a USRP-B210 [35], which displays overflow
warnings when the system is unable to keep up with the data
stream. To reach this performance goal, drastic modifications
were made from the original serial code, primarily in the
packet detection portions, which were the most computation-
ally intensive. However, only by expanding into the MLDF
framework did many of these bottlenecks become apparent.
Many were rather hidden when looking at MATLAB profiles
alone. Fig. 12 outlines the eventual flowgraph of the system.
Both DP and TP type flows were applied as observed in
Fig 12, and the overall structure was influenced by [36].
A pure DP implementation would not be efficient since frame
boundaries are unknown and variable in the data streams.
However, we leverage DP concepts by running the Moving
AverageSP, Moving AveragePP, and Delay blocks in parallel
on the same data. TP concepts are applied by pipelining the
outputs of these parallel running blocks into other concur-
rently running blocks downstream, eventually funneling into
CFO, LLTFSearch, and DecodePacket.

The workflow to reach real-time relied on the strategy
discussed in Section V, where hotspots in the flowgraph were
spread across more and more threads. An interesting aspect
of this design is that the packet decode operations, which
can be considered extremely computationally intensive due
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FIGURE 12. Complex flowgraph for WLAN 802.11a receiver, based upon the current design available in MATLAB. Significant resources where
put into the packet detection phase of the flowgraph, which consists of six threads (Abs, Moving AverageSP, Moving AveragePP, Normalize,
Peak Detect, Delay). This design was able to run in real-time and decode beacon frames from commercial routers. DecodePacket contains the
majority of the code, but is called drastically less frequent than the upstream blocks.
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FIGURE 13. Relative throughput of computation blocks in WLAN receiver
design. In green are blocks requiring continuous operations, in blue are
blocks that have dependent operation, and in red is the original MATLAB
demo implementation. The original MATLAB demo utilizes SIMD
operations of certain mathematical functions, but does not support user
controlled TP or DP operations.

to their reliance on a Turbo Decoder [37], are contained in a
single thread. This was possible since the rate at which we
observed packets was orders of magnitude below the rate at
which the packet detection algorithms worked at. This is also
a function of these more intensive blocks only conditionally
running. Packets will not always exist in the received data, but
searching for such packets is continuous. With this design,
we were able to recover packets from commercial access
points over the air without overflow for sustained periods of
time. In Fig. 13 a breakdown of the relative blocks speeds are
provided. The blocks with green bars are required to run con-
tinuously, however blocks with blue bars only conditionally
run. The MATLAB only demo without the MLDF framework
provided by MathWorks is shown in red. All continuously
running blocks are well above the 20 x 10° samples per
second throughput requirement.

VI. CONCLUSION

In summary, we have presented a framework to enable Data-
Flow parallelism from the MATLAB programming language.
Several perspective of the framework’s performance were
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evaluated to model possible algorithmic acceleration and
penalties associated with the architecture. We have shown
that it can provide significant speedup in certain applications,
but is not without limitation. Included is a simple workflow to
implement current code into this framework, which requires
no knowledge of thread implementation or efficient data
passing between those threads. We hope to open-source this
tool, along with several example implementations using this
framework, enabling others to experience such performance
benefits in their own work.
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