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ABSTRACT Tchebichef polynomials (TPs) and their moments are widely used in signal processing due to
their remarkable performance in signal analysis, feature extraction, and compression capability. The common
problem of the TP is that the coefficients computation is prone to numerical instabilities when the polynomial
order becomes large. In this paper, a new algorithm is proposed to compute the TP coefficients (TPCs)
for higher polynomial order by combining two existing recurrence algorithms: the three-term recurrence
relations in the n-direction and x-direction. First, the TPCs are computed for x, n = 0, 1, . . . , (N/2) − 1
using the recurrence in the x-direction. Second, the TPCs for x = 0, 1, . . . , (N/2) − 1 and n = (N/2),
(N/2)+ 1, . . . ,N − 1 based on n and x directions are calculated. Finally, the symmetry condition is applied
to calculate the rest of the coefficients for x = (N/2), (N/2) + 1, . . . ,N − 1. In addition to the ability
of the proposed algorithm to reduce the numerical propagation errors, it also accelerates the computational
speed of the TPCs. The performance of the proposed algorithm was compared to that of existing algorithms
for the reconstruction of speech and image signals taken from different databases. The performance of the
TPCs computed by the proposed algorithm was also compared with the performance of the discrete cosine
transform coefficients for speech compression systems. Different types of speech quality measures were
used for evaluation. According to the results of the comparative analysis, the proposed algorithm makes the
computation of the TP superior to that of conventional recurrence algorithms when the polynomial order is
large.

INDEX TERMS Orthogonal polynomials, recurrence algorithm, Tchebichef polynomials, numerical
propagations errors.

I. INTRODUCTION
Different types of orthogonal polynomials have gained
importance in the field of speech and image analysis [1].
From a cursory review of the literature, it can be seen that
orthogonal polynomials have been the center of research
attention since they are used in many applications such as:
Face Recognition [2], hiding information [3], edge detec-
tion [4], data compression [5], image retrieval [6], and
visual pattern recognition [7], [8]. Legendre, Zernike and
Pseudo-Zernike moments are formed from basis functions of
continuous orthogonal polynomials, and shown great capa-
bility in feature representation [9]. However, as they are
defined inside a unit circle only, the moments calculation of
these polynomials necessitate coordinate transformation and
continuous moment integrals approximation [9], [10]. On the
other hand, discrete orthogonal moments such as Tchebichef

moments [11], Hahn moments [12] and Krawtchouk
moments [13] are characterized in a rectangular coordinate
space [11]; therefore, there is no necessity for integral approx-
imation and coordinate space transformation [14]. The dis-
crete Tchebichef transform (DTT) is considered one of the
significant discrete orthogonal transforms. It can be generated
using the TP basis functions, and it is utilized for time-
moment transformation [15]. DTT has a significant energy
compaction attribute as discrete cosine transform (DCT) [16].

The TP is a function of three parameters: the length of the
signal (N ), the polynomial order (n), and the signal index (x).
The computation of TP coefficients can be implemented
using the three-term recurrence algorithm in which the new
TP coefficient is recursively estimated using the previous two
coefficients. In [11], a framework of recurrence algorithm in
the n-direction was proposed to compute the TPCs. In this
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approach, the TPCs of the nth order for all values of the xth
index are estimated based on polynomial values of the n− 1
and n − 2 orders. However, when the signal size becomes
large, the TPCs computation exhibits numerical instabilities
because the squared norm of the scaled TP assumes small
values [9]. On the other hand, the x-direction recurrence
algorithm was proposed [9] to solve the problem of TPCs
when the moment order becomes high. In this approach, the
TPCs of the xth index for all values of the nth order are
estimated based on the polynomial values of x − 1 and x − 2
positions. Although the x-direction approach improves the
computation accuracy, there is a limitation to this method as
it becomes unable to compute the polynomial values for very
high polynomial order. The instabilities are due to the initial
values utilized in computing the TPCs, which become zeros
at high order.

There has been attention paid to develop the computation
of TMs based on the aforementioned algorithms. In [17] a
recursive algorithm to compute Tchebichef moments based
on Clenshaw’s formula was presented. Shu et al. [18] pro-
posed an efficient method for computing TMs based on prop-
erties of TPs to aggregate with image block representation
algorithm for binary and gray-scale images. A method to
compute TM through geometric moments based on digital
filters was introduced in [19]. In [20] a TM and its inverse
transform based on Z-transform was given.

Both of the aforementioned algorithms generated numeri-
cal instability and were therefore unable to handle very high
signal sizes. Motivated by this issue, this study introduces a
new algorithm to tackle this problem.

The paper is organized as follows: in section II, the basic
computation aspects of the TP are presented. Section III
illustrates the types of three-term recurrence algorithms. The
proposed algorithm is explained in section IV. An experi-
mental study to evaluate the proposed algorithm performance
is presented in section V. Finally, section VI provides the
conclusion.

II. TCHEBICHEF POLYNOMIALS AND MOMENTS
A. THE ORTHOGONAL DISCRETE
TCHEBICHEF FUNCTIONS
The nth order of the orthogonal form of the scaled Tchebichef
polynomials tn(x) is given by [9], [11]

tn(x) =

√
w(x)
ρ(n)

(1− N )n 3F2(−n,−x, 1+ n; 1, 1− N ; 1)

(1)

where w(x) = 1 is the weight function of the TP and ρ(n) =
(2n)!

(N+n
2n+1

)
is the squared norm of the TP. Therefore, (1) can

be rewritten to be:

tn(x) =
(1− N )n√
(2n)!

(N+n
2n+1

) 3F2(−n,−x, 1+ n; 1, 1− N ; 1)

(2)

where n, x = 0, 1, 2, . . . ,N − 1,N > 0 and (a)k is the
Pochhammer symbol (ascending factorial symbol) [21].(a

b

)
is defined as the binomial coefficients = a!

b!(a−b)! .
3F2(.) is the generalized hypergeometric functions and it is
represented by a hypergeometric series. It is defined as:

3F2(−n,−x, 1+ n; 1, 1− N ; 1)=
∞∑
k=0

(−n)k (−x)k (1+ n)k
(1)k (1− N )kk!

(3)

The set of tn(x) with a unit weight, satisfies the following
orthogonality condition [11]

N−1∑
n=0

tn(x)tm(x) = δmn (4)

where δnm is known as Kronecher delta and symbolizes the
orthonormal representation of orthogonal polynomials, and
defined by:

δnm =

{
1, n = m
0, n 6= m

B. THE DISCRETE TCHEBICHEF MOMENTS
In general, moments set can be defined as scalar quantities
which are an efficient and superior data descriptor [1]. They
are used efficiently to represent signal information without
redundancy and to reveal small changes in the signal inten-
sity [22]. The lower-order moments contain the most energy
of the signal [15], whereas the higher-order moments contain
the signal details (high frequency components) [15]. For a
1D signal function f (x) with a length of N samples, the
Tchebichef orthogonal moments set 9n can be defined as
follows [1]:

9n =

N−1∑
x=0

tn(x) f (x),

n = 0, 1, . . . ,M and 0 6 M 6 N − 1 (5)

where M is the maximum order of the moments used for
signal representation. To reconstruct the signal, the inverse
transformations of the Tchebichef moment can be applied as
follows:

f (x) ∼=
M−1∑
n=0

9ntn(x), x = 0, 1, . . . ,N − 1 (6)

For a 2D signal f (x, y) with a size of N × N , the discrete
Tchebichef moment 9nm is defined as

9nm =

N−1∑
x=0

N−1∑
y=0

tn(x) tm(y) f (x, y),

n,m = 0, 1, . . . ,M (7)

To reconstruct the signal, the inverse transformations of the
Tchebichef moment can be applied as follows:

f (x, y) ∼=
M−1∑
n=0

M−1∑
m=0

9nm tn(x) tm(y),

x, y = 0, 1, . . . ,N − 1 (8)
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III. THE RECURRENCE ALGORITHMS
The TPCs can be arranged in a 2D array with n and x parame-
ters and the size of this array is N ×N , where n and x refer to
the polynomial order and the signal time index respectively.
Because of the time-consuming and numerical instabilities
of computing the TPC values which requires the hypergeo-
metric series and gamma functions, the three-term recurrence
algorithms are considered very useful tools for the calcula-
tion [23]. The recurrence algorithm can be implemented in
two directions: in the direction of parameter n and in the
direction of parameter x. In this section, the two algorithms
are presented.

A. THE THREE TERM RECURRENCE ALGORITHMS
IN THE n-DIRECTION
The computation of TPCs coefficients can be done using the
three-term recurrence relations in n-direction [11]:

tn(x) = β1 tn−1(x)+ β2 tn−2(x) (9)

where n = 2, 3, . . . ,N − 1, x = 0, 1, . . . ,N − 1,

β1 =
3− N
n

√
4n2 − 1
N 2 − n2

β2 =
1− n
n

√
2n+ 1
2n− 3

√
N 2 − (n− 1)2

N 2 − n2
(10)

The initial conditions for the above recurrence are

t0(x) = 1
√
N
and t1(x) = (2x + 1− N )

√
3

N (N 2−1)
.

In this algorithm, the polynomial coefficients of the nth
order for all values of the xth index are computed using the
polynomial values of the previous n−1 and n−2 orders. This
set is inconvenient for polynomial coefficients computing
when the signal length (i.e. parameter N ) becomes long,
as it can be easily verified when the value of tn(x) grows
for N n [11], [23]. Since the n-direction recurrence algorithm
cannot handle any size in excess of 81, it results in the sight
going toward using the three-term recurrence algorithms in
x-direction.

B. THE THREE TERM RECURRENCE ALGORITHM
IN THE x-DIRECTION
The three-term recurrence algorithm in the x-direction is
defined as [9]

tn(x) = α1 tn(x − 1)+ α2 tn(x − 2) (11)

where n = 1, 2, . . . ,N − 1, and x = 2, 3, . . . , N2 − 1

α1 =
−n(n+ 1)− (2x − 1)(x − N − 1)− x

x(N − x)

α2 =
(x − 1)(x − N − 1)

x(N − x)
(12)

The initial values for the above relations can be obtained by

tn(0) = −

√
N − n
N + n

√
2n+ 1
2n− 1

tn−1(0),

n = 1, 2, . . . ,N − 1

tn(1) =
(
1+

n(1+ n)
1− N

)
tn(0),

n = 0, 1, . . . ,N − 1 (13)

where t0(0) = 1
√
N
. The TPCs of the xth index for all values

of the nth order are estimated using the polynomial values of
the previous x−1 and x−2 positions. It can be seen from (11)
that the recurrence relation can be ended at x = N

2 − 1 and
the following symmetry property can be used to calculate the
polynomial coefficients for the second half of the polynomial
array (x = N

2 ,
N
2 + 1, . . . ,N − 1, n = 0, 1, . . . ,N − 1)

tn(N − 1− x) = (−1)n tn(x) (14)

The conventional recurrence algorithm in x-direction of dis-
crete Tchebichef orthogonal polynomial computation can
deal with order reaches to approximately N=1095 samples.
However, in real situations the length of the signal could be
very long. Therefore, a more robust method is required to deal
with signals of large sizes.Motivated by this idea, in this study
a new algorithm to compute the TP values based on the two
traditional recurrence algorithms is proposed as presented in
the following section.

IV. THE PROPOSED ALGORITHM
A. COMPUTATION PROBLEM OF THE TP RECURRENCE
ALGORITHM IN THE x-DIRECTION
Fig. 1a shows the plot of the TPCs array computed using
(11-13) for N = 1000. Obviously, there are two dimen-
sions, the horizontal axis represents the TPCs in terms
of x parameter (signal index), whereas the vertical axis
represents the TPCs in terms of n parameter (order of the
polynomial). From this figure, it is obvious that TPCs distri-
bution is represented by a half of an oval shape and the values
outside this region are approximately zero (the values are less
than 10−5).

Now we discuss the case for larger values of N . Fig. 1b
displays the polynomial array for N = 1400. It can be
seen that, the values of the TPCs approach zero when the
polynomial order (n) is greater than ∼1300. The numerical
propagation of error is due to the initial value in the first
columnwhere x = 0. Fig. 1 indicates that the algorithm in the
x-direction is unable to generate TPCs for large values of N .

B. THE PROPOSED THREE-TERM
RECURRENCE ALGORITHM
In this study, a new algorithm to compute the TPCs is pro-
posed for high polynomial order. The new algorithm is based
on the integration of two traditional recurrence relations (the
x-direction algorithm and n-direction algorithm) in a sequen-
tial manner. The theoretical calculation flow of the proposed
algorithm will be as follows:
Step 1:Compute the TPCs values for the first quarter of the

polynomial array, where x, n = 0, 1, . . . , N2 − 1:
(1) Find tn(0) and tn(1) using (13).
(2) Find the rest of the TPCs values using the three-term

recurrence algorithms in the x-direction from (11).

2472 VOLUME 5, 2017



S. H. Abdulhussian et al.: On Computational Aspects of TP for Higher Polynomial Order

Fig. 1. Computation of TPC values using the recurrence algorithm in x-direction for (a) N = 1000 (b) N = 1400. It can be seen that the
coefficients tend to zero values for parameter n > 1300.

Fig. 2. Vertical oval shape.

Step 2: Compute the TPCs values in the range where x =
0, 1, . . . , N2 − 1 and n = N

2 ,
N
2 + 1, . . . ,N − 1

(1) Find the location of parameter x, (lx) using the math-
ematical formula of the lower half of the vertical oval
shape shown in Fig. 2.
The standard form equation of an oval shape subject to
the vertical axis is given by:

(x − x0)2

a2
+

(y− y0)2

b2
= 1

where a = A/2 and b = B/2. As explained in the
previous subsection, we derive the equation of the TPCs

values shape where: lx = x, n = y, x0 = N/2,
y0 = 0, a = N/2, and b = N . The solution of the
problem is to find the equation of lx as a function of n
for the lower half of the oval shape.

(lx − N/2)2

(N/2)2
+

(n)2

N 2 = 1

(lx − N/2)2

(N/2)2
= 1−

(n)2

N 2

(lx − N/2)2 = (N/2)2 − (n/2)2

(lx − N/2) = ±
√
(N/2)2 − (n/2)2

lx = N/2±
√
(N/2)2 − (n/2)2

lx =


N/2−

√
(N/2)2 − (n/2)2,

for left half
N/2+

√
(N/2)2 − (n/2)2,

for right half

for our case, the equation for the left half is used.

lx = 0.5N −
√
(0.5N )2 − (0.5 n)2 (15)

(3) Find the TPCs values using n-direction recurrence (9)
for the elements at x = lx , lx + 1, . . . ,N/2 − 1 and
n = N

2 ,
N
2 + 1, . . . ,N − 1).

Step 3: Compute the TPCs values in the range where
n = N

2 ,
N
2 +1, . . . ,N −1 and x = lx −1, lx −2, . . . , lx −12

using the x-direction recurrence formula (11).
Note that, lx is shifted by 12 to ensure that the polynomial

coefficients are less than 10−5.
As a summary, the mathematical formula of the proposed

algorithm based on the combination of the recurrence in
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tn(x) =


α1tn(x − 1)+ α2tn(x − 2), for 0 < n < N/2− 1 and 2 < x < N/2− 1
β1tn−1(x)+ β2tn−2(x), for N/2 < n < N − 1 and lx < x < N/2− 1
α1tn(x − 1)+ α2tn(x − 2), for N/2 < n < N − 1 and lx < x < lx − 12

(16)

n− and x−directions can be represented by (16), as shown
at the top of this page.
Step 4: Compute the coefficients values for the second half

of the polynomial array where n = 0, 1, . . . ,N − 1 and
x = N

2 ,
N
2 + 1, . . . ,N − 1 using the symmetry condition

property defined in (14).
For more clarification, the procedure of the aforemen-

tioned steps is demonstrated in Fig. 3.

Fig. 3. Procedure steps of the proposed method.

Fig.4 shows the 3D plot of the TPCs computed by the
proposed method for N = 2000. It is clear that the shape
of the TPCs array is a square with a size of 2000× 2000, and
the non-zero polynomial coefficients (greater than 10−5) are
located inside an oval shape.

Fig. 4. 3D plot of the TPCs computed by the proposed algorithm for
N = 2000.

V. EXPERIMENTAL RESULTS
This section illustrates the performance evaluation of the
proposed method in terms of the computational cost, signal
reconstruction, and a comparison with DCT.

Fig. 5. The percentage of TPCs Computed for different values of N .

A. COMPUTATIONAL COST COMPARISON
For the proposed method, it can be seen that not all TPC
values needed to be scanned and computed. Only the TPC
values located inside the half of the oval shape are required
to be generated. Fig. 5 shows the percentage ratio of the
computed coefficients out of the total number of coefficients
as a function of parameter N for the proposed method and the
two existing algorithms (the three-term recurrence algorithms
in the n and x-directions). Note that, the total number of
polynomial coefficients in the polynomial array is N × N .
The percentage ratio of the computed coefficients out of the
total number of coefficients is calculated using the following
formula:

%Ratio =
Total computed coefficients

N × N
× 100 (17)

As shown in Fig. 5, the proposed method computes less
number of TPCs than other algorithms. This property affects
positively to reduce the numerical propagations error and
speed up the process of recurrence relations. The two existing
methods always compute 50% of the coefficients, and the
other 50% of polynomial values can be generated using the
property of symmetry of TP. For example, whenN = 512, the
total number of coefficients is 262144, only 108670 (41.45%)
of the coefficients are needed to be computed by the proposed
algorithm,whereas the othermethods compute 131072 (50%)
coefficients.

B. EXPERIMENTAL RESULTS FOR SPEECH SIGNAL
In this experiment, thirty clean (noise-free) speech signals
taken from the standard NOIZEUS [24] database were used
for evaluation. Each signal was divided into frames using a
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Fig. 6. A comparison of RMSE measure for x-direction and proposed algorithms with different frame size (a) N=2048 (b) N=2560 (c) N=3072
(d) N=4096. Note that the RMSE measure acheived by the n-direction recurrence is excluded from the figure as it gives unpractical values.

Hamming window with 50% overlap among adjacent frames.
Each frame with a length of N samples was transformed
into moment domain with a limited order of moments, M ,
using TPCs generated by the proposed method. Equation 5
was used for the transformation. The frames were recon-
structed using the inverse formula given in (6). Finally, the
reconstructed frames were combined using add-overlap tech-
nique [1] to reconstruct the speech signal. The root-mean-
squared-error (RMSE) between the original and the estimated
signals was reported. Different values of frame sizes, N were
tested. The same procedure was repeated for the TPCs gener-
ated by the x-direction algorithm. Fig. 6 shows the averaged
RMSE of the thirty signals as a function of moment order for
the three algorithms. The n-direction algorithm was not used
in this experiment as it fails to reconstruct the speech signal
when the order is greater than ∼ 80 points.
From Fig. 6, it can be observed that the proposed algorithm

outperforms the other algorithms in terms of RMSEmeasure.
It is clear that the RMSE decreases gradually as a function
of the moment order M until it reaches zero when M equals
to the signal size, N . For the x-direction algorithm, it can
be seen that this algorithm has the ability to reconstruct the
audio signal with some error until a specific value of moment
orders. For example, when N=4096 the x-direction algorithm
failed to reconstruct the signal for M > 2048 as shown
in Fig. 6d. On the other hand, the proposed algorithm pro-
duces less RMSE as a function ofM which proves its superior
ability to deal with very large frame size.

C. EXPERIMENTAL RESULTS OF IMAGES
In this experiment, 10 images taken from the well-known
Live Image database [25] were used for performance evalu-
ation of the proposed algorithms. Each image was converted

Fig. 7. A comparison between x-direction algorithm and proposed
algorithm for 2-D signal.

into a gray scale and then resized to different sizes
512 × 512, 1024 × 1024, . . . , and 4096 × 4096 points. For
each size, the image was transformed into moment domain
using DTT. Thereafter, the image was reconstructed using
full moment order. The RMSE between the original and
reconstructed images was reported. Fig. 7 shows the aver-
age RMSE of the 10 images as a function of image size.
The experiment was performed for the proposed and the
x-direction algorithms. The n-direction algorithm was not
used in this experiment as it fails to reconstruct the image
for image size greater than ∼ 80 × 80 points. Fig. 7 shows
the plot of the RMSE values as a function of the image size.
It is clear that the x-direction algorithm fails to reconstruct
the image when its size is greater than∼3900× 3900 points.
On the other hand, the proposed algorithm gives a high level
of stability for a large size of 2-D signals.

D. PERFORMANCE COMPARISON
BETWEEN DTT AND DCT
In order to compare the performance of the DTT computed by
the proposed method with that of other discrete transforms
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Fig. 8. Plots of quality scores as a function of number of coefficients used for reconstruction, (a) OVL, (b) SNRseg, (c) PESQ, and (d) RMSE.
Note that, the frame size is 2048 samples.

Fig. 9. Plots of quality scores as a function of number of coefficients used for reconstruction, (a) OVL, (b) SNRseg, (c) PESQ, and (d) RMSE.
Note that, the frame size is 4096 samples.

such as discrete cosine transform (DCT), an experiment of
speech signal compression was performed for the same thirty
clean files from NOIZEUS [24] dataset. It is good to mention
that DCT is considered a powerful tool since it provides a
significantly higher energy compaction capability compared
to other existent transforms. Each signal was divided into
2048-points frames using the Hamming window with 25%
overlap, and each frame was then transformed into transform
domains using DTT and DCT. For each transformed frame,
a limited number of transform coefficients from the order
moments were kept for reconstruction and the rest of the coef-
ficients were set to zero. The frame was reconstructed using

the inverse of transformation. All reconstructed frames were
combined using the add-overlap technique to reconstruct the
original signal.

Different objective measures of speech quality were
employed to compare the similarity index between the orig-
inal and corresponding reconstructed signals. These quality
measures are: the overall quality (OVL), segmental signal-
to-noise ratio (SNRseg) , perceptual evaluation of speech
quality (PESQ), and RMSE [26], [27]. Note that, the higher
values of OVL, SNRseg, and PESQmean better performance
in terms of speech quality. The averaged quality scores for the
thirty signals were reported. The experiment was repeated for
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another frame size of 4096 samples. In this study the Matlab
codes given in [24] were employed to compute the above
mentioned speech quality scores.

Fig. 8 shows the averaged quality scores as a function of
the number of transform coefficients used for reconstruction.
The experiment was also repeated for the frame size of 4096
and the results are shown in Fig. 9. It is clear that the DTT
computed by the proposed method achieved better compres-
sion results thanDCT for all measures. For example, when the
signal is reconstructed using 1024 out of 2048 coefficients
(50% compression ratio) the OVL score achieved by DTT
is 4.3, whereas DCT achieved OVL score of 1.4 for the
same compression ratio as shown in Fig. 8a. Fig.9 shows the
objective measures score used when the frame size is 2048
but for frame size of 4096. it is evident from Fig. 9b that the
achieved OVL score for DTT is 3.5 while for DCT it is 1.1
for 50% compression ratio.

VI. CONCLUSION
In this paper, a new recurrence algorithm to compute the TP
is proposed. The proposed method is based on a combination
of two conventional algorithms which are: the three-term
recurrence algorithm in the n and x directions. The proposed
algorithm is able to generate the polynomial coefficients for
high length of signal. Furthermore, it has the ability to reduce
the computation cost of TPCs calculation which affects pos-
itively to increase the speed of polynomial coefficients cal-
culation. A comparative study was performed to represent
the promising feature and superior capability of the proposed
algorithm. The proposed algorithm is found to achieve better
signal reconstruction results than the two other recurrence
algorithms for high polynomial orders. However, the pro-
posed method could be modified to reduce the reconstruction
error especially in 2-D signals by utilizing an adaptive shift
for each signal size rather than the fixed shift which is used
in the proposed method.
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