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ABSTRACT This paper presents an optimization framework to maximize the lifetime of wireless sensor
networks for structural health monitoring with and without energy harvesting. We develop a mathematical
model and formulate the problem as a large-scale mixed integer non-linear programming problem. We also
propose a solution based on the Branch-and-Bound algorithm augmented with reducing the search space.
The proposed strategy builds up the optimal route from each source to the sink node by providing the best
set of hops in each route and the optimal power allocation of each sensor node. To reduce the computational
complexity, we propose heuristic routing algorithms. In this heuristic algorithm, the power levels are selected
from the optimal predefined values, the problem is formulated by an integer non-linear programming, and
the Branch-and-Bound reduced space algorithm is used to solve the problem. Moreover, we propose two
sub-optimal algorithms to reduce the computation complexity. In the first algorithm, after selecting the
optimal transmission power levels from a predefined value, a genetic algorithm is used to solve the integer
non-linear problem. In the second sub-optimal algorithm, we solve the problem by decoupling the optimal
power allocation scheme from the optimal route selection. Therefore, the problem is formulated by an integer
non-linear programming, which is solved using the Branch-and-Bound space-reduced method with reduced
binary variables (i.e., reduced complexity), and after the optimum route selection, the optimal power is
allocated for each node. The numerical results reveal that the presented algorithm can prolong the network
lifetime significantly compared with the existing schemes. Moreover, we mathematically formulate the
adaptive energy harvesting period to increase the network lifetime with the possibility to approach infinity.
Finally, the minimum harvesting period to have infinite lifetime is obtained.

INDEX TERMS Structural health monitoring, wireless sensor networks, network lifetime, energy
harvesting.

I. INTRODUCTION
The new advances in sensor device technologies make
wireless sensor networks (WSNs) more effective and
economically-viable solutions for a wide variety of appli-
cations, such as environmental monitoring, scientific explo-
ration, and target tracking [1], [2]. Structural health
monitoring (SHM) systems are implemented for civil struc-
tures (including buildings, bridges, tunnels, aircraft, among
others) to monitor their operations and health status. The
monitoring of civil structures enables damage prediction

and therefore, repairs anticipation thus avoiding accidents.
WSNs are becoming an enabling technology for SHM that
are more prevalent and more easily employable than current
wired systems.

Traditionally, a sensor node is mainly powered by a non-
rechargeable battery, which has a limited energy storage
capacity. As a result, a WSN can only function for a limited
amount of time. A lot of research efforts have been dedicated
to prolong the lifetime of a WSN by improving its energy
efficiency. Joint energy efficient routing and node place-
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ment algorithm, namely JR-SPEM, presented in [3], reduces
energy consumption in structural health monitong WSN to
prolong the network lifetime. Moreover, theMWCDCT algo-
rithm, proposed in [4], investigated the sleep-mode schedul-
ing problem in order to maximize the network lifetime by
only turning on the specific subset of sensor nodes for mon-
itoring the target spots and for exploiting the transmission of
the sensed data over multiple hops toward the base station.
Alternatively, the idea of energy harvesting was proposed to
address the problem of limited lifetime in aWSN by enabling
the wireless sensor nodes to replenish energy from ambient
sources. There are a number of studies on energy harvesting,
recharging and their implications inWSN, such as [5] and [6].
Akhtar and Rehmani [5] focus on energy harvesting from
renewable as well as traditional energy resources in sustain-
able WSNs. In this paper ( [5]) the available sources for dif-
ferent applications ofWSNs, techniques used for scavenging,
storage methods and deployment architecture are discussed.
In the MC-OMLU algorithm [6], the rechargeable batteries
are augmented with the solar energy harvesting panel and the
authors proposed maximum lifetime utility function which
seek a balance between maximum total remaining energy and
maximum minimum remaining energy in order to maximize
network lifetime.

Currently, the main sources of ambient energy that are
considered suitable for use with WSNs are solar, thermal
energy, and mechanical (vibration or strain) [7], [8]. Solar
power is the most common and matured among the different
forms of energy harvesting. However, it has the drawback of
being able to generate energy only when there is sufficient
sunlight or artificial light [9]. Thermal energy harvesting uses
temperature differences or gradients to generate electricity,
e.g. between the human body and the surrounding environ-
ment [10]. Thermal energy harvesting systems are easy to
integrate with micro devices; however, their use is limited
to space and terrestrial applications. Vibration, dynamic and
mechanical energy generated by movements of objects can
also be harvested. Vibrations are present all around us and
especially prominent in bridges, roads and rail tracks. The
methods of harvesting vibration energy is through the use
of a electrostatic generator [11], piezoelectric capacitor [12],
or micro electromagnetic generator [13]. Advantage of elec-
trostatic harvesting devices is ease of integration and no need
for smart materials and the output voltage is high. However,
electrostatic devices are highly dependent on the external
voltage source. Piezoelectric energy harvesters require no
external voltage source and the output voltage is relatively
high. However, piezoelectric materials, such as PZT, are often
brittle and their material properties change through opera-
tional life. Electromagnetic generators are simple and rugged,
but are difficult to manufacture in micro scale.

The commercial energy harvesting devices, such as the
solar energy harvesting development kits produced by
Texas Instruments are augmented with the rechargeable
batteries [14]. However, some advanced commercial energy
harvesters can even replace batteries and be used to power

wireless sensor nodes alone [15] with the help of super
capacitors. Typically, in the traditional commercial energy
harvesting systems, the energy harvested from environmental
resources firstly arrives at the boost converters that scale up
the voltage, and it is followed by batterymanagement systems
where the energy is stored. By doing this, the energy is con-
verted into a useful and regulated form for many applications,
such as wireless sensor networks.

The rechargeable battery of an energy harvesting sensor
node can be modeled as an energy buffer, where the har-
vested energy can be stored according to a given battery
charging characteristics. Unlike a traditional wireless sen-
sor network (WSN) powered by non rechargeable batter-
ies, the energy management policy of an energy harvesting
WSN needs to take into account the energy replenishment
process. Therefore, due to the random and uncertainty of the
energy supply in energy harvesting systems, the design and
considerations in the energy harvesting WSNs are different
from a non-rechargeable battery powered WSNs in many
ways and the energy management strategy for an energy
harvestingWSN needs to take into account the energy replen-
ishment process. As a result, the existing protocols to prolong
the network lifetime inWSNs are nomore valid for the energy
harvesting WSNs.

The wireless sensor network lifetime definition varies
depending on the specific application, on the objective
function and on the network topology considered and it
can be defined as follows: (1) the time instant at which
a certain number of nodes in the network depleted their
batteries [16], [17], (2) the lifetime of the specific sen-
sor node associated with the highest energy consumption
rate [18], (3) the instant, when the first data collection
failure occurred [19], and (4) the duration of time before
the first node in the network was depleted (or become
unavailable) [20]. In this paper, assuming the latest definition
for the network lifetime, we propose a framework to max-
imize network lifetime with and without energy harvesting.
Lifetime maximization in WSNs is a well studied topic;
however, to the best of our knowledge, there is no analytical
model which can accurately formulate optimum routing to
maximize lifetime of energy harvesting WSN for structural
health monitoring.

The remainder of this paper is organized as follows.
In Section II, we illustrate the system model and formulate
our optimization task. In Section III, we develop a mathe-
matical model and we formulate the problem to maximize
the network lifetime by optimizing the routing algorithm
and power allocation in the energy harvested model jointly.
In Section IV, we propose the optimal, near-optimal, and sub-
optimal solution to the problem. In Section V, the results and
performance evaluation are given. Finally, we conclude the
paper in Section VI.

II. SYSTEM MODEL
We consider a set of N wireless sensor nodes, N, deployed
on the structure that needs to be monitored. In other words,
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the location of the nodes and the sink is predetermined.
We assume that the distance-based attenuation follows the
generic exponential path-loss model with an exponent γ .
To compute the energy consumption of each node, we use
a well-accepted transmission model [21]. This assumes that
the total energy consumption includes the transmission and
reception energy. Let ECn be the total energy consumption of
node n in one cycle duration which is equal to

ECn = ETn + E
R
n , (1)

where ETn and ERn are the transmission and reception energy
consumption of node n respectively. The total transmission
energy consumption of node n is defined as the energy con-
sumption of all transmission links that node n is the transmit-
ter for, i.e.,

ETn =
∑
i∈N

eTn,i, (2)

where eTn,i is the transmission energy consumption of node n
when it is transmitting to node i, which can be expressed as
below

eTn,i = xn,i
[(
εt + εampr

γ
n,i

)
ub
]
, (3)

where ub is the number of bits per packet and the radio param-
eter εamp and εt are the transmitter amplifier and the trans-
mission coefficient, respectively. rn,i is the distance between
node n and node i. We are defining xn,i as an integer variable
to specify the number of times that the link between n to i is
used per cycle duration in the routing solution. We assume
that each node is generating one packet flow in each cycle
duration; therefore, we are defining xi,i is equal to 1.
The reception energy consumed by node n in one cycle

duration, ERn , is defined as the total amount of energy con-
sumed by node n due to reception from other nodes in the
network and can be expressed as follows

ERn =
∑
j∈N

eRj,n, (4)

where eRj,n is the reception energy consumption of node n
when it is receiving from node j and can be defined as below

eRjn = xj,nεrub, (5)

where εr is the energy coefficient for the reception.
In this paper, we are assuming that the nodes are using

Time Division Multiple Access (TDMA) mechanism for
channel access. Employing TDMA scheme, nodes transmit
their packet in their allocated time slot of the cycle duration.
Assuming the time slots of the nodes in the network is defined
as in Fig. 1, the forwarding and harvesting duty cycle ratio of
sensor nodes in the network, denoted as DCRF and DCREH ,
respectively, are given by

DCRF =
TF
TCD

, DCREH =
TEH
TCD

, (6)

where TF and TEH are the data forwarding period and energy
harvesting period, respectively, within the cycle duration.

FIGURE 1. Cycle duration, forwarding period, and harvesting period in a
cycle.

Each cycle duration, TCD, is equal to the sum of the forward-
ing and harvesting duration, i.e., TCD = TF + TEH . The data
forwarding period, TF , is the duration during which nodes
forward packets to the sink node. In other words, during TF in
Fig. 1, each node collects packets from other nodes and trans-
mits the packet to the sink node (directly or through multiple
hops). If the node is neither receiving nor transmitting packets
during the forwarding period, it will be harvesting energy. For
instance, node i is harvesting energy during TFj ( ∀j 6= i), in
which node j is relaying packets of the other nodes. There-
fore, each sensor node during TF forwards its own generated
packet and relays the received packet(s); moreover, node
harvests energy during the other node’s forwarding time slot.
Moreover, all sensor nodes are harvesting during harvesting
period, TEH . Therefore, total harvesting period of a node is
a combination of the time duration that other nodes in the
network are forwarding in their time slots and the harvesting
period, TEH (duration of time that all nodes are harvesting).
We are assuming a deterministic energy harvestingmodel and
as can be seen in Fig. 2, the rate of harvested energy defined
by ρ.

FIGURE 2. Energy harvesting characteristic of a harvesting system in
sensor node.

III. PROBLEM FORMULATION
The goal of the proposed algorithm is to find the route from
source node to the sink that maximizes the network lifetime.
In this paper, the network lifetime is defined as the duration of
time before the earliest node depletes its battery and therefore,
the duration of time before the first node in the network
becomes unavailable due to its energy replenishment [20].

In order to maximize the network lifetime, the variance of
the residual energy level needs to be maximized while the
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total energy consumption is minimized. By doing this, when
the energy of the first node is depleted, the other nodes have
a very low residual energy level (because of the limitation on
the variance of the residual energy levels). Therefore, before
the first node energy depletion, the network has utilized the
maximum amount of the energy of the other sensor nodes in
the network and as a result ensure longevity of the network.
Panigrahi et al. [22] and Randriatsiferana et al. [23] proved
that minimizing variance of residual energy, while minimiz-
ing the total energy consumption, leads to maximizing the
network lifetime.

The residual energy of a node at the cycle duration m is
given by

ERSn = E In − m
(
ECn − E

H
n

)
, (7)

where ERSn is the residual energy of node n, E In denotes the
initial energy of node n, and EHn is the harvesting energy
of node n per cycle duration. Therefore, the variance of the
residual energy is given by

1
N − 1

N∑
n=1

(
ERSn − E

RS
avg

)2
= m2 1

N − 1

N∑
n=1

(
Enet_Cn − Enet_Cavg

)2
, (8)

where Enet_Cn is the net energy consumption per cycle which
is ECn − EHn . ERSavg and Enet_Cavg are the mean value of the
residual and net energy consumption, respectively.

As mentioned earlier, the goal of the algorithm is to find
the route from each source to the sink such that each route
maximizes the lifetime. From Eq. (8), maximizing the life-
time is equal to minimizing the total net energy consumption,
Enet_CT , while keeping the variance of the constraint to min-
imize the variance of Enet_CT as low as possible (Constraint
C1 in Eq. (9)). Therefore, the optimization problem can be
formulated as below

Min.
X,Pt

Enet_CT ,

C1 :
1

N − 1

∑
n∈N

(
Enet_Cn − Enet_Cavg

)2
≤ δ,

C2 : 1 ≤
n6=m∑
m∈N

xn,m ≤ N , ∀n ∈ N

C3 : xn,n +
k 6=n∑
k∈N

xk,n =
m 6=n∑
m∈N

xn,m,∀n ∈ N− {D}

C4 :
n 6=D∑
n∈N

xn,D = N − 1,

C5 :
n 6=S∑
n∈N

xD,n = 0, ∀S ∈ S

0 ≤ Ptn ≤ P
tmax ,

xn,m ∈ {0, 1}, (9)

where X and Pt are the the optimization decision variables.
Each element inmatrixX (i.e., xn,m ) represents the number of
flows that use a particular link and each element of the vector
Pt (i.e., Ptn ) represents the transmission power level of a node
in routing. Ptmax is the maximum transmission power level for
the IEEE 802.15.4 devices.

As explained earlier, to maximize the lifetime the variance
of the net energy consumption of all nodes in the network
forced to be bounded; in other words, the net energy con-
sumption of the nodes in the network should not deviate
strongly the average. Constraint C1 in Eq. (9) enforces that
the variance of the energy level of each node, Enet_Cn , is
limited. In other words, the remaining energy level of the all
nodes are close to each other, such that as the first node’s
energy is depleted, the other nodes have the minimum energy.
Therefore, constraint C1 is imposed to keep the variance
as low as possible. The upper bound of the variance (δ)
is found by solving the optimization problem iteratively
(by increasing δ) until the minimum value of delta that sat-
isfies constraint C1 is found. By doing so, we guarantee that
the variance of the residual energy is minimized. Constraint
C2 forces the range for the number of the times (per cycle)
that a link is used. Constraint C3 formulates the flow balance
at an intermediate node along the path between the source
node and destination node D. This constraint, C3, enforces
that the number of input flows to a sensor node plus the
number of generated traffic of the node itself is equal to
the number of output flows (excluding the sink). Finally,
we impose that all packets should reach the destination node
and the destination node does not transmit any packets to
other nodes in the network. These constraints are expressed
by C4 and C5, respectively. We are also defining that nodes
n and m are disconnected from each other, Conn,m = 0,
if rn,m ≥ Rd , where Con is the connectivity indicator and
Rd is the connection distance threshold. Otherwise, node n
and m are connected and Conn,m = 1.

Obviously, Eq. (9) is aMixed Integer Non-Linear Program-
ming (MINLP) problem, since the binary variables, xn,m and
real variables, Ptn are involved in the non-linear objective
function and constraints.

IV. PROPOSED SOLUTION PROCEDURE
The Branch-and-Bound algorithm is by far the most
widely used tool for solving integer optimization problems.
Obviously, the optimal value of the objective function in a
continuous linear relaxation of a problem will always be a
lower bound on the optimal value of the objective function.
Moreover, in any minimization, any feasible point always
specifies an upper bound on the optimal objective func-
tion value. The idea of the Branch-and-Bound is to utilize
these observations to subdivide MINLP‘s feasible region into
more-manageable subdivisions and then, if required, to fur-
ther partition the subdivisions. These subdivisions make a so-
called enumeration tree whose branches can be pruned in a
systematic search for the global optimum.
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TABLE 1. Optimal solution using branch-and-bound space reduced
pseudo code.

A. BRANCH-AND-BOUND SPACE REDUCED ALGORITHM
We enhance the Branch-and-Bound algorithm and develop
a Branch-and-Bound Space Reduced algorithm to solve
the MINLP. This proposed algorithm reduces the Branch-
and-Bound area of a search and implements the Branch-and-
Bound relaxation and separation strategy [24], [25] to solve
the problem.

The pseudocode of the proposed framework, using the
Branch-and-Bound Space Reduced, is described in Table 1.
In this algorithm, � represents optimization problem set
and �∗ denotes the global minimum of the objective func-
tion Enet_CT in Eq. (9). Therefore, the algorithm provides a
(1- ε) tolerance of optimal solution �ε , which means �ε
is close enough to �∗ such that �∗ ≥ (1 − ε)�. Initially,
� includes the original problem, denoted by ω0. A lower
bound of the objective function is first derived through solv-
ing a linear relaxation of Enet_CT denoted by (BL) (line 3 in
Table 1). Construction of the linear relaxation is described in
the next subsection. Since any feasible solution of problem ω
can serve as an upper bound, the one obtained by rounding
under the satisfaction of all constraints is used and denoted
as BU .
The process of finding the lower and upper bound for

the objective function, is called bounding. If the derived
upper and lower bounds are within the ε-vicinity of each
other, the algorithm terminates (line 10, 11). Otherwise, it
divides the feasible region of the problem into two nar-
rower subsets (branching step), and the problem ω will be
replaced with two subproblems ω1 and ω2 constructed by

branching binary variable xi,j (see line 17). Other variables in
Eq. (9) can be quickly determined after they have been fixed
because the resulting problem becomes a tractable problem.
After dividing the original problem into two new subprob-
lems, the algorithm performs relaxation and local search on
these two new subproblems. Now, we have lower bounds
BLω1 and BLω2 for subproblems ω1 and ω2, respectively.
Since the relaxation in subproblems ω1 and ω2 are both
tighter than that in ω, we have min{BLω1BLω2} ≥ BLω and
min{BUω1BUω2} ≤ BUω . For minimizing the collision proba-
bility (minimization problem), the lower bound of the orig-
inal problem is updated from BLω = BLω1 to BLω =
min{BLω1 ,BLω2}. Also, the upper bound of the original prob-
lem is updated fromBUω = BUω1 toBUω = min{BUω1 ,BUω2}.

The Branch-and-Bound Space Reduced algorithm reduces
the feasible integer variable space by eliminating the
unwanted search space. In the algorithm, all subsets that
include the disconnect integer variables (i.e., disconnected
next hops

(
xi,j = 1&Coni,j = 0

)
are removed and the subsets

area of search is reduced.
Through an iterative branching procedure, subsets are fur-

ther divided into smaller ones to build the enumeration tree.
The structure of the enumeration tree allows the algorithm
to remove some branches and search for the solution in a
very effective way. Moreover, narrowing down the subsets
of the optimization variables makes the linear relaxations
tighter (i.e., increases BL) and provides the next local search
processes with a closer starting point to the optimal solution
(i.e., reduces BU ). Hence, the gap between BL and BU is
reduced as the process continues. More precisely, the global
lower bound BL is updated in each iteration, in order to
contain the minimum of the lower bounds of all subsets
(lines 5, 6). The global upper bound BU is also updated at
each iteration (lines 8, 9) and the branches with a lower bound
greater than (1− ε)BU are pruned (line 13). This approach is
continued until the difference between the global lower and
upper bounds satisfy the accuracy ε (lines 10, 11). Clearly,
we may lose the global optimum by pruning the branches.
However, if the global optimum in a pruned branch with
the lower bound is BLω , then �

∗
≥ BLω , and consequently,

�∗ ≥ (1−ε)BU . Therefore, the current best feasible solution
with objective valueBU is already an (1−ε)-optimal solution,
and we can still guarantee (1 − ε) optimality. Therefore, the
solution procedure provides (1 − ε)-optimal solutions, with
ε being the desired approximation error bound. In fact, this
guarantee is the key feature of the algorithm, which makes it
very effective in solving the MINLP.

B. HEURISTIC ENERGY HARVESTING LIFETIME
MAXIMIZATION ROUTING
We propose a heuristic routing algorithm which, at first
obtains optimal power levels of all connection links and then
solves the routing problem. Employing the power levels turns
the problem to Integer Programming problem that can be
solved using BnB Space Reduced algorithm.

To obtain the optimal power allocation from Eq. 3, the

VOLUME 5, 2017 2387



F. Mansourkiaie et al.: Maximizing Lifetime in Wireless Sensor Network for Structural Health Monitoring

TABLE 2. Heuristic energy harvesting lifetime maximization algorithm.

TABLE 3. Power disjoint energy harvesting lifetime maximization.

received signal-to-noise ratio (SNR) must be greater than
or equal to the detection threshold (β). Therefore, the
optimal power that minimizes energy consumption for the
transmission from node i to node j is given by

P
top
i =

βNor
γ
i,j

εamp
, (10)

where No is the noise power. The proposed heuristic routing
algorithm is presented in Table 2. The calculated power level
is employed in BnB and therefore, the complexity of the
algorithm is reduced due to elimination of the non-integer
variables in the optimization problem.

C. POWER DISJOINT ENERGY HARVESTING LIFETIME
MAXIMIZATION
In order to reduce the computational complexity caused by
obtaining optimal power levels of all potential connection
links, we propose a new algorithm in which the optimal
transmission power is allocated after the routing solution.

The proposed sub-optimal lifetime maximization algo-
rithm is presented in Table 3. This algorithm uses equal,
fixed transmission power, Ptf , in the objective function and
the constraints. Therefore, the problem is simplified to an
Integer Programming Problem. The objective function of
the algorithm is defined as Enet_CT |Pt=Ptf

. The BnB Space
Reduced algorithm, which is discussed in Subsection IV.A,
is employed to solve the problem as well (line 3). After
optimal path selection using BnB Space Reduced algorithm,
the optimal power allocation is allocated to each hop.

D. SOLUTION OF THE GENETIC ALGORITHM
Assuming the predetermined location for the sensor nodes
in Eq. (10), the optimal power allocation can be defined in
N (N − 1) discrete levels in the network. Using the discrete
power levels, the problem in Eq. (9) turns to integer problem

and Genetic Algorithm will be able to create a high quality
solution. Genetic Algorithm (GA) is a well-known approach
for solving optimization problems because of their capability
to check partially ordered search space for various trade-offs
as demonstrated in [26]. GAs evaluate several solutions for
the optimization problem in Eq. (9) simultaneously and find
the near-optimal solution by combining efficient solutions.
Therefore, the near optimal power level and routing solution
is obtained with the reduced complexity.

FIGURE 3. GA chromosome.

Each solution of the optimization problem in GA is called
a chromosome. The chromosome is represented by a list of
variables called genes [26]. A chromosome’s size should be
equal to the number of possible power levels plus the number
of possible links as shown in Fig. 3. The genes representing
link utilization xi,j and the power levels that are not binary (but
rather integer variables in the rang [0,N ]). GAs create a num-
ber of solutions randomly to form an initial population, and
then the fittest survived solutions move on to the next genera-
tion. The generated solutions share some features taken from
each possible solution. A new population of generated solu-
tions is produced by the selection of the best solutions for the
current generation and then performing crossover between
them to produce the next generation. Mutation is also used to
introduce some randomness to the new generation creation.
The process of generation and selection is repeated until the
stopping criteria is reached. The population will converge
to a near-optimal solution when the GAs parameters, such
as the crossover rate, are properly tuned as shown in [27].
Roulette-wheel selection is used in which the chromosome
that has a large fitness function value has a higher probability
to survive to the next generation over the others. During the
crossover operation, the chromosomes are recombined result-
ing in two new child chromosomes to be appended to the next
generation population. The probability of crossover is equal
to Prc. Increasing this value improve performance, which
leads to increasing the crossover occurrence. In this paper,
the single point crossover operator is used. After selecting
the chromosomes, GAs generate random numbers to select
where to split the chromosome into two parts to then be
recombined. Lastly, the mutation operator flips some of the
genes of the chromosome. Similar to the crossover operator,
increasing this probability will increase the mutation occur-
rence. Amutation probability ofPrm is taken in order tomake
our GAs search visit the corners of the search space to check
for isolated solutions.

The objective function in Eq. (9) is used to measure the
chromosome fitness or performance. As a result, the GAs try
to find the smallest fitness function value in order to get sub-
optimal routing and power allocation. GAs then check for the
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FIGURE 4. The nine floor building model.

best chromosome found in the population. A larger fitness
function valuemeans a higher upper-limit information quality
and minimum energy consumption. Nevertheless, after the
number of runs is larger than or equal to N 2 multiplied by
the number of variables, the variations in GAs result will be
low. Consequently, GAs are terminated immediately after a
specified number of generations is reached.

V. RESULTS AND PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed
algorithms. We consider predetermined node locations con-
sisting of 9 sensor nodes in 9 floor building (i.e., one sensor
node in each floor as shown in Fig. 4). The evaluation scenario
is similar to the one used in [3]. We assume that the path-
loss exponent (γ ) equals 2, the noise power (No) is equal to
−93.83 dBm, and the detection SNR threshold equals 10 dB.
The initial energy EI is chosen to be 1200 mAhr as in [21].
The packet arrival follows the Poisson distribution with an
average arrival rate λ = 100 packets per second and the
number of bits per packet ub is equal to 2 Kb [28]. The radio
parameters are selected as in [21] where the transmission
energy cost, εt , is equal to 50 nJ/bit , the reception energy
cost, εr , is equal to 50 nJ/bit , and the power amplifier energy
cost, εamp, is equal to 100 pJ/bit/m2. The building’s height
is considered to be a 30 m as shown in Fig. 4 and the sink
node located at level one with a floor height of 3.33 m.

GAs parameters are chosen as follows: the crossover prob-
ability is 0.8 and the mutation probability is 0.1. Assume
all sensor nodes have the same transmission range and that
sensor node candidate locations are one location in each floor
on the nine-floor building. Moreover, the solar energy is used
as the source of energy harvesting. The harvesting ratio of the
applied solar system is equal to to 3.2 µJ/s [29].

A. COMPARISON BETWEEN THE PROPOSED LIFETIME
MAXIMIZATION ALGORITHMS
The proposed routing algorithms: optimal routing solution
using BnB space reduced, heuristic routing solution, sub-
optimal routing solution, and solution using GA are shown
in Figs. 5 (a)-(d), respectively for the network with 9 sen-

sor nodes in a nine-floor building. The proposed solutions
are also compared with JR-SPEM, presented in [3], shown
in 5 (e). The objective function of the JR-SPEM is to
minimize the total energy consumption of a structural health
monitoring system. As shown in the figure sensor nodes are
located on predetermined locations in each floor. We are
also assuming that the fixed initial transmission power equals
to 0 dBm, that is the standard value in IEEE 802.15.4
devices [30]. Fig. 5, compares the proposed solutions in
(a)-(d) with the existing algorithm, JR-PSEM, in (e). It can
be seen that in the proposed solutions, nodes close to the
sink are using shorter hops than nodes located in higher
levels, far from the sink node. Therefore, nodes closer to the
sink node, which are consuming relatively lower path loss
energy (because the path loss attenuation is proportional to
the distance between receiver and the transmitter nodes) are
responsible for carrying multiple flows. However, there is a
trade-off between the consumed energy due to the number of
flows and the energy consumed to compensate the path-loss
attenuation.

Network lifetime and net energy consumption of the opti-
mal routing solution using BnB space reduced algorithm
and that of the heuristic algorithm, sub-optimal solution,
and GA algorithm along with JR-SPEM algorithm presented
in [3] are compared in Figs. (6) and (7), respectively. It is evi-
dent that routing solution using BnB space reduced solution
performance is similar to that of the heuristic algorithm. The
reason of the equal performance for the heuristic algorithm
and optimal solution is that the heuristic method is obtainig
the same optimal power level allocation as the optimal solu-
tion and it solves the problem employing the same method
with a lower complexity. The results show that routing using
the BnB solution and the heuristic algorithm outperform the
other routing algorithm and the lifetime of routing using BnB
solution and the heuristic algorithm increased by 11%, 23%,
and 58% compared to sub-optimal lifetime maximization,
GA, and JR-SPEM, respectively. This lifetime improvement
is expected because in routing solution using BnB space
reduced and heuristic method, unlike sub-optimal algorithm,
power allocation is involved (from the initial routing decision
process) in the routing selection to maximize lifetime and
unlike GA they don’t select the transmission power from
the predefined levels. However, the price for achieving opti-
mal performance is the higher computational complexity of
BnB space reduced algorithm.Moreover, unlike the proposed
algorithms in our paper, the main objective of JR-SPEM
in [3] is to minimize the total energy consumption. Therefore,
comparing the lifetime of proposed algorithms in our paper
with that of JR-SPEM shows that minimizing the total energy
consumption of the network itself, does not necessarily max-
imize the network lifetime.

The energy consumption and lifetime of the sensor node
in each floor of the optimal solution, and that of the heuris-
tic algorithm, power disjoint, and GA are compared in
Fig. (8) and (9), respectively. It is evident that the nodes that
are carrying more traffic flows have higher net energy con-
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FIGURE 5. Comparing the routing obtained from optimal solution using space reduced BnB, Heuristic solution, Power disjoint solution, GA,
and Algorithm presented in [3]. (a) Optimal solution using space reduced BnB. (b) Heuristic solution. (c) Power disjoint solution. (d) Solution
using GA. (e) JR-SPEM.

FIGURE 6. Comparing network lifetime of optimal solution using space
reduced BnB, Heuristic solution, Power disjoint solution, Solution
using GA, and algorithm presented in [3].

FIGURE 7. Comparing network energy consumption of optimal solution
using space reduced BnB, Heuristic solution, Power disjoint solution,
Solution using GA, and algorithm presented in [3].

sumption and lower lifetime and therefore, become unavail-
able sooner. From Fig. (8), it can be seen that in the optimal
solution and heuristic algorithm the variance of the energy
consumption for the nodes in each floor is minimized com-
pared to that of power disjoint and GA. Consequently, in the
optimal solution and heuristic the variance of the lifetime for
the nodes in each floor is minimized compared to the power
disjoint and GA. Moreover, it is evident that node in level 2
in the optimal solution and heuristic algorithm is the critical
node in the network, since it becomes unavailable sooner than

FIGURE 8. Comparing energy consumption of nodes in each floor level
using the optimal solution algorithm, Heuristic algorithm, power disjoint,
and GA.

FIGURE 9. Comparing lifetime of nodes in each floor of the structure
using the optimal solution algorithm, Heuristic algorithm, power disjoint,
and GA.

the other nodes in the network. In the power disjoint and
GAnodes in level 3 and 1 are the critical nodes of the network,
respectively.

B. COMPARISON BETWEEN THE PROPOSED ALGORITHM
AND THE EXISTING LIFETIME MAXIMIZATION
ALGORITHMS
We compare the performance of the proposed optimal rout-
ing solution using BnB space reduced algorithm with that
of the existing algorithms, MWCDCT presented in [4] and
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FIGURE 10. Comparing network lifetime of optimal solution using space
reduced BnB, MWCDCT in [4] and MC-OMLU in [6].

MC-OMLU [6]; these are well-known routing algorithms
presented recently tomaximize the network lifetime, inwhich
the assumed scenario is compatible with our proposed rout-
ing algorithm. Fig. 10 compares the network lifetime of the
routing using the optimal algorithm and that of the
MWCDCT and MC-OMLU algorithms. It is evident that
the routing solution using BnB space reduced algorithm out-
performs the other schemes and has the maximum lifetime.
The results show that the lifetime of the routing using BnB
space reduced solution algorithm increased by 23% and 35%
compared to MWCDCT and MC-OMLU, respectively. This
lifetime improvement is expected because the routing solu-
tion using BnB space reduced algorithm selects the optimum
route and allocates the optimal power that minimizes the
total energy consumption of the network while limiting the
variance of the energy level of each node. By doing that, all
nodes are utilizing their maximum amount of energy before
the first node becomes unavailable and when the energy
of the first node is depleted, the other nodes have a very
low residual energy level. Unlike the optimal solution using
BnB reduced algorithm, in the MWCDCT and MC-OMLU
algorithms, approximation methods are used to obtain the
routing algorithms;moreover, inMWCDCT, the transmission
power is assumed to be a constant value. Furthermore, in the
MWCDCT algorithm, unlike the optimal solution using BnB
reduced algorithm and the MC-OMLU algorithm, the har-
vesting mechanism is not employed to improve the remaining
energy of the network and as a result it is not used to prolong
the network lifetime.

C. ADAPTIVE DUTY CYCLE
To investigate the effect of energy harvesting system param-
eters, we develop an adaptive energy harvesting duty cycle
ratio (adaptive DCREH ) mechanism that allows extension of
the energy harvesting period, TEH , and nodes can spend more
time on harvesting energy in a cycle duration. Therefore, in
Eq. 6, the duration of the harvesting time, TEH , is extended to
increase the network lifetime. The extension of the harvesting
period can be done (a) as soon as it is required, i.e., before
critical node (node that becomes unavailable first) becomes
unavailable in the next coming cycle duration, (b) as soon as

the remaining energy of the critical node gets below a specific
threshold level, or (c) as a minimum fixed time duration that
calculated to have enough remaining energy for the infinite
lifetime.

1) HARVESTING EXTENSION AS REQUIRED
In this case the energy harvesting period extended as soon as
the amount of residual energyERScr in the critical node, cr , gets
below the amount of required consumption energy for one
cycle duration ECcr . Therefore, the energy harvesting period
can be defined as below

TEHcr =
ECcr − E

RS
cr

ρ
, (11)

Employing Eq. (11), the cycle duration in duty cycle can
be obtained as follows

TCD = max{TF ,TF + TEHcr }, (12)

FIGURE 11. Cycle duration using adaptive energy harvesting period;
harvesting extended as required (in log scale).

For the solution obtaind using BnB space reduced algo-
rithm in Fig. 5 (a), initially the duty cycle is equal to 17 time-
slots in which ECcr ≤ ERScr . Therefore, in Eq. (12), TCD = TF
and nodes are consuming energy during their own packet
transmission and reception slots (their own time slot) and
harvests energy, while the other nodes are in their forwarding
period. For instance, node in level one harvests in 12 time
slots and consumes energy in 5 time slots. As can be seen
from the lifetime of each node in the network in Fig. 9, after
5.4962×107 seconds, when node 2, critical node, suffers from
lack of energy (i.e., the consumed energy is greater than resid-
ual energy), TCD changes and the cycle duration expands by
the amount of value for the harvesting duration, TEH2 (node 2
is the critical node); therefore, as can be seen in Fig. 11
the cycle duration increases significantly by the amount of
2.5274×102 seconds. Therefore, after 5.4962× 107 seconds
the harvesting duration extended. Employing this method of
harvesting energy leads to an infinite lifetime.

2) HARVESTING EXTENSION AS GETTING
BELOW THRESHOLD
In this case, the extension starts as soon as the residual energy
of the critical sensor nodes gets below a certain threshold
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FIGURE 12. Cycle Duration using adaptive energy harvesting periods;
harvesting extended as getting below threshold.

value. Therefore, the energy harvesting period can be defined
as below

TEHcr =
θE I − ERScr

φρ
, (13)

where θ ≤ 1 and φ ≥ 1 are adjustable variables that are
used to set the threshold and the rate of charging, respectively.
Similar to case (1), the cycle duration in duty cycle can be
obtained from Eq. (12). Assuming θ = 0.1 and φ = 10, for
the optimal solution obtained from the BnB space reduced
algorithm, after 4.9465 × 107 seconds, when the amount
of residual energy is below 90% of the initial energy, TCD
changes and the cycle duration expands by the value of TEHcr ;
therefore, as can be seen in Fig. 12 the duty cycle increases
gradually, because of increasing the harvesting period. After
20 duty cycles, the amount of harvesting period reaches to
2.1851× 104 packet duration or 2.1851× 102 seconds.

3) MINIMUM FIXED HARVESTING EXTENSION
In this case, the minimum harvesting period to have the
infinite lifetime is calculated and the harvesting period is
fixed from the beginning of the network lifetime. It means,
the calculated harvesting period in a cycle attempts to be
the minimum time duration to achieve the infinite lifetime.
Assuming that m is the cycle number, the network is alive
in cycle m, if the residual energy is greater than the battery
cutoff energy (the minimum amount of energy required for a
successful sensor communication). The residual energy of a
sensor node is obtained by subtracting the consumed energy
from the initial energy and harvested energy; therefore,

E I + mTEHρ − mEC ≥ Ecut off , (14)

where Ecut_off is the cutoff energy of the battery and a node
becomes unavailable if the amount of residual energy is below
the cutoff value; therefore,

TEH ≥
mEC + Ecut off − E I

mρ
. (15)

Therefore, in order to have the infinite lifetime, m → ∞,
the minimum harvesting duration is obtained as follows

TEH =
EC

ρ
, (16)

For the solution obtained from the BnB space reduced
algorithm in Fig. 5 (a), where EC is the consumed energy
during TF2, forwarding period of the critical node (node 2).
Therefore, in Eq. (16), the minimum value for TEH is equal
to 2.5274× 104 seconds.

FIGURE 13. Lifetime comparison for the network with energy harvesting
versus a network without energy harvesting.

D. EVALUATING THE EFFECT OF ENERGY HARVESTING
In order to investigate the effect of energy harvesting mech-
anism in the lifetime maximization, we evaluate the life-
time of WSN using optimal routing solution while TEH is
assumed to be 60 seconds compared to the case that TEH
equals 0, which is the case without energy harvesting. There-
fore, in the harvested network, the nodes are harvesting for
60 seconds and then receive or forward the packet in their
cycle duration. However, in the network without energy har-
vesting, nodes only forwards or receive the packet and the

net energy in the network defined as Enet_C_primT is equal
to Enet_CT |EHn =0, TEH=0

. The results are compared in Fig. 13
showing that the lifetime improved by 26%, in the network
with energy harvesting compared to the case without energy
harvesting.

E. ENERGY HARVESTING RATE EVALUATION
The ability to harvest from several sources of ambient energy
provides robustness against varying environmental condi-
tions, and allows the system to remain alive in the case
where ambient energy is no longer available from one or
more of the sources. Depending on the energy harvesting
sources to supplement batteries, the energy harvesting ratio,
and consequently the power levels available from state-of-
the-art energy harvesting devices, varies. Therefore, in order
to investigate the effect of energy harvesting ratio on the
algorithm’s performance, we are considering several energy
harvesting sources. As we discussed before, the main sources
of ambient energy considered suitable for use with WSNs are
solar, mechanical (vibration or strain) and thermal energy.

Table 4 gives a comparison of energy harvesting rates
presented in [7] and [8]. The harvesting rates are obtained on
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FIGURE 14. Lifetime comparison for the network with different energy
harvesting sources presented in Table 4.

TABLE 4. Comparing energy harvesting rate.

a 10 cm2 material which is about the same size as the sensor
node. Using the energy harvesting rates presented in the table,
in Fig. 14, we compare the network lifetime of the opti-
mal routing algorithm for various energy harvesting sources.
It is evident that the network lifetime increases significantly
employing the direct solar energy compared to the other
energy harvesting sources, such as vibration and thermal
energy harvesting system. The results in Fig. 14 show that,
compared to the indoor solar harvesting system, the network
lifetime increased by 52%, 0.013%, 7%, 0.009%, and 0.8%
using direct solar, electromagnetic vibration, piezoelectric
vibration, electrostatic vibration, and thermostatic harvesting
sources, respectively. Therefore, excluding the direct solar
system, network lifetime gains of different types of energy
harvesting sources are relatively the same.

F. COMPLEXITY
In this Section, the worst case computational complexity
of the proposed algorithms is characterized. In the optimal
solution using space reduced BnB algorithm, the complexity
grows exponentially with the number of integer variables.
In other words, a problem with ni integer variable requires
solving 2ni non-linear programming problems [25]. Although
actual run-time is reduced, due to the search space reduction,
the complexity of the algorithm remains exponential. The
heuristic and sub-optimal algorithms are proposed to reduce
the computational complexity of the routing problem. In the
heuristic solution and the sub-optimal solution the number
of integer variables in BnB is reduced because of decoupling

power allocation from the routing. However, the complexity
still remaining exponential. The computational complexity of
the sub-optimal routing using GAs implementation is equal
to O(N 6) since the complexity of GAs is the cubic order of
the building blocks [26] of routing and power allocation, and
the building blocks have the computational complexity in the
order of two. Therefore, the price for achieving higher perfor-
mance of the optimal solution using BnB is the computational
complexity.

VI. CONCLUSION
In this paper, we presented the optimal solution to maxi-
mize the lifetime of wireless sensor network for structural
health monitoring system by joint use of optimal power and
route selection with and without energy harvesting. This
optimization problem is inherently complex due to its mixed-
integer nature, non-linearity, and a large solution space.
We developed an efficient solution procedure based on the
Branch-and-Bound technique augmented with a space
reduction algorithm to speed up the computation. Then,
we proposed the heuristic routing algorithm to reduce
the computational complexity by decoupling transmission
power allocation in the routing algorithm from the opti-
mal route selection. Results reveal that the heuristic rout-
ing algorithm performs similar to the optimal routing using
Branch-and-Bound space reduced algorithm. We also pro-
posed two sub-optimal routing to reduce the computational
complexity. In the first algorithm the fixed transmission
power is used in the routing selection and then transmis-
sion power is allocated. In the second sub optimal algorithm
the Genetic Algorithm is used to solve the optimization
rather than the Branch-and-Bound algorithm. The optimal
solution and heuristic solution outperform the sub-optimal
routing solutions. The performance of the proposed routing
algorithms is compared with existing algorithms and the
results demonstrate the significant gains that can be achieved
by incorporating energy harvesting and power allocation in
route selection for maximizing the lifetime of wireless sen-
sor networks. Moreover, we presented the adaptive energy
harvesting period and the infinite lifetime achieved using the
minimum energy harvesting period. There are several direc-
tions for future work, including development of a dynamic
routing algorithm that establish rerouting automatically as
soon as the critical node depletes to a predefined remaining
energy.
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