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ABSTRACT Mobile social networks (MSNs) are the networks of individuals with similar interests connected
to each other through their mobile devices. Recently, MSNs are proliferating fast supported by emerging
wireless technologies that allow to achievemore efficient communication and better networking performance
across the key parameters, such as lower delay, higher data rate, and better coverage. At the same time,
most of the MSN users do not fully recognize the importance of security on their handheld mobile devices.
Due to this fact, multiple attacks aimed at capturing personal information and sensitive user data become a
growing concern, fueled by the avalanche of new MSN applications and services. Therefore, the goal of this
work is to understand whether the contemporary user equipment is susceptible to compromising its sensitive
information to the attackers. As an example, various information security algorithms implemented in modern
smartphones are thus tested to attempt the extraction of the said private data based on the traces registered
with inexpensive contemporary audio cards. Our obtained results indicate that the sampling frequency, which
constitutes the strongest limitation of the off-the-shelf side-channel attack equipment, only delivers low-
informative traces. However, the success chances to recover sensitive data stored within a mobile device
may increase significantly when utilizing more efficient analytical techniques as well as employing more
complex attack equipment. Finally, we elaborate on the possible utilization of neural networks to improve
the corresponding encrypted data extraction process, while the latter part of this paper outlines solutions
and practical recommendations to protect from malicious side-channel attacks and keep the personal user
information protected.

INDEX TERMS Mobile social networks (MSNs), information systems security, side-channel attacks, social
networking services, neural networks.

I. INTRODUCTION
The rapidly growing numbers of mobile devices as well
as ‘‘social’’ multimedia applications and services demand
for direct connectivity means between users to offload the
infrastructure of a network operator, which is possible over
a range of wireless technologies [1]. This rich heterogeneous
connectivity fuels the novel networking paradigm, named
mobile social networks (MSNs), where the connectivity and
data sharing patterns among users are based on their social
contacts and relationships [2], [3]. According to Sandvine
Global Internet Phenomena Report, MSNs had a 22%-share
of mobile traffic in the US and this figure has been growing
tremendously over the past decades.1 Broadly, MSNs are

1See ‘‘Social media apps overwhelmingly dominate mobile traffic’’,
Business Insider, 2016: http://www.businessinsider.com/social-media-apps-
overwhelmingly-dominate-mobile-traffic-2016-6?r=US&IR=T&IR=T

often delay-tolerant and may be characterized by intermit-
tent connectivity as well as limited network capacity, thus
having difficulty to support the increasing user data rate
requirements [4].

One of the first works that concentrate on MSNs from
the perspective of coupling the functionality of conventional
social networks with the features of mobile communications
was summarized in [5]. In a nutshell, the authors proposed
that the users may exploit their social contacts in order
to improve the networking efficiency from a user-centric
perspective. Another line of research on MSNs considers
conventional social networks with a centralized control unit,
where the data may be acquired directly through mobile
devices in case the central node fails [6]. In these situations,
the devices in proximity may communicate by utilizing
short-range radio technologies (e.g., device-to-device
communications – D2D) [7]–[9].
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The number of applications brought about by MSNs is
large and spans from bandwidth-hungry video sharing [10]
through gaming [11], and to business-related proximity-
based advertising [12]. Hence, modern MSNs are actively
developing to cater for the trade-off between the high data
rate and the low delay based on the actual application
requirements [13]. However, the transferred data needs to be
made secure independently of the usage scenario. Therefore,
security and privacy issues in MSN environments have been
articulated in recent years.

In particular, the authors in [14] provide a comprehen-
sive survey on the existing MSN security mechanisms and
methods. In doing so, they also conduct an evaluation of
these in terms of their flexibility, operator protection, user
anonymity, and independence of the actual service provider.
Also, a new MSN architecture with appropriately communi-
cating entities and their respective communication patterns
has been proposed in [15]. In that work, the authors explored
security and privacy requirements by focusing on social
relationships among the users.

However, while these works offer valuable results on the
requirements in terms of privacy and security, they do not
address robustness of the proposed solutions against the mali-
cious attacks that aim to extract sensitive information from
the user devices, which becomes the main goal of this paper.
In fact, ongoing proliferation of social applications where
users store and communicate sensitive information, such as
their bank account or credit card number, raises important
concerns on the types of dedicated attacks and the ways to
protect from them.

For instance, information leaks caused by emissions
from electronic devices have been subject to many studies
since 1985. Back then, content displayed on a monitor was
reconstructed based on its electromagnetic emanation [16].
Further, that work was partially resumed in 2004 by [17],
which utilized similar techniques to reconstruct the displayed
content from the cable emissions. Later in 2006, acoustic
emanations of keyboards were exploited to reveal the keys
pressed by the users [18], [19].

Despite the fact that multiple works are targeting to protect
from this type of attacks, which are still accumulating [20],
contemporary mobile devices remain at high risk. Indeed,
modern hand-held user equipment is increasingly vulnerable
due to a multitude of supported applications.2 Furthermore,
since cloud-based and automated services becomemore com-
mon, smartphones can act as ‘‘relays’’ of critical information
as they help manage multiple other systems [21].

In our daily applications, the operation of the underlying
cryptographic algorithms – whether implemented in software
or in hardware – is strongly affected by the immediate
environment. Here, physical and social interactions can,
in principle, be monitored by the malicious users, whereas the

2See ‘‘Choosing a Business Phone System: 2016 Buyer’s Guide’’,
Business News Daily: http://www.businessnewsdaily.com/7149-business-
phone-system-guide.html

FIGURE 1. SCA execution example in a cafe environment (over the audio
channel).

eavesdropped data itself may be employed in the subsequent
cryptanalysis to extract sensitive and private information.
Such data ‘‘sniffed’’ by the attackers is referred to as side-
channel information and the corresponding actions that target
to extract side-channel information are named side-channel
attacks (SCAs).
The key principle behind SCAs is to analyze how the

specific cryptographic algorithm is implemented, rather than
to disrupt the algorithm’s operation. The SCAs are becoming
increasingly widespread,3 primarily due to the rapid prolifer-
ation of online services and platforms that are easily acces-
sible trough user-owned smartphones (e.g., Amazon, Netflix,
Spotify, etc.).

Today, one of the most dominant factors in executing
SCAs is tightly connected to the vision, where smartphone
is regarded as part of the Internet of Things ecosystem.4

Accordingly, a variety of services associated with manag-
ing other devices are considered, such as processing status
messages and making crucial decisions [22]. Indeed, taking
into account improved connectivity offered by the MSNs on
both social and network planes, attackers may be primarily
interested in capturing the authorization data to then hijack
access to private devices [23], see Fig. 1 for an example.

More technically, power consumers as part of the modern
device electronics [24] operate simultaneously with the
software applications and may thus create difficulties in reg-
istering the emanation (traces). To this end, analytical tools
including machine learning techniques and signal process-
ing [25], [26] may be utilized by the attackers to capture and
analyze the electromagnetic radiation.

Against the above background, the aim of this work is
to provide a comprehensive example of a possible SCA
along the lines of extracting sensitive information from a
smartphone by utilizing off-the-shelf, inexpensive equipment
available to anybody. In doing so, we focus on decentralized
MSNs due to their more dynamic behavior from the connec-
tivity perspective [27]. In particular, our scenario of interest is

3See ‘‘Researchers show how side-channel attacks can be used to
steal encryption keys on Amazon’s cloud server’’, PHYS Magazine,
2016: http://phys.org/news/2015-10-side-channel-encryption-keys-amazon-
cloud.html

4See ‘‘Is a smart phone an Internet of Things device?’’, Mischa Dohler
https://www.futurelearn.com/courses/internet-of-things/0/steps/8432
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FIGURE 2. Security challenges in MSNs.

when a group of users belonging to a particular MSN exploit
their social relationships to share data over the proximity-
based links (i.e., onD2D communication channels) [28], [29].
This poses security challenges due to repetitive connection
(re-)establishments, which in turn requires higher levels of
security. Finally, we deliver an overview of possible enhanced
attacks that are reviewed in conjunction with solutions that
may be useful to avoid losing personal and sensitive informa-
tion, which is kept within the smartphones and other personal
user devices.

The following section discusses the security challenges in
decentralized MSNs that need to be resolved.

II. SECURITY CHALLENGES IN DECENTRALIZED MSNs
This section brings attention to the main security issues
pertaining to the distributed MSNs as well as discusses their
ability to protect against a variety of attacks, failures, errors,
and other unwanted situations [15]. Broadly, we may subdi-
vide the key threats into the following categories: (i) trust,
(ii) privacy, and (iii) security (see Fig. 2).

A. TRUST IN MSNs
The first critical consideration is related to the user’s willing-
ness to rely on actions performed by others in decentralized
peer-to-peer (P2P) MSN environments, thus leading to the
problems of trust [30]. In conventional infrastructure-based
networks, reputation is maintained by the trusted authority,
which significantly simplifies the routing and connectivity
aspects between mobile nodes (both classical [31], [32] and
virtualized [33]).

With respect to maintaining trust in P2P networks,
a number of widely distributed protocols could be utilized to
provide dynamic trust updates and offer efficient connectivity
management [34]. In fact, it might be convenient to resolve
the trust association challenges in conjunction with the direct
connection establishment [35]. Despite the fact that a large
number of techniques and solutions were introduced to sup-
port trustworthiness inMSNs [36]–[39], most developers still
prefer relying on network assistance techniques to maintain
the collective trustworthiness [6], [40].

To date, several well-known trust-related threats are:
(i) Black Hole attack [41] is of the denial of service type.
In case of its execution, a malicious trusted node is triggering
an additional route discovery process for each connected
user. Further, (ii) Sybil-attacks [42] target to create a large
number of malicious identities in order to affect the levels of
trust within a network. Finally, (iii) Node selfishness [43] is
of concern i.e., when intermediate nodes are not willing to
cooperate in the opportunistic manner but only consume the
network resources.

To this end, managing reputation in large-scale distributed
systems can be problematic and thus new solutions need to be
developed considering energy and computational limitations
of modern mobile devices. The MSN properties should also
be accounted for in order to achieve better performance,
which still remains a significant social challenge [44].

B. PRIVACY IN MSNs
Another category of threats is related to privacy, that is,
the linkage of sensitive user information (such as identifiers,
personal contacts, location-related data, etc.) [45]. Generally,
user profiles in the MSN that contain the aforementioned
data could be exploited to track the object’s behavior [46].
In turn, privacy issues can be classified into two main groups:
communications and location privacy.

Communications privacy reflects conventional approaches
in privacy-centric network technologies. The tools utilized
for reaching individual privacy are well-known and do not
require an extensive introduction. Some examples in the
following include authentication, non-repudiation, and cryp-
tography, among others [47].

Modern MSN services support a wide range of location-
based applications, such as proximity-based advertisements
and photo sharing. At the same time, their users need to
provide position information in order to gain access to the
service that potentially causes privacy leakages. Adequate
implementation of the location privacy management allows
to prevent from the disclosure of sensitive user data. Many
solutions are already developed to satisfy the requirements
of this kind, such as [48], [49]: pseudo-anonymity, location
obfuscation, key anonymity, etc.

Unfortunately, many users ignore the privacy-centric
recommendations issued by the application developers and
thus face the risks on a daily basis [50].

C. SECURITY IN MSNs
Finally, the remaining group of concerns in MSNs is related
to protecting personal user data or other sensitive information
during its transfer between the networked nodes [51]. In these
situations, security needs to be maintained to protect users
against the known attacks on ciphers [52] as well as to combat
possible malicious behavior in the network [47]. Convention-
ally, the goals here are to ensure availability, authentication,
confidentiality, and integrity of data altogether [53].

On the one hand, users have to be made aware that their
behavior has a strong impact on the security procedures
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within the MSN, while on the other hand there is a need for
new methods and techniques that are capable of providing
tight integration between privacy, trust, and security [54].
Hence, to help application developers offer increasingly
security-centric solutions, one needs to develop measures
that protect from the malicious subjects, who may perform
SCAs to gain access to personal user data. This topic is
discussed in detail in the remainder of this paper. Indeed,
current security algorithms may not be sufficient to accom-
modate the rapidly growing variety of MSN services, where
users make online payments, share their private data, while
often relying on insecure links when engaging into direct
communications [55].

FIGURE 3. The SCA prototype installation.

III. SCAs ON MOBILE USER DEVICES
In this section, the authors describe the target scenario and
offer a decomposition of the applicable SCA. Clearly, by
utilizing more complex and, consequently, expensive attack
equipment, it is becoming easier to succeed with the SCA
implementation. However, relying on the assumption that
an attacker can only take advantage of inexpensive eaves-
dropping equipment, we conduct an example affordable
SCA to obtain the user traces from a smartphone with
a market-available external sound card. Our simple SCA
prototype installation is represented in Fig. 3.

Due to a high number of constraints related to the SCAs,
a dedicated application has been developed thus effectively
serving as a ‘‘sandbox’’ for the respective cryptographic
primitives (see Fig. 4). In this work, we aim to minimize
the necessary user input operations as well as to provide
with an easily extensible set of cryptographic primitives in
conjunction with a controllable set of secret encryption keys.
In addition, our considered application allows to perform
the required cryptographic operations at high frequency for
the rapid accumulation of sufficient data to carry out fur-
ther attacks. The complete list of features in our developed
‘‘sandbox’’ application is given in Table 1.

Generally, the attack model could be represented in the
following three steps:

FIGURE 4. Custom ‘‘sandbox’’ Android application.

TABLE 1. The list of ‘‘sandbox’’ application features.

1) Initial training: The training is a process executed mul-
tiple times, thusmaking the decipheringmore probable.

2) Data collection: The attacker’s equipment is passively
monitoring the target mobile phone location.

3) Attack execution: The data acquired in the training
phase is utilized to decipher the actual information
based on the real dataset from the data collection phase.
This step could be integrated with the collection phase
and executed dynamically on the go; or it can be a
standalone execution run in a static manner after the
data collection is complete.

At the initial training phase, it is feasible to generate several
equal cryptographic operations (with the same plaintext and
key material) before processing random plaintexts and/or
keys. Here, the goal is to ensure synchronization between the
attacking tool and the data in a manner as precise as possible.
To this effect, if there are several equal signatures available
within a trace, the detection of the encrypted data sequence
of the starting and the ending points is more probable. This
functionality may be applicable for noisy hardware inside the
target device.

IV. DATA CAPTURE AND ANALYSIS
This section is focused on the useful data collection and
its processing possibilities during the SCA. Based on the
previously discussed assumptions, we utilize affordable and
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FIGURE 5. Example trace for Alcatel POP3: each encryption operation
time is numbered.

market available equipment to execute the discussed SCA
on a smart phone. We have selected two devices offered by
different vendors in order to implement our SCA: Alcatel
POP3 and Sony Xperia M2.

During the initial training phase, a clean run utilizing our
‘‘sandbox’’ applicationwas executed. During this phase, most
of the background activity of the target device was lowered
to reduce the random behavior of the user. Conventionally,
the cryptographic operation observations in the ‘‘sandbox’’
mode show relatively clearer traces, as it is depicted in Fig. 5.
The capture presents an example of three cryptographic exe-
cutions, which are numbered for clarity.

For example, the first one could be observed from
point 2 : 11, 0 and up to 2 : 12, 5. Clearly, the second execu-
tion results in almost the same picture. It could be concluded
that the operation in the ‘‘sandbox’’ mode is a meaningful
way to fulfill the initial requirements of the training phase
by completing a set of cryptographic fingerprints. When ana-
lyzing the traces after the training phase, we note a dramatic
difference in the data definition – almost empty trace for
Xperia M2. Apparently, the hardware-specific variations lead
to completely different capture profiles. To this end, we
decided to focus solely on the Alcatel POP3 analysis.

FIGURE 6. Example trace for Alcatel POP3: noisy traces during user
interaction.

Fig. 6 demonstrates the results from Alcatel POP3 that
satisfy the data collection phase requirements. The capture
was performed by utilizing the same ‘‘sandbox’’ application,
but running a number of side processes, such as enabling
Wi-Fi, Bluetooth, and other modules. Random user input was
examined as well. In particular, we see a totally undiagnosed
noise flow for Alcatel (Fig. 6). It could be concluded that the
SCA requires a significant effort during the initial training
phase in order to achieve the acceptable accuracy.

The next step of our SCA is the raw data pre-processing
for the subsequent neural network analysis. More specifi-
cally, the input data is converted into the vector format. Each
vector contains the captured power record during a particular
cryptographic operation. Next, the trace synchronization is
achieved i.e., with the firstN signatures of the trace vector, the
attacker may predict the following signature by knowing the
starting and ending points of the trace vector. The accuracy
of this mechanism depends substantially on the sampling rate
of the sound card as well as on the time periods required for
executing the cryptographic operations on the device side.

Our custom-developed parser receives a trace recorded
during the cryptographic operation generated by the ‘‘sand-
box’’ application. The goal of the parser is to distinguish
the cryptographic operations from the signal by removing
the noise as well as to export them as separate vectors for
further processing by the neural network. In our case, the
parser comprises two distinct methods:

1) Convolution function: The parser considers the entire
trace as well as the signatures as functions. The
parser iterates through all the hypotheses regarding the
first signature and calculates the resulting convolution
function between a hypothesis and the entire trace.
The peaks of the resulting functions indicate which
hypotheses are the most probable and howmany signa-
tures matching every particular hypothesis are present
in the trace, see Fig. 7. After the first signature has
been identified, the parser continues through the trace
detecting the starting and the ending points of other
signatures. Finally, every signature is detected and
saved as a separate vector.

2) Convolution function within neighborhood: The parser
utilizes the set of time periods elapsed between
the cryptographic operations as a ‘‘lattice’’ for the
signature detection. A convolution function is calcu-
lated between every hypothesis of the first signature
and the corresponding hypotheses of other detected
signatures based on the execution times. To this end,
it is assumed that the knowledge is available on the
correct starting point of the first signature and the dura-
tions from the time stamp file. The parser determines
which hypothesis regarding the first signature is the
most appropriate based on the convolution analysis.
The results achieved with this method are depicted
in Fig. 8.

In conclusion, two interesting facts are observed after
completing the pre-processing and parsing steps:
• Signatures are mostly not well-detailed due to the
scarce sampling of the audio card. Hence, the level of
detail has a tremendous impact on the captured data
pre-processing.

• Some of the signatures may be detected incorrectly, as it
is shown in Fig. 8. The detection error i.e., the chances of
a wrong signature extraction caused by noise, is marked
with a dashed line. A similar result was achieved by
utilizing the first method on the same trace. The reason
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FIGURE 7. Detecting signatures with the first method.

for such an inaccuracy may be rooted in the low quality
of the captured trace.

The utilization of more expensive and capable data captur-
ing equipment is a solution to both of the above challenges.

V. ALTERNATIVE SCA APPROACHES
In this section, we elaborate on how the SCAs could
be executed in non-straightforward ways as well as dis-
cuss the application of neural networks to the previously
considered SCA.

As a result of the tests conducted in Section IV, we estab-
lish that performing a detailed analysis of traces by utilizing
off-the-shelf sound card equipment is a complex task. This is
mainly due to a significant difference between the sampling
rates of the attacker device (i.e., 44100 Hz) and those of
the encrypting devices (i.e., 6 MHz). Indeed, multiple details
could be lost due to scarce sampling of the sound card,
where only every 44100-th point of the original signal is
available for the analysis. We may therefore conclude that for
our case study the resolution of the obtained traces is rather
low, meaning that only a small portion of potentially useful
information on the sensitive data may be recovered.

Importantly, even with the inexpensive attacking equip-
ment utilized in our tests, it remains possible to extract a

FIGURE 8. Detecting signatures with the second method.

portion of sensitive information from the user devices [56].
Apparently, by utilizing more powerful sound cards with
higher sampling rates, it would be easier to eavesdrop for
information on the user equipment, which threatens the safety
of personal and sensitive data. In the following, we offer a
description of improved methods that may be adopted to
successfully extract information from a personal device
together with some preventative measures that could be car-
ried out by the users to avoid such attacks.

The key idea behind the discussed approach is to conduct
an analysis of the parasitic signal based on the artificial
neural network. This approach may not necessarily imply an
absolute identification of a device’s secret key, but brings an
opportunity to determine the most probable states for each of
its bits. Overall, the model of the attacking system consists
of several functional modules, which are displayed in Fig. 9.
The said model is based on an iterative approach and allows
to optimize the attacking process.

In the first stage, it is crucial to validate as to whether
the obtained traces are key- and plaintext-dependent.
Multilayer perception is one of the possible solutions for
this task [57]. In case a dependence exists, it becomes
feasible to distinguish two keys, which differ from each
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FIGURE 9. Functional model of the attack system.

other by only one particular bit. The following stage utilizes
convolutional neural network (CNN) techniques with the cor-
responding matrices/weights [58], thus allowing to compute
the so-called ‘‘feature maps’’ in order to distinguish each bit
of the key [59].

Typically, each neuron at the output provides an estimation
of the probability together with a response that indicates
whether the input data is consistent with a particular class or
not. One of the advantages of the proposed approach is to
couple the probability and the value of each bit at the output.
It allows to utilize various indicators for the error estimation
as well as assess the confidence of the results. Indeed, error
vectors could be represented either by a precise difference or
by comparing a binary hypothesis with the actual key.

Further, the attack system has to differentiate between
the three types of hypothesis estimations for configuring the
exit conditions. The most harmful error that needs to be
completely eliminated is the confident-wrong hypothesis on a
particular bit. In case of this error, we have an incorrect result
and cannot localize the position of the error. In contrast, if
we have a limited number of unconfidently-defined bits, it is
possible to ‘‘flip’’ each of them from zero to one and vice
versa. Then, these several bits of the key could be derived
by brute force. In case of uncertainty, it does not matter
whether the hypothesis is correct or not i.e., in both cases
the overall result would contain uncertain relevant bit and two
probable keys required to be validated. Hence, each uncertain
bit doubles the number of probable keys and thus the number
of such errors has to be limited.

During the initial learning phase, error vectors are utilized
for estimating the relevance of the data input. After the first
stage, all of the input data have the corresponding associ-
ated weights that are further involved into the data prepa-
ration algorithm. In addition to input data, the correlation
(i.e., XOR) between these and the actual key (i.e., the hypoth-
esis of the key in case of a real attack) is evaluated. Thus
produced correlation vectors may be utilized for optimization
at the stage of the data preparation. Further, the part of the
confidently defined key bits in the hypothesis may also be
considered. In particular, the system selects the most appli-

cable vector of the correlation to select the set of compliant
input vectors. From this set, the vector with the highest weight
is selected for this iteration as the input data.

There is a number of other reasons for selecting CNN as
the main tool for the key derivation task. First, particular bits
of the key have an impact only on the specific parts of the
trace, which could be taken into account by the CNN i.e.,
there is a lower number of configurable links as compared
to the multilayer perception [60]. Second, convolution com-
putations can be performed by applying a higher number of
streams in a simpler way than for most networks of other
topologies. Finally, deepmachine learning can examinemuch
more complex correlations [61].

The disadvantage of using neural networks as a tool for
our analysis is in their low efficiency for processing data
that contain a large number of features. With regards to
the parasitic signal, an attacker is not able to independently
distinguish important features of each trace. To mitigate
this ‘‘curse of dimensionality’’, we may utilize the normal-
ized inter-class variance (NICV) method [62] allowing to
identify the most vulnerable features of traces based on
data classification and detection of anomalous dispersion
deviations.

VI. POSSIBLE PROTECTION AGAINST SCAs
In the remainder of this text, we overview the main types of
attacks, countermeasures, and guidelines that both the appli-
cation developers and the end users may follow in order to
increase their chances to protect from the SCAs. Even though
some of these recommendations may seem straightforward
and self-evident, we note that the majority of users and devel-
opers seldom comply with these guidelines and warnings.

A. SCAs CLASSIFICATION AND COUNTERMEASURES
In this work, the focus was set on the analysis employing a
market-available sound card, which constitutes a particular
case of the power analysis attack. However, it is impor-
tant to emphasize that a number of other attacks may be
implemented in the MSN as well. We thus briefly study the
countermeasures against most types of the applicable SCAs.

1) POWER ANALYSIS
The attacker is analyzing the power consumption level of the
devices by focusing on the modules operating with calcula-
tion of crypto primitives. Themain requirement for this attack
to be executed is close proximity.
Countermeasures: Themain technique to avoid or mitigate

the power analysis SCA is by introducing a tamper resistant
body from the hardware point of view [63]. If such a straight-
forward solution is unacceptable, software developers may
apply other techniques, including: (i) power randomization
i.e., adding pseudo-random noise to the power consump-
tion [64], (ii) data masking i.e., adding a data processing
power figure uncorrelated with the secret [65], and (ii) data
hiding i.e., concealing the intermediate encryption-related
values in other activities [66].
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2) TRAFFIC ANALYSIS
The attacker is analyzing the data flows that travel through
the MSN to detect the critical node (e.g., a more trusted
device) [67]. By detecting and compromising this node, the
attacker may obtain higher influence on the MSN operation
in general.
Countermeasures: One of the possible solutions is to

camouflage the traffic i.e., anonymize the traffic of the critical
node. It could be achieved by forcing the surrounding nodes
to execute additional operations.

3) TIMING ATTACKS
This type of SCAs is targeted to exploit the time fluctuations
during the secret-driven information process [68]. It may be
conducted by utilizing the predefined look-up tables, early
loop exiting, etc.
Countermeasures: One of the ways to avoid this type

of attacks is to modify the intermediate values [69] or to
add constant execution times [70]. Note that the discussed
solutions may not be directly applicable for resource-
constrained devices due to their high computation overheads.
Other approaches known from the literature are to avoid
the comparison of the secret information in a byte-by-byte
manner as well as to utilize the look-up tables indexed with
the secret information [71].

4) FAULT ANALYSIS
With this type of an active threat, the attacker attempts to
make a fault induction to the node’s input [72].
Countermeasures: Software developers should pay

extreme attention to the input validation while developing
applications that operate with sensitive data [73].

5) OTHER ATTACKS
Further, we list some of the SCAs that are not applicable for
MSNs in particular, but should be taken into consideration
generally.
Acoustic Cryptanalysis: The main difference with the

power analysis attack is that the acoustic emissions can be
obtained from the user input, such as e.g., keyboards [19].
There are no reliable ways to avoid this type of the SCA.
Thermal Imaging: This SCA is similar to the acoustic type,

with the main difference that the analysis of a thermal figure
from the CPU instead of the acoustic data [74] is exploited.
A possible countermeasure is to utilize additional shield on
the device. This, however, may bring along the overheating
issues.
Visual Attack: One of the most direct attacks is ‘‘spying’’

i.e., capturing the light emissions from a display, led, or other
device. Any signaling or sensitive information should thus be
removed from the visual representation.

B. RECOMMENDATIONS FOR USERS
Conventionally, users do not have meaningful access to
and explicit understanding of how software and hardware

related to cryptography operate. For this reason, the first line
of defense for the users against the malicious attackers is
naturally to apply all the software updates on the operating
system as well as the anti-virus software provided by the
developers. In addition, it is highly recommended to pay
particular attention to the devices coupled with the
‘‘life-gateway’’, that is, the smartphone [75]. In addi-
tion, a good practice is to use peripheral devices (power
banks, external speakers, etc.) only developed by trusted
manufacturers.5

Finally, any insecure long- and short-range wireless links
(IEEE 802.11, Bluetooth, etc.) coupled with the mali-
cious hardware6 become a potential informational security
threat [76], [77]. In such a case, enforcing all of the neces-
sary software updates on a regular basis appears to be the
most straightforward and comprehensive solution to keep the
personal user devices safe from the SCAs.

VII. CONCLUSION
The explosive growth of new mobile-friendly applications
and services is beginning to pose serious challenges to infor-
mation security in mobile devices. In addition, proliferation
of such services within the mobile social networks increases
the chances for the user to be compromised and for a mali-
cious attack to succeed. The aim of our research in this
paper is to demonstrate that using low-cost off-the-shelf
equipment for side-channel attacks on the smartphones is
a serious threat, whereas such an intrusion remains hard to
detect. In particular, our results reveal that even with low-end
equipment the attackers are able to detect signals of the crypto
computations. In fact, as shown in the latter part of this
paper, with only a minor advancement in the attack tools it
is possible to acquire even more informative traces.

Therefore, successful analysis of sensitive user data repre-
sents a serious threat for the personal user information stored
inside a handheld device that is connected through online
services. For this reason, after illustrating a possible more
efficient attack that may be conducted to collect the infor-
mation traces from other devices, we offer some guidelines
that users may follow to decrease the levels of risk for their
personal devices. As our future work, a possible extension
here could be to increase the cost of the attack equipment
(while still residing within the common consumer segment),
both on the hardware and software sides, for recovering the
secret stored in the mobile phones. In addition, the employed
algorithms for parsing and classifying the traces could be
improved further to leverage the extracted information even
more efficiently.

5See ‘‘Great. Now Even Your Headphones Can Spy on You’’, WIRED,
2016: https://www.wired.com/2016/11/great-now-even-headphones-can-
spy/

6See ‘‘NSA’s Own Hardware Backdoors May Still Be
a Problem from Hell’’, MIT Technology Review, 2013’’:
https://www.technologyreview.com/s/519661/nsas-own-hardware-
backdoors-may-still-be-a-problem-from-hell/
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