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ABSTRACT Blind source extraction (BSE) aims to extract the source of interest (SOI) from the outputs of a
mixing system, which is a challenging problem. A property existing in many signals is cyclostationarity and
this property has been widely exploited in BSE. While various cyclostationarity-based BSE methods have
been reported in the literature, they usually require the mixing system to be instantaneous. In this paper,
we address BSE in the context that the mixing system is convolutional. Specifically, a new BSE method
is developed to extract cyclostationary source signal from the outputs of a multiple-input-multiple-output
finite-impulse-response mixing system. It is shown that if the SOI has a unique cyclostationary frequency,
it can be recovered from the measured data. The effectiveness of the proposed BSE method is demonstrated
by simulation results.

INDEX TERMS Blind signal extraction, cyclostationary signal, MIMO FIR mixing system, second-order
cyclostationary statistics.

I. INTRODUCTION
Blind source separation (BSS) is a fundamental problem
encountered in many applications [1]–[4]. It considers the
practical multiple-input-multiple-output (MIMO) scenarios
and aims to estimate the unknown source signals from the
measured data by sensors. To achieve BSS, the sources
should have some sort of differences, e.g., they are mutually
independent/uncorrelated [1], cyclostationary [5], of con-
stant modulus [3], [6], etc. In some man-made systems
such as wireless communication systems, the source signals
can be pre-processed such that they possess certain
diversity [4]. Among different diversity properties, cyclosta-
tionarity exists in many practical applications such as com-
munication, telemetry, radar, sonar and mechanical systems.
For example, cyclostationarity is shared by most communica-
tion signals as a result of periodic switching, gating, ormixing
operations at the transmitter [7]. Many signals generated
by mechanical systems are also cyclostationary due to the
periodical rotation or movement of some parts [2].

Among the existing cyclostationarity based BSS methods,
most of them require the mixing system to be instantaneous.
Some representative cyclostationarity based BSS methods

for instantaneous mixing systems can be found
in [5] and [8]–[14]. Although instantaneous mixing sys-
tems exist in practice, the mixing systems encountered
in most real-world applications are actually dynamic, due
to multi-path propagation [15]–[18]. Hence, in this paper,
we relax the assumption on the mixing systems to allow
them to be convolutional. Specifically, we assume that the
MIMO mixing systems are of finite impulse response (FIR).
So far, some cyclostationarity based BSS methods for MIMO
FIR mixing systems have been developed but they are far
from mature. The methods in [15]–[17] use nonlinear cost
functions exploiting the higher-order cyclostationary statis-
tics (HOCS) of the measured data, from which several adap-
tive and iterative algorithms have been derived. However,
these algorithms are not globally convergent. Moreover, it
is known that the HOCS-based methods normally require a
larger number of data samples to achieve good statistical per-
formance. This would significantly increase computational
cost.

In contrast, the methods based on second-order cyclosta-
tionary statistics (SOCS) are often more efficient in compu-
tation. In [18], a frequency domain method is proposed to
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separate cyclostationary signals from MIMO FIR mixtures,
which only employs the SOCS of the measured data. How-
ever, it needs to perform approximate joint diagonalization of
a set of spectral correlation densitymatrices in each frequency
bin, which introduces a frequency-dependent permutation
ambiguity. To correct such permutation ambiguity, the source
signals must satisfy some conditions: they are real-valued and
mutually uncorrelated, and have different cyclic frequencies.
If one or more of these conditions do not hold, significant
performance degradation will be unavoidable. Moreover, this
correction procedure itself will add additional errors to the
final source separation outcome.

It should be noted that in some practical applications,
one only needs to extract the source of interest (SOI), not
all source signals, from the measured data [19]–[21]. This
is a special case of BSS, which is named as blind source
extraction (BSE). In [19]–[21], some BSEmethods have been
developed to extract a cyclostationary signal, which is of
interest, from the outputs of an instantaneous mixing system.
The method in [22] can deal with MIMO FIRmixing systems
but it relies on the HOCS of the system outputs. In [23], an
SOCS-based frequency domain method is proposed for BSE
from MIMO FIR mixtures. Since this method performs BSE
in the frequency domain, it utilizes cyclic power spectrum
instead of cyclic correlation function. As a result, the additive
noise term cannot be removed when estimating the extrac-
tion vector, which reduces the accuracy of signal extraction.
Another SOCS-based BSE method for MIMO FIR mixing
systems is reported in [24]. However, it depends on the
assumption that the entries of the first column of the mixing
matrix are constants instead of polynomials. This implies
that the sensors should be placed close to the SOI, which
would be restrictive in practice. Moreover, it assumes that for
the SOI, the ratio of its cyclic correlation function over its
correlation function is known. This assumption is impractical.
Furthermore, its validity is only illustrated by preliminary
simulation results.

In this paper, we propose a new SOCS-based BSE method
for MIMO FIRmixing systems. The proposed method allows
all of the entries of the mixing matrix to be polynomials,
which relaxes the restriction on sensor placement. In addition,
the new method does not require any prior knowledge of the
ratio of the SOI’s cyclic correlation function over its corre-
lation function, as it has an inherent mechanism to calculate
this ratio. The effectiveness of our method is verified both
theoretically and experimentally in detail.

The remainder of the paper is as follows. Section II intro-
duces the problem of BSE together with relevant assump-
tions. The new SOCS-based BSE method is proposed in
Section III. Simulation results are provided in Section IV to
illustrate the performance of the proposed method. Section V
concludes the paper.

II. PROBLEM FORMULATION
The mixing system we consider is as follows:

y(n) = H(z)[x(n)]+ w(n) (1)

where x(n) = [x1(n), x2(n), . . . , xI (n)]T is the source signal
vector, y(n) = [y1(n), y2(n), . . . , yJ (n)]T is the system output
vector, w(n) = [w1(n),w2(n), . . . ,wJ (n)]T is the additive
noise vector, H(z) is the J × I FIR mixing matrix, H(z)[x(n)]
denotes the operation of H(z) on x(n), and the superscript
T stands for transpose. Here, x(n), y(n), w(n) and the coef-
ficients of the polynomials in H(z) can be either real or
complex valued.Without loss of generality, we consider x1(n)
as the SOI. As in [24], we also assume that

A1) The SOI, x1(n), is zero-mean, temporally-white,
cyclostationary with a unique nonzero cyclic frequency β1,
and independent of the other I − 1 source signals x2(n),
x3(n), . . . , xI (n).
A2) The mixing matrix H(z) has more rows than columns,

i.e., J > I , and is irreducible and column-reduced.
A3) The noise signals w1(n),w2(n), . . . ,wJ (n) are mutu-

ally independent with zero mean and equal variance σ 2
w. They

are also independent of the source signals.
From the assumptions A1) and A3), it follows:〈

x1(n)x∗1 (n)e
βn〉 > 0, if β = 0, β1 (2)〈

x1(n)x∗1 (n− τ )e
βn〉
= 0, if β = 0, β1but τ 6= 0 (3)〈

xi(n)x∗i (n)e
β1n

〉
= 0, if i 6= 1 (4)〈

x1(n)x∗i (n)e
βn〉
= 0, if β = 0, β1 but i 6= 1 (5)〈

xi(n)x∗1 (n)e
βn〉
= 0, if β = 0, β1 but i 6= 1 (6)〈

xi(n)w∗j (n)e
β1n

〉
= 0, ∀i, j (7)〈

wi(n)w∗j (n)e
β1n

〉
= 0, ∀i, j (8)

where  =
√
−1, the superscript ∗ is the complex conjugate

operator, and < · > denotes the time averaging operator
defined as〈

xi(n)x∗i (n− τ )e
β1n

〉
= lim

N→∞

1
N

N−1∑
n=0

xi(n)x∗i (n− τ )e
β1n

where N is the number of samples. The objective of BSE is
to recover the cyclostationary SOI, x1(n), from the mixtures
y1(n), y2(n), . . . , yJ (n), or equivalently y(n).

III. PROPOSED METHOD
In order to develop an algorithm to extract the cyclostationary
signal x1(n) from the mixtures y(n), we first introduce the
sliding model of the mixing system described by (1).

A. SLIDING MODEL OF THE MIXING SYSTEM
Let

H(z) =
L∑
l=0

H(l)z−l (9)

where L is the order of the MIMO FIR mixing matrix H(z).
Denoting the order of the jth column ofH(z) by Lj, it follows

L = max(L1,L2, . . . ,LI ). (10)
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Based on the ith system output yi(n), we define

ỹi(n) = [yi(n), yi(n− 1), . . . , yi(n−W + 1)]T (11)

where the slide-window width W is chosen to satisfy

W > L̄ =
I∑
i=1

Li. (12)

The purpose of ensuring the inequality in (12) will become
clear in the next paragraph. It is worth noting that selecting a
suitable W does not require information of the exact values
of L1,L2, . . . ,LI but their upper bound Lupper ,1 where

Lupper ≥ L1,L2, . . . ,LI . (13)

We can simply choose

W > ILupper (14)

which apparently satisfies (12).
Denote the (i, j)th entry of H(l) by hi,j(l). Then, it follows

from (1), (9) and (11) that

ỹi(n) =
I∑
j=1

Hi,jx̃j(n)+ w̃i(n)

where

x̃j(n) = [xj(n), xj(n− 1), . . . , xj(n−W − Lj + 1)]T (15)

w̃i(n) = [wi(n),wi(n− 1), . . . ,wi(n−W + 1)]T (16)

andHi,j is shown at the bottom of this page. Further denoting

ỹ(n) = [ỹ1(n), ỹ2(n), . . . , ỹJ (n)] (17)

we have

ỹ(n) =Hx̃(n)+ w̃(n) (18)

where

x̃(n) = [x̃1(n), x̃2(n), . . . , x̃I (n)] (19)

w̃(n) = [w̃1(n), w̃2(n), . . . , w̃J (n)] (20)

and

H =


H1,1 H1,2 · · · H1,I
H2,1 H2,2 · · · H2,I
...

...
...

...

HJ ,1 HJ ,2 · · · HJ ,I


JW×(IW+L̄)

. (21)

Since J > I , the matrix H is a tall matrix, i.e., it has more
rows than columns. Also, under the assumption A1) and the
inequality in (12), it is shown in [25] that the matrix H has
the full column rank IW + L̄.

1Depending on the application scenario, Lupper can be chosen empirically
or by experiment.

Let u be a JW × 1 vector and define the compound vector

c =
(
uHH

)H
(22)

where the superscript H stands for complex conjugate trans-
pose. Then,

uH ỹ(n) = uHHx̃(n)+ uH w̃(n)

= cH x̃(n)+ uH w̃(n).

Clearly, the first W + L1 elements of c correspond to the
first source signal x1(n) and its delayed versions x1(n − 1),
x1(n−2), · · · , x1(n−W−L1+1), respectively. So, to recover
x1(n) from ỹ(n), we need to find such a vector u that the first
element of c is nonzero and the rest elements of c are zero.

B. ALGORITHM DEVELOPMENT
In order to recover x1(n) from ỹ(n), it is essential to taking
advantage of the properties of the sources. So, to begin with,
we look into the features of some source correlation matrices.

1) FEATURES OF SOURCE CORRELATION MATRICES
Define the cyclic correlation function ρβ1ij (τ ) as

ρ
β1
ij (τ ) =

〈
xi(n)x∗j (n− τ )e

β1n
〉

(23)

and the cyclic correlation matrix Rβ1x̃ix̃j (τ ) as

Rβ1x̃ix̃j (τ ) =
〈
x̃i(n)x̃Hj (n− τ )e

β1n
〉
. (24)

Let Ii be the i × i identity matrix and Ji stand for the i × i
Jordan matrix with the following form:

Ji =



0 0 · · · · · · 0

1 0
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 0


. (25)

From (2)-(8), (15), (16) and (23)-(25), we obtain

Rβ1x̃1x̃1 (1) =



0 0 · · · · · · 0

ρ
β1
11 (0) 0

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 ρ

β1
11 (0) 0


= ρ

β1
11 (0) · JW+L1 (26)

Hi,j =


hi,j(0) · · · · · · hi,j(Lj) 0 · · · 0
0 hi,j(0) · · · · · · hi,j(Lj) · · · 0

. . .
. . .

0 · · · 0 hi,j(0) · · · · · · hi,j(Lj)


W×(W+Lj)
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Rβ1x̃ix̃i (τ ) = 0, if i 6= 1 (27)

Rβ1x̃ix̃j (τ ) = 0, if i 6= j (28)

Rβ1x̃iw̃j (τ ) = 0, ∀i, j (29)

Rβ1w̃iw̃j (τ ) = 0, ∀i, j. (30)

Besides, we define the correlation function ρij(τ ) as

ρij(τ ) =
〈
xi(n)x∗j (n− τ )

〉
(31)

and the correlation matrix Rx̃ix̃j (τ ) as

Rx̃ix̃j (τ ) =
〈
x̃i(n)x̃Hj (n− τ )

〉
. (32)

It follows that

Rx̃1x̃1 (0) =


ρii(0) 0 0 · · · 0 0
0 ρii(0) 0 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 0 ρii(0)


= ρii(0) · IW+L1 (33)

and

Rx̃1x̃i (τ ) = Rx̃ix̃1 (τ ) = 0, if i 6= 1. (34)

Next, we will construct a set of output correlation matrices
from the available system outputs. Due to the features of the
source correlation matrices, these output correlation matrices
have some special structures.

2) CONSTRUCTION OF OUTPUT CORRELATION MATRICES
Similar to (24), we construct the cyclic correlation matrix
of ỹ(n) at time lag τ by

Rβ1ỹỹ(τ ) =
〈
ỹ(n)ỹH (n− τ )eβ1n

〉
. (35)

We have the following lemma.
Lemma 1: The rank of Rβ1ỹỹ(1) is W + L1 − 1.
Proof: From (17)-(21), (26)-(30) and (35), we have

Rβ1ỹỹ(1) =
〈
ỹ(n)ỹH (n− 1)eβ1n

〉
= HRβ1x̃x̃(1)H

H
+HRβ1x̃w̃(1)

+(HRβ1x̃w̃(1))
H
+ Rβ1w̃w̃(1)

= HRβ1x̃x̃(1)H
H

= H


ρ
β1
11 (0)JW+L1 0 · · · 0

0 0 · · · 0
...

...
...

...

0 0 · · · 0

HH . (36)

Since the (W+L1)×(W+L1) matrix JW+L1 is rank deficient
by 1 andH is of full column rank, the rank of Rβ1ỹỹ(1) isW +
L1 − 1. This completes the proof. �
Based on Lemma 1, Rβ1ỹỹ(1) has W + L1 − 1 nonzero sin-

gular values. Suppose that u1,1,u1,2, · · · ,u1,K1 are the sin-
gular vectors corresponding to the K1 largest singular values
of Rβ1ỹỹ(1), where

K1 = W + Lupper − 1 ≥ W + L1 − 1. (37)

We can form the following matrix

U1 =
[
u1,1,u1,2, . . . ,u1,K1

]
. (38)

As will be shown later, U1 plays an important role in the
derivation of the desired SOI extraction vector.
Similar to (36), we can also find

Rβ1ỹỹ(0) =H


ρ
β1
11 (0)IW+L1 0 · · · 0

0 0 · · · 0
...

...
...

...

0 0 · · · 0

HH . (39)

Furthermore, from (17)-(21) and (31)-(34), the autocorrela-
tion matrix of ỹ(n) can be obtained as follows:

Rỹỹ(0) =
〈
ỹ(n)ỹH (n)

〉
= HRx̃x̃(0)HH

+HRx̃w̃(0)

+ (HRx̃w̃(0))
H
+ Rw̃w̃(0)

= HRx̃x̃(0)HH
+ Rw̃w̃(0)

= HRx̃x̃(0)HH
+ σ 2

wIJW . (40)

Since H is a tall matrix, (40) implies that σ 2
w is the smallest

eigenvalue of Rỹỹ(0) and thus can be estimated from Rỹỹ(0).
Consequently, we can remove σ 2

wIJW from Rỹỹ(0) by

R̄ỹỹ(0) = Rỹỹ(0)− σ
2
wIJW (41)

which leads to

R̄ỹỹ(0)

= HRx̃x̃(0)HH

= H


Rx̃1x̃1 (0) Rx̃1x̃2 (0) · · · Rx̃1x̃J (0)
Rx̃2x̃1 (0) Rx̃2x̃2 (0) · · · Rx̃2x̃J (0)

...
...

...
...

Rx̃J x̃1 (0) Rx̃J x̃2 (0) · · · Rx̃J x̃J (0)

HH .

(42)

Based on Rβ1ỹỹ(0) and R̄ỹỹ(0), we introduce a JW × JW

matrix T(ξ ) defined by

T(ξ ) = Rβ1ỹỹ(0)− ξ · R̄ỹỹ(0) (43)

where ξ is a nonzero constant. In the next subsection, we will
show how to construct the matrix T(ξ ) in a meaningful way.

3) CONSTRUCTION OF T(ξ)
From (43), it is clear that if ξ is given, T(ξ ) can be easily
constructed by using Rβ1ỹỹ(0) and R̄ỹỹ(0). To find the right
value for ξ , it is interesting to see how the value of ξ affects
T(ξ ), which is shown in the lemma below.
Lemma 2: The matrix T(ξ ) is rank deficient. Its rank is

IW + L̄ if and only if

ξ 6= ρ
β1
11 (0)/ρ11(0) (44)

and it reduces to (I − 1)W + L̄ − L1 if and only if

ξ = ρ
β1
11 (0)/ρ11(0). (45)
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Proof: From (33), (34) and (42), it follows

R̄ỹỹ(0)

= H


ρ11(0) · IW+L1 0 · · · 0

0 Rx̃2x̃2 (0) · · · Rx̃2x̃J (0)
...

...
...

...

0 Rx̃J x̃2 (0) · · · Rx̃J x̃J (0)

HH

= H
[
ρ11(0) · IW+L1 0

0 R̄x̃x̃(0)

]
HH (46)

where

R̄x̃x̃(0) =

Rx̃2x̃2 (0) · · · Rx̃2x̃J (0)
...

...
...

Rx̃J x̃2 (0) · · · Rx̃J x̃J (0)


is of full rank. Based on (39) and (46), we can rewrite (43) as

T(ξ )

= H
[(
ρ
β1
11 (0)− ξ · ρ11(0)

)
IW+L1 0

0 −ξ · R̄x̃x̃(0)

]
HH .

(47)

Since H is a full column rank tall matrix, one can see
from (47) that T(ξ ) is rank deficient. Moreover, since the
dimension ofH is JW×(IW+L̄), it is obvious from (47) that
the rank of T(ξ ) is IW + L̄ if and only if ξ 6= ρβ111 (0)/ρ11(0),
and it reduces to (I − 1)W + L̄ − L1 if and only if ξ =
ρ
β1
11 (0)/ρ11(0). This completes the proof. �
As will become clear in the next subsection, the value of

ξ satisfying (45) is desirable. However, ξ cannot be directly
computed using (45) as ρβ111 (0) and ρ11(0) are often unknown
in practical applications. Now, we show that ξ can be esti-
mated by utilizing Rβ1ỹỹ(0) and R̄ỹỹ(0).
First, before ξ is determined, T(ξ ) in (43) can be viewed as

a symbolic matrix with the variable ξ . Let us denote the r th
singular value of T(ξ ) by Er (ξ ). From Lemma 2, it implies
that

Er (ξ ) = 0, for (I − 1)W + L̄ − L1 < r < IW + L̄ + 1

(48)

if and only if (45) holds. Define

r = (I − 1)W + ILupper . (49)

From (12)-(14) and (49), it is easy to show that

r ≥ (I − 1)W + L̄

> (I − 1)W + L̄ − L1

and

r < (I − 1)W +W

= IW

< IW + L̄ + 1.

Therefore, r defined in (49) satisfies the inequality in (48) and
thus ensures the equation Er (ξ ) = 0 in (48). As a result, we

can solve Er (ξ ) = 0 for ξ by using the MATLAB function
solve(·), and the obtained ξ will satisfy (45).

However, conducting singular value decomposition on a
symbolic matrix requires a large memory space, which may
exceed the memory limit of a normal computer. So an alter-
native approach is needed. It is easy to verify that T(ξ ) is a
normal matrix. Also, it is known that the singular values of a
normal matrix are equal to the absolute values of its eigenval-
ues [26]. This means that for a given ξ value, T(ξ ) will have
the same number of zero singular values and zero eigenval-
ues. Based on this observation, we can conduct eigenvalue
decomposition, instead of singular value decomposition, on
the symbolic matrix T(ξ ), which requires less memory space.
Applying the MATLAB function eig(·) to T(ξ ) will return an
expression root(f (z, ξ ), z), where f (z, ξ ) is a function of order
JW with respect to z. This expression implies that the roots
of f (z, ξ ) with respect to z are the eigenvalues of T(ξ ). As a
result, forcing the eigenvalues of T(ξ ) to be zero is equivalent
to zeroing the roots of f (z, ξ ) with respect to z. Thus, we use
the MATLAB function solve(·) to solve root(f (z, ξ ), z) = 0
for ξ as follows:

solve(root(f (z, ξ ), z) == 0, ξ ) (50)

which yields JW values. For each obtained ξ value, we
substitute it back into (43) and then conduct singular value
decomposition for T(ξ ). The ξ value which makes Er (ξ ) = 0
is chosen as the desired ξ value. The matrix T(ξ ) constructed
based on this desired ξ value is essential to the derivation of
the new BSE algorithm.

4) FORMULATION OF ALGORITHM
Since the obtained ξ satisfies (45), it holds ρβ111 (0) − ξ ·

ρ11(0) = 0. Thus, it follows from (47) that

T(ξ ) =H
[
0 0
0 −ξ · R̄x̃x̃(0)

]
HH . (51)

In this case, the rank of T(ξ ) is (I − 1)W + L̄ − L1 =
(I − 1)W +

∑I
i=2 Li. Denote the singular vectors cor-

responding to the K2 largest singular values of T(ξ ) as
u2,1,u2,2, · · · ,u2,K2 , where

K2 = (I − 1)(W + Lupper ) ≥ (I − 1)W +
I∑
i=2

Li. (52)

Then we can form the matrix below:

U2 =
[
u2,1,u2,2, . . . ,u2,K2

]
. (53)

Based on the matrices U1 and U2 shown in (38) and (53),
respectively, we define

U = [U1,U2]. (54)

Assume that u is the singular vector corresponding to the
smallest singular value of U. Then, we propose the following
theorem.
Theorem 1: The first element of uHH is nonzero and the

rest elements are zero.
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Proof: For the JW × (IW + L̄) matrixH shown in (21),
denote the jth column by h̄j and the (i, j)th entry by h̄i,j, where
i = 1, 2, . . . , JW and j = 1, 2, . . . , IW + L̄. The matrix
Rβ1ỹỹ(1) in (36) can be further written as

Rβ1ỹỹ(1) = ρ
β1
11 (0) ·

[
h̄1, h̄2, . . . , h̄W+L1

]
JW+L1


h̄
H
1

h̄
H
2
...

h̄
H
W+L1



= ρ
β1
11 (0) ·

[
h̄1, h̄2, . . . , h̄W+L1

]


0

h̄
H
1
...

h̄
H
W+L1−1


= ρ

β1
11 (0) ·

[
h̄2h̄

H
1 + h̄3h̄

H
2 + . . .+ h̄W+L1 h̄

H
W+L1−1

]
= ρ

β1
11 (0) ·

[W+L1∑
i=2

h̄∗1,i−1 · h̄i,
W+L1∑
i=2

h̄∗2,i−1 · h̄i, . . . ,

W+L1∑
i=2

h̄∗JW ,i−1 · h̄i

]
. (55)

From (55), it is easy to see that

span
{
Rβ1ỹỹ(1)

}
= span

{
h̄2, h̄3, . . . , h̄W+L1

}
(56)

where span
{
Rβ1ỹỹ(1)

}
denotes the span of the column vectors

of Rβ1ỹỹ(1). Similarly, for the matrix T(ξ ) given in (51), we
have

span {T(ξ )}

= span
{
h̄W+L1+1, h̄W+L1+2, . . . , h̄IW+L̄

}
. (57)

Since

rank
{
Rβ1ỹỹ(1)

}
= W + L1 − 1

and u1,1,u1,2, . . . ,u1,K1 are the singular vectors correspond-
ing to the K1 largest singular values of R

β1
ỹỹ(1) with K1 satis-

fying (37), it holds that

span
{
Rβ1ỹỹ(1)

}
⊆ span

{
u1,1,u1,2, . . . ,u1,K1

}
. (58)

Moreover, since

rank {T(ξ )} = (I − 1)W +
I−1∑
i=1

Li

and u2,1,u2,2, . . . ,u2,K2 are the singular vectors correspond-
ing to theK2 largest singular values ofT(ξ ) withK2 satisfying
(52), we have

span {T(ξ )} ⊆ span
{
u2,1,u2,2, . . . ,u2,K2

}
. (59)

It is easy to find that the matrix U defined in (54) has
JW rows and K1 + K2 columns. Since H is a tall matrix,
it holds that

K1 + K2 ≤ JW − 1.

Hence, the singular vector u corresponding to the smallest
singular value of U must satisfy

uHU = 0.

From (56)-(59), it follows that

uH h̄k = 0, k = 2, 3, . . . , IW + L̄. (60)

Since H is of full column rank, its first column h̄1 is inde-
pendent of all other columns h̄2, h̄3, . . . , h̄IW+L̄ . Therefore,
it holds with probability one that

uH h̄1 6= 0. (61)

Combining (60) and (61) completes the proof. �
From Theorem 1, the vector u is not orthogonal to the first

column ofH but orthogonal to the other columns ofH. Thus,
u is a desired extraction vector that can recover the SOI, x1(n),
from y(n).
In summary, the proposed BSE algorithm is formulated as

follows:
• Step 1: Choose a slide-window widthW satisfying (14),
followed by constructing ỹ1(n), ỹ2(n), · · · , ỹJ (n)
by (11) and ỹ(n) by (17).

• Step 2: Compute the cyclic correlation matrices Rβ1ỹỹ(0)

and Rβ1ỹỹ(1) by (35), and the autocorrelation matrix
Rỹỹ(0) by Rỹỹ(0) =

〈
ỹ(n)ỹH (n)

〉
.

• Step 3: Estimate the noise variance σ 2
w, which is the

smallest eigenvalue of Rỹỹ(0), and then remove noise
component from Rỹỹ(0) to obtain R̄ỹỹ(0) by (41).

• Step 4: Based on Rβ1ỹỹ(0) and R̄ỹỹ(0), conduct a series
of calculations: i) form the symbolic matrix T(ξ ) with
the variable ξ by (43) and compute r by (49); ii) apply
eig(·) to the symbolic matrix T(ξ ) to get the expression
root(f (z, ξ ), z); iii) use (50) to obtain a set of ξ values;
iv) substitute each ξ value back into (43), conduct singu-
lar value decomposition for T(ξ ), and select the ξ value
making Er (ξ ) = 0 as the desired ξ value; v) apply the
desired ξ value to (43) to calculate T(ξ ).

• Step 5: Find u1,1,u1,2, . . . ,u1,K1 , which are the singular
vectors corresponding to the K1 largest singular values
of Rβ1ỹỹ(1). Then, form the matrix U1 by (38).

• Step 6: Find u2,1,u2,2, . . . ,u2,K2 , which are the sin-
gular vectors corresponding to the K2 largest singular
values of T(ξ ). Then, form the matrix U2 by (53).

• Step 7: Construct the matrix U by (54). The singular
vector corresponding to the smallest singular value of
U is chosen as the extraction vector u.

Remark: The proposed BSE algorithm does not require the
exact values of L1,L2, · · · ,LI but their upper bound Lupper .
So, in the implementation of the algorithm, we can assume,
without loss generality, that all of the columns of H(z) are of
equal order Lupper .

IV. SIMULATION RESULTS
In this section, we present simulation examples to illustrate
the performance of the proposed SOCS-based BSE method,

2016 VOLUME 5, 2017



Y. Xiang et al.: Second-Order Cyclostationary Statistics-Based BSE From Convolutional Mixtures

in comparison with the methods in [6], [18] and [24]. In the
simulations, the source signals are generated as follows:

x1(n) = s1(n) ∗ cos(α1 · n)

xi(n) = si(n), i = 2, 3, . . . , I

where s1(n), s2(n), . . . , sI (n) are randomly generated tem-
porarily white sequences. Thus the SOI, x1(n), is cyclosta-
tionary with cyclic frequency β1 = 2α1 and ρ11(0) =
2ρβ111 (0). The MIMO FIR mixing matrix H(z) is randomly
generated in each simulation run. Randomly generated white
Gaussian noise is added to the source signal mixtures and the
signal-to-noise ratio (SNR) is defined as

SNR = −10log10
(
σ 2
w

)
.

Ideally, for the compound vector c defined in (22), only one
of its firstW elements is nonzero and the rest elements should
be zero. However, this is not practically achievable due to
finite sample size and computational inaccuracy. Therefore,
the performance of our method is measured by means of the
mean interference rejection level (MIRL) of the extraction
vector. Let

cT = [c1, c2, . . . , ck , . . . , cIW+L̄]

and assume ck is the maximum element out of the first
W elements of c. The MIRL index is defined as follows:

MIRL(dB) = 20log10

 1(
IW + L̄ − 1

)
· |ck |

IW+L̄∑
i=1,i 6=k

|ci|

 .
We compute MIRL by averaging 200 independent runs.
Clearly, the smaller MIRL, the better SOI extraction perfor-
mance.

In the first simulation, we consider an MIMO FIR mixing
system of 3 inputs, 5 outputs and order 2, i.e., I = 3,
J = 5 and L = 2. The SNR is kept at SNR= 25dB.
Fig. 1 shows the MIRL of the proposed BSE method versus
sample size N . It can be seen that satisfactory performance is
achieved for all tested sample sizes. Also, with the increase
of sample size, the MIRL decreases accordingly, as expected.
Our method exploits the second-order statistics properties of
the system outputs, specifically the output cyclic-correlation
and autocorrelationmatrices. So usingmore data sampleswill
generate more accurate statistics properties and thus produce
better source extraction performance.

The second simulation evaluates the performance of the
proposed method versus the order of the mixing system,
where I = 3, J = 5, N = 30000 and SNR= 25dB.
Fig. 2 shows the simulation result. We can see that the
MIRL increases with the rise of the system order. This is not
surprising as higher system order means that the system is
more complicated, which will lower the performance of BSE.
Nevertheless, our method performs well even in the cases
of relatively high system orders, e.g., the proposed method
achieves an MIRL of about −15dB when the order of the
system is 7.

FIGURE 1. The MIRL of the proposed method versus sample size, where
I = 3, J = 5, L = 2 and SNR= 25dB.

FIGURE 2. The MIRL of the proposed method versus system order, where
I = 3, J = 5, N = 30000 and SNR= 25dB.

Then, the MIRL of our method is assessed under differ-
ent number of sources (or inputs), where the other simu-
lation parameters are J = 7, L = 2, N = 30000 and
SNR= 25dB. As shown in Fig. 3, on the one hand, increasing
the number of sources enlarges MIRL, degrading the accu-
racy of SOI extraction. On the other hand, when the number
of sources is smaller than the number of outputs, which is 7
in this simulation, the MIRL is satisfactory. However, when
the source number reaches 7, the extraction performance is
quite poor. This is understandable as the assumption A2) is
not satisfied in this case.

Finally, we compare the proposedmethod with those meth-
ods in [6], [18] and [24]. Fig. 4 shows the MIRLs of the
four methods versus SNR, where I = 3, J = 5, L = 2
and N = 30000. It can be seen that our method performs
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FIGURE 3. The MIRL of the proposed method versus the number of
sources, where J = 7, L = 2, N = 30000 and SNR= 25dB.

FIGURE 4. The MIRLs of four compared methods versus SNR, where I = 3,
J = 5, L = 2 and N = 30000.

very well at moderate and high SNR levels. It also achieves
satisfactory performance when the SNR is not too low, thanks
to the noise removal procedure actioned in (41). For exam-
ple, it achieves an MIRL of about −15.5dB at SNR=5dB.
In contrast, the other three methods fail to demonstrate a good
performance. The main reasons are as follows. The method
in [6] is a higher-order statistics based method and it requires
the sources to have constant modulus. The method in [18]
conducts signal separation in distinct frequency bins of the
frequency domain, which introduces a frequency-dependent
permutation ambiguity. Correcting this permutation ambigu-
ity requires the sources to possess some special properties.
However, the condition required by [6] and some of the
conditions required by [18] do not exist in the source signals
used in our simulation. Furthermore, the ambiguity correction
procedure in [18] itself also introduces additional errors to

the final outcome of BSE. Regarding the method in [24], it
assumes that the entries of the first column of the mixing
matrix are constants instead of polynomials. However, the
mixing matrix used in the simulation is more general and all
of its entries are polynomials.

V. CONCLUSION
This paper deals with the problem of extracting an SOI that
is cyclostationary from the outputs of an unknown MIMO
FIR mixing system. Although great efforts have been made
to tackle this problem and some methods have been reported
in the literature [15]–[18], [22]–[24], they have various dis-
advantages. Specifically, they rely on the HOCS of the mea-
sured data [15]–[17], [22] which is costly in computation,
have local minimum problem [15]–[17], suffer from the
frequency-dependent permutation ambiguity problem [18],
struggle with the non-removable noise contamination prob-
lem [23], or impose restrictive conditions on the MIMO FIR
mixing system (i.e., the entries of the first column of the
mixing matrix are constants) and the SOI (i.e., the ratio of the
SOI’s cyclic correlation function over its correlation function
is known) [24]. In this paper, a new SOCS-based method
is proposed to recover the SOI from MIMO FIR mixtures.
The proposed method overcomes the problems existing in the
methods in [15]–[18] and [22]–[24]. Simulation results show
the superior performance of the newmethod over the existing
methods.
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