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ABSTRACT Mobile Ad Hoc Cloud (MAC) enables the use of a multitude of proximate resource-rich
mobile devices to provide computational services in the vicinity. However, inattention to mobile device
resources and operational heterogeneity-measuring parameters, such as CPU speed, number of cores,
and workload, when allocating task in MAC, causes inefficient resource utilization that prolongs task
execution time and consumes large amounts of energy. Task execution is remarkably degraded, because
the longer execution time and high energy consumption impede the optimum use of MAC. This paper
aims to minimize execution time and energy consumption by proposing heterogeneity-aware task allocation
solutions forMAC-based compute-intensive tasks. Results of the proposed solutions reveal that incorporation
of the heterogeneity-measuring parameters guarantees a shorter execution time and reduces the energy
consumption of the compute-intensive tasks in MAC. A system model is developed to validate the proposed
solutions’ empirical results. In comparison with random-based task allocation, the proposed five solutions
based on CPU speed, number of core, workload, CPU speed and workload, and CPU speed, core, and
workload reduce execution time up to 56.72%, 53.12%, 56.97%, 61.23%, and 71.55%, respectively.
In addition, these heterogeneity-aware task allocation solutions save energy up to 69.78%, 69.06%, 68.25%,
67.26%, and 57.33%, respectively. For this reason, the proposed solutions significantly improve tasks’
execution performance, which can increase the optimum use of MAC.

INDEX TERMS Mobile ad hoc cloud, mobile cloud, task allocation, mobile cloud computing.

I. INTRODUCTION
Recent advances in Mobile Cloud Computing (MCC)
are motivating mobile users to leverage on the benefits
of a plethora of novel applications, such as m-gaming,
m-learning, and m-health [1]. To meet the requirements of
various applications, MCC provides three different types of
platforms to augment the resources of power-constrained
mobile devices. These platforms are remote cloud, server-
based cloudlet, and Mobile Ad Hoc Cloud (MAC) [2], [3].
Due to low computation time and on-demand availability
of resources, mobile devices offload compute-intensive tasks
to the remote cloud through wireless technologies [4], [5].
However, certain applications may suffer from high latency,
jitter, and packet losses due to weak connectivity. To cope
with these issues, server-based cloudlet relies on locally
available high-end devices (i.e., servers) that may not be

guaranteed always. The design philosophy ofMAC is to form
a group of nearby mobile devices and capitalize on their
unexploited resources in order to execute compute-intensive
tasks in case of weak or non-availability of connectivity or
servers [6]. The mobile devices have to perform authentica-
tion, management, resource monitoring, and task allocation
along with application execution in a distributed manner that
involves processor cycles and energy [7]. The performance
of the task execution primarily depends on the availability
of resources which may vary from one participating mobile
device to another i.e., heterogeneous MAC [8], [9].

Considering MAC heterogeneity, execution time and
energy consumption can be minimized by incorporating the
resource availability information (i.e., number of cores and
applications running in the background) while allocating
tasks to mobile devices. The faster the processor, the smaller
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the execution time and, hence, lower energy consumption.
Moreover, executing a large task on a mobile device with lim-
ited capability (e.g., processing) may lead to increased exe-
cution time and energy consumption. Furthermore, a mobile
device running a large number of processes in background
increases the overall application execution time.

This study aims to minimize the execution time and
energy consumption by proposing five heterogeneity-aware
task allocation solutions. The contributions of this paper are
summarized as follows:
(a) First, we conducted an empirical study to investigate

the impact of resource heterogeneity parameters on the
performance of task execution and identify important
device heterogeneity parameters, such as CPU speed,
workload, and number of cores;

(b) We propose five heterogeneity-aware task allocation
algorithms and a corresponding system model is
developed;

(c) We validate the developed system model with the sim-
ulation results obtained from five heterogeneity-aware
task allocation solutions;

(d) We perform evaluation by comparing the execution
time and energy consumption results of five pro-
posed heterogeneity-aware task allocation solutions
with random-based task allocation solution.

The rest of the paper is organized as follows. Section II
investigates work related to MAC. Section III presents
problem analysis by discussing the performance evaluation
methodology, the application that is used for analysis on het-
erogeneous environment, performance metrics, experimental
parameters, and results and analysis. Section IV describes
a system model considered for this work and also presents
five heterogeneity-aware task allocation algorithms forMAC.
Section V describes the experiment setup, performance met-
rics, and analysis of results.We validate the developed system
model with the simulation results in Section VI. Section VII
presents a mean value-based comparison of the proposed
solutions with random-based task allocation in terms of
execution time. Section VIII presents a mean value-based
comparison of the proposed solutions with random-based
task allocation in terms of energy consumption. Section IX
discusses the scope and limitations of the work. Finally, we
provide concluding remarks and future directions of the work
in section X.

II. RELATED WORK
MAC is still in its infancy and as such very limited literature
is available on the subject. We have already reviewed and
presented most of the existing work related to MAC in [3].
For example, Li et al. [10] have addressed the problem of
offloading compute-intensive applications, proposing a set of
online and batch scheduling heuristics to offload independent
tasks among participating mobile devices in a dynamic man-
ner. For instance, MinHop heuristic takes into account the
minimum number of hops from the client while allocating
a task. Another heuristic (i.e., METComm) prefers to pick

a mobile device that will take the minimum amount of time
to execute the task. Similarly, minimum expected completion
time is the preference of MCTComm during task assignment.
Few other heuristics were proposedwhile keeping inmind the
communication costs. Several performance metrics, such as
average makespan, waiting time, slowdown, and utilization
were used to validate the performance. The results advocated
that the expected completion time must be taken into consid-
eration during task allocation. Our work is more focused on
device heterogeneity instead of communication cost.

A generic offloading framework for heterogeneous mobile
cloud including cloudlet and MAC was proposed in [11].
It employed mobile devices, nearby cloudlets, and public
clouds to improve the performance and availability of MCC
services. However, the proposed framework is more generic
and does not specifically consider the peculiarities of MAC
during task allocation. To tackle the problem of MCC task
allocation in heterogeneous wireless networks, Lu et al. [12]
proposed offline centralized and online distributed schemes.
First, they proved the problem as NP-hard. The aim of this
work was to minimize average response time for an entire set
of tasks. The proposed schemes considered various delays,
such as communication, processing, and queuing during task
allocation. Despite promising results, load balancing remains
an issue.

To meet time constraints in local mobile clouds, an energy
efficient task scheduling scheme was proposed in [13].
To schedule different tasks, the authors have proposed an
adaptive probabilistic scheduler that not only satisfies time
constraints but also minimizes energy consumption while
executing compute-intensive real-time applications. Themer-
its of the proposed scheduler include energy efficiency, scala-
bility, and flexibility. However, complexity is one of the prime
limitations.

An opportunistic ad hoc cloudlet service (OCS) mode was
proposed in [14]. To offload compute-intensive tasks in a
cost-effective and flexible manner, OCS adopts an intelligent
and energy-efficient mechanism using ad hoc cloudlet.

To execute compute-intensive tasks, a distributed platform
was proposed in [15] to employ resources of nearby mobile
devices. To reduce energy consumption and computational
cost, a task assignment mechanism was proposed in [16].
In addition, a two-stage Stackelberg game is also formu-
lated to determine the execution units count that slave nodes
are offering, while master node works on the compensation
strategies based on the contributing resources. Nonetheless,
resource and operational heterogeneity of mobile devices are
not considered during task allocation.

Unlike most existing works, we consider resource hetero-
geneity during task allocation to improve performance in
terms of execution time and energy consumption.

III. EMPIRICAL STUDY: IMPACT OF HETEROGENEITY
ON TASKS’ EXECUTION PERFORMANCE
To investigate the impact on the execution perfor-
mance of compute-intensive tasks, this section presents
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experimental setup, performance metrics, and crucial
resource heterogeneity parameters.

A. EXPERIMENTAL SETUP
To analyze the performance, four mobile devices of different
specifications are used. Compute-intensive tasks are given
to run them on the mobile devices that helps to investigate
the impact of heterogeneity on task execution time and
energy consumption. Multi-threaded matrix multiplication
and infinite loop execution applications are also developed.
These mobile applications represent the class of compute-
intensive applications. The following subsections further
provides details of the experimental setup.

1) MOBILE DEVICE
A Samsung S II i9100g smart phone is used to con-
duct the experiment; specification details are provided in
Table 1. We investigate the effect of heterogeneity on
tasks’ execution time and energy consumption by chang-
ing task sizes, CPU speed, workload, and number of cores
of the mobile devices. To customize the CPU speed (e.g.,
600MHZ, 800MHZ, 1008MHz, and 1200MHz) and num-
ber of cores (e.g., 1 and 2), two applications, Master
CPU and Kernal Tuner, are respectively used. In addition,
the Power Tutor application is used to measure the energy
consumption.

TABLE 1. Specification of the Samsung S II i9100g.

2) MULTI-THREADED MATRIX MULTIPLICATION
A multi-threaded matrix multiplication application is
designed to study the impact of heterogeneity of mobile
device resources and workload on execution time and energy
consumption when allocating tasks in MAC. The reason to
design this application as a task instead of using a real-time
task is time constraints. In the past, matrix multiplication
has been used in image processing and MCC to perform an
analysis of specified problems [17]. The application takes
a set of the matrix as an input and gives a result after the
multiplication. The application divides the matrix multipli-
cation task and distributes it among the number of available
mobile devices. The matrix multiplication is performed on
the local device to compute the results. The applications
and corresponding task sizes selected for the experiment are
presented in Table 2. In addition, we develop an infinite loop
application to analyze the workload impact on task execution
time and energy consump-tion.

B. PERFORMANCE METRICS
The following performance metrics were used to analyze the
impact of resource heterogeneity inMACwhile allocating the
task:

1) EXECUTION TIME
The execution time is defined as the number of seconds
required to complete a task by the mobile device. This
includes the time spent executing run-time or system services
on its behalf. The execution time primarily depends on
the task size, processor speed, and number of background
processes running on a mobile device. Executing a compute-
intensive task on a slow device may prolong execution
time. Therefore, task allocation based on the mobile device
specification can significantly improve performance.

2) ENERGY CONSUMPTION
Energy consumption is the number of millijoules (mJ) used
to execute a task. Likewise, energy dissipation is proportional
to the task size.

C. EXPERIMENTAL PARAMETERS
In the experiments, the following four crucial parameters (i.e.,
task size, workload, CPU speed, and number of cores) were
used to investigate the impact of varying resource heterogene-
ity on the performance of task execution.

1) WORKLOAD
The amount of workload directly affects the execution time
and energy. It is defined in terms of number of applications
already running in the background on the mobile device.
A mobile device with more workload will require more exe-
cution time and energy. Therefore, it is important to pick a
mobile device with the least workload when allocating a task.
We analyze workload by running the infinite loop application
on a mobile device.

2) NUMBER OF CORES
The number of available cores in a mobile device signifi-
cantly affects the execution time and energy as it supports
parallelism. The availability of a greater number of cores can
significantly reduce execution time. Hence, an effective and
efficient task allocation strategy should consider the number
of available cores in a mobile device.

3) PROCESSOR SPEED
The speed of the processor mainly determines the execution
time and energy. The higher the speed of the processor, the
quicker the execution time. Therefore, processor speed is one
of the paramount concerns during task allocation, as mobile
devices usually have different processor speeds.

4) TASK SIZE
The task size significantly impacts the execution time and the
energy. As the task size grows, the execution time becomes
longer, and hence, more energy is consumed. To ensure
energy-efficient in-time execution, the size of the task is
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TABLE 2. Details of the experimental parameters.

an important consideration during job allocation of different
mobile devices having heterogeneous resource availability.

D. RESULTS AND ANALYSIS
This subsection describes the experimental results in terms of
execution time and energy obtained through varying the het-
erogeneity parameters (i.e., task size, workload, CPU speed,
and number of cores). The details of tasks used to evaluate
against individual parameters are listed in Table 2.

1) EXECUTION TIME
Fig. 1 shows the impact of heterogeneity parameters and
random task allocation on execution time. Fig. 1 (a) clearly
demonstrates that the execution time increases with the
increased workload. This is mainly because of multitasking
and context switching. The more the number of running
applications, the fewer the processor cycles a task can get.
During these experiments, we kept the size of the background
running application (i.e. workload) constant and run it multi-
ple times for better analysis. These results clearly suggest that
ignoring the existing workload of MAC devices during task
allocation can significantly prolong execution time, which
may not be affordable for delay-sensitive applications.

Fig. 1 (b) shows the execution time of a running task on
a single- and dual-core processor. To run a multi-threaded
application, the Kernel Tuner application is used to customize
the number of cores. It is evident from the figure that the
execution time of a dual-core processor is about 37% less
than the single, which is mainly because of parallelism. These
results clearly indicate that the availability of more cores can
significantly reduce task execution time. Therefore, an effi-
cient task allocation strategy should consider the number of
available cores during task allocation, e.g., compute-intensive
tasks should be allocated to a multi-core processor.

The impact of processor speed on execution time is shown
in Fig. 1 (c). We used master CPU android application to tune
the CPU speed. The higher the processor speed, the shorter

the execution time. Considering the fact that mobile devices
may have heterogeneous processing capabilities, processor
speed is therefore an important consideration during task
allocation.

Fig. 1 (d) depicts the execution time as a function of task
size. However, it is obvious from the figure that execution
time increases with the increase in task size. The purpose is
to demonstrate that MAC users might have variable size tasks
and hence different execution time. Therefore, an efficient
strategy must consider task size while choosing a mobile
device for execution.

Fig. 1 (e) demonstrates the execution time (y-axis) of
five tasks (x-axis), each of which was run on any of the
four mobile devices (i.e., circles) picked randomly, which is
represented through the large circles. As it is evident from
the figure, random task allocation may lead to inappropriate
node selection, which results in increased execution time.
For example, randomly picked node 3 took 2250s to execute
task 1, which could have been executed in 1500s at node 1.
Similar findings can be observed for the other tasks (2-5).

2) ENERGY CONSUMPTION
Fig. 2 shows the impact of heterogeneity parameters on
energy consumption. We used Power Tutor application to
measure the energy consumption of a specified task. Fig. 2 (a)
demonstrates the impact of varying workload on energy con-
sumption. As the figure clearly indicates, energy consump-
tion increases with the increase in workload. This is because
a mobile device running more applications needs to perform
extra computations, which requires more energy. Therefore,
the current workload of a device is an important consideration
while performing task allocation.

Fig. 2 (b) elucidates the energy consumed by a single and
dual-core processor. A noticeable point is that a dual-core
processor dissipates less energy than a single-core processor.
This is mainly because the former exploits parallelism to
process the same job quickly. These results advocate that

1782 VOLUME 5, 2017



I. Yaqoob et al.: Heterogeneity-Aware Task Allocation in Mobile Ad Hoc Cloud

FIGURE 1. Impact of heterogeneity parameters and random task allocation on execution time. (a) Impact of varying workload on execution time.
(b) Execution time while varying number of cores. (c) Execution time as a function of processor speed. (d) Effect of varying task Size on execution
time. (e) Impact of random-based task allocation on execution time.

multi-core devices should be preferred for allocating a task
to conserve energy.

Fig. 2 (c) shows the impact of processor speed
(i.e., frequency) on energy consumption. These results clearly
indicate that energy consumption increases with the increased

processor frequencies. This is mainly because at lower fre-
quencies a task is executed very slowly and its does not
heat up the whole board of a device. To conserve energy,
processor speed is an important consideration when perform-
ing task allocation. For example, a slower speed processor
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FIGURE 2. Impact of heterogeneity parameters on energy consumption. (a) Energy consumption as a function of workload. (b) Effect on energy
consumption while changing number of cores. (c) Impact of varying processor speed on energy consumption. (d) Energy consumption as a function
of varying task sizes.

might be allocated a task that does not require fast execution,
such as in the case of a high speed processor with lower
battery power.

Fig. 2 (d) depicts the effect of varying task size on energy
consumption. As expected, the results indicate that the larger
the task, the more energy it requires for execution since it
involves more computations. Therefore, an effective MAC
job allocation strategy must takes into account size of a
task especially when devices may have heterogeneous energy
resources.

This section clearly highlights the impact of ignoring
resource and operational heterogeneity parameters on the
performance of task execution in terms of time and energy.
In the next section, we propose five heterogeneity-aware task
allocation algorithms that take into account all these factors.

IV. HETEROGENEITY-AWARE TASK
ALLOCATION ALGORITHMS
First, we describe a system model considered for this work.
Then, we present five heterogeneity-aware task allocation
algorithms for MAC.

FIGURE 3. Tasks execution time illustration.

A. SYSTEM MODEL
To execute multiple tasks simultaneously, mobile devices
implement time-sharing schemes to share CPU resources
equally. Processor time slots are allocated to running tasks as
shown in Fig. 3. We formulate equation 1 to calculate the task
execution time. The slot time depends on the number of jobs
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TABLE 3. Symbols description.

in execution i.e., it changes as a new task starts its execution
or existing terminates. The aggregate execution of a task on a
device may consist of several slots that vary with changes in
theworkload. The description of the used symbols is provided
in Table 3.

Ti =
i∑

s=1

Ts =
i∑

s=1

(
ITs

(P× C)
+

OTs

(P× C)
)

where i = 1 . . . |T | and T1 < T2 . . . < T|T | (1)

The execution time of an ith is the sum of all the slots
taken by that task for the execution. The size of the first slot
depends on the number of tasks being executed in that slot and
the size of the smallest task. The size of the remaining time
slots depends on the difference between the sizes of the slot
numbered task and the next smaller task. The mathematical
slot size can be modeled as presented in equation 2. To
normalize the units of different variables, such as CPU speed,
number of cores, and workload, equation 3 is used.

Si =


(min(T )× |T |)/(P× C)
if (Ti − Ti−1)× (|T | − (i+ 1))/(P× C)

if i > 1
(2)

norm(valact ) = [val act − val min]×
[

1
valmax − valmin

]
(3)

B. PROPOSED ALGORITHMS
As mentioned earlier in Section IV, processor speed is an
important consideration while performing task allocation.
Therefore, our proposed algorithm 1 allocates tasks based
on CPU speed. The symbols N, T, and SN are used as input
parameters. (see Table 4 for the description of the symbols.)
In case there is more than one task, this algorithm sorts
them in descending order based on their length (line 2).
The controller prefers to pick a mobile device based on the
fastest processor speed, as this will result in faster execution
and hence less energy consumption (lines 4-9). Although

Algorithm 1 CPU Speed-Based Task Allocation
Algorithm
Input: N ,T , SN

1 X ← T
2 Sort(Desend, X)
3 for i=1:|X| do
4 (ŝn) = arg max ∀ n ∈ N ∀ sn ∈ SN f (sn)
5 NodeID← getID(N , ŝn)
6 map<NodeID>← x{

1
}where x{

1
} ∈ x

7 X← X/x1
8 end
9 OUTPUT:map<N,X>

TABLE 4. Description of the symbols used in the algorithms.

selection of such a device will result in less execution time,
further improvement is possible with the consideration of
other parameters as we shall discuss later in this section.

Algorithm 2 Core-Based Task Allocation Algorithm
Input: N, T, CN

1 X← T
2 Sort(Desend, X)
3 for i=1:|X| do
4 (ĉn) = arg max∀ n ∈ N ∀ cn ∈ CN f (cn)
5 NodeID← getID(N , ĉn)
6 map<NodeID>← x{

1
}where x{

1
} ∈ x

7 X← X/x1
8 end
9 OUTPUT:map<N,X>

Algorithm 2 takes into account the number of cores while
performing task allocation. Again, the tasks are sorted in
descending order (line 2). As the controller node maintains
the updated information of the mobile devices participating
in MAC, it prefers to pick a device with the highest number
of available cores to execute a task. (lines 4-7). This is mainly
because multi-threaded tasks may execute in parallel and
results in less execution time. Moreover, considering other
parameters, such as workload, task size, and processor speed
can further reduce execution time.
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Algorithm 3 Workload-Based Task Allocation
Algorithm
Input: N ,T ,CPI ,CN,RT ,RN

1 X ← T
2 Sort(Desend, X)
3 ∀n=1..|N |EntL = 0
4 for i=1:|X| do

5 ∀n ∈ N map < Xi,EnL >←
|Xi| ×

1
Sn
× CPIn

RXni
× 100

6 end
7 ∀n ∈ N , Rn = Cn − EntL
8 for i=1:|X| do
9 while(|X| != NULL )

10 (ŵn) = arg max∀n∈N ,wn∈RN f (wn)
11 f (wn)← wn
12 NodeID← getID(N , ŵn)
13 map<NodeID>← x{

1
}where x{

1
} ∈ X

14 EntL ← EntL + E
n
L ;

15 X← X/x1
16 end
17 OUTPUT:map<N,X>

As stated earlier, various MAC devices may have differ-
ent workload. In such as a situation, inflicting a particular
device may not only increase execution time but also dis-
sipates more energy. Therefore, Algorithm 3 allocates task
based on workload. First, the tasks are sorted based on their
size in descending order (line 2). Then, the controller node
determines the residual capacity RN of each MAC device in
real-time by subtracting its current workload from the total
capacityCN (line 7). The tasks are allocated tomobile devices
based on their residual capacity. Although this solution helps
to minimize execution time, further improvement is also
possible. For example, choosing a device with low workload
may not help much because of the slow processing speed.
Therefore, we present another task allocation algorithm based
on processor speed and workload in the following.

Algorithm 4 is designed to allocate tasks based on pro-
cessor speed and workload. The description of the used
symbols is presented in Table 4. Tasks to be allocated are
sorted in descending order first (line 2). In order to find the
residual workload, the expected workload of each task to
be executed on the compute node is calculated (lines 5-7).
A weighted graph formula is derived to incorporate both
the two parameters (i.e., CPU speed and workload) while
performing task allocation (lines 9-11). Tasks are allocated
based on the maximum values derived from the weighted
average formula. A noticeable point is that depending
upon the significance of both the parameters, the corre-
sponding weights can be tuned and adjusted accordingly.
For example, we have selected and assigned 0.05 and
0.95 weights to processor speed and workload, respectively.

Algorithm 4 Two Parameters-Based (CPU Speed and
Workload) Task Allocation Algorithm
Input: N , SN ,T ,CN,CPI ,RT ,RN

1 X ← T
2 Sort(Desend, X)
3 ∀n=1..|N |EntL = 0
4 for i=1:|X| do

5 ∀n ∈ N map < Xi,EnL >←
|Xi| ×

1
Sn
× CPIn

RXni
× 100

6 end
7 ∀n ∈ N , Rn = Cn − EntL
8 while(|X| != NULL )
9 (ŵn, ŝn) = arg max∀n∈N ,wn∈RN,sn∈SN f (wn, sn)

10 f(wn, sn)← α × wn + β × sn
11 NodeID← getID(N , ŵn, ĉn)
12 map<NodeID>← x{

1
}where x{

1
} ∈ X

13 EntL ← EntL + E
n
L ;

14 X← X/x1
15 end
16 OUTPUT:map<N,X>

Algorithm 4 takes into account processor speed and work-
load but does not consider the number of cores, which is
an important design consideration as discussed earlier in
Section III (D). Therefore, we present a variant of algorithm 4
in the following, which also considers the number of cores.

While performing task allocation, algorithm 5 takes into
account resource and operational heterogeneity (i.e., proces-
sor speed, number of cores, and workload). The reader is
referred to Table 4 for a description of the notations. Once the
controller device receives a set of tasks to be executed, it sorts
them in descending order (lines 1-3). The workload on each
compute node is calculated (line 5). Since there is more than
one parameter, weights are assigned to each of them based on
their significance, i.e., CPU speed (0.15), cores (0.20), and
workload (0.65). These weights can be tuned and adjusted.
Based on the average weighted formula, devices are selected
and tasks are assigned (lines 5-12) and workload information
is updated to avoid inconsistency (lines 13-14).

V. EXPERIMENTAL EVALUATION
Extensive simulation experiments are performed to evaluate
the effectiveness of the proposed algorithms. This section
describes the experiment setup, performance metrics, and
analysis of results.

A. EXPERIMENT SETUP AND PERFORMANCE METRICS
The proposed heterogeneity-aware task allocation algorithms
for MAC are implemented in MATLAB. To conduct experi-
ments, one controller and four mobile devices with different
specifications (Table 5) are simulated. The proposed task
allocation algorithms are implemented on a controller node
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Algorithm 5 Three Parameters-based (CPU Speed,
Workload, and Core) Task Allocation Algorithm
Input: N , SN ,T ,CN ,CN,CPI ,RT ,RN

1 X ← T
2 Sort(Desend, X)
3 ∀n=1..|N | EntL = 0 for i=1:|X| do

4 ∀n ∈ N map < Xi,EnL >←
|Xi| ×

1
Sn
× CPIn

RXni
× 100

5 end
6 ∀n ∈ N ,Rn = Cn − EntL
7 while(|X| != NULL )
8 (ŵn, ŝn, ĉn) = arg max ∀ n ∈ N , wn ∈ RN sn ∈ SN , cn ∈
CN , f (wn, sn, cn)

9 f(wn, sn, cn)← α × wn + β × sn + γ × cn
10 NodeID← getID(N , ŵn, ŝn, ĉn)
11 map<NodeID>← x{

1
}where x{

1
} ∈ X

12 EntL ← EntL + E
n
L ;

13 X← X/x1
14 end
15 OUTPUT:map<N,X>

TABLE 5. Specification of mobile device used in simulation.

for job distribution to compute devices. Simulation config-
uration was verified through results comparison with real
mobile devices, e.g., the same processing speed (i.e., million
instructions per second (MIPS)) as real mobile devices.

The same multi-threaded matrix multiplication application
discussed earlier in Section III (B) was run. In simulation
experiments, we used Lackey (Valgrind tool) to calculate the
number of instructions of the application. Table 6 presents
the computational lengths of the tasks that were used for the
experiments (one task is comprised of five sub-tasks). We
used the same performance metrics (i.e., execution time and
energy consumption) as described earlier in Section III (B).

B. RESULTS AND ANALYSIS
We compare the performance of the proposed algorithms
to that of random-based (RM) task allocation in terms of
execution time and energy. As described earlier, the proposed
algorithms are based on processor speed (SO), number of
cores (CO), workload (WO), speed and workload (SW), and
speed, number of cores, and workload (SCW). The results
are based on 30 data traces. The execution time is measured
in seconds.

1) EXECUTION TIME (SECONDS)
Fig. 4 shows the execution time of 30 data traces, measured
by running the SO- and RM-based task allocation. The results

FIGURE 4. Execution time of only CPU speed based-task allocation.

indicate a significant reduction in execution time compared
with the random-based solution in most of the cases. The
reason for the reduction in execution time is that through
a proposed solution, the task assignment decision is made
based on CPU speed. In this context, the tasks are sorted
in ascending order and then assigned to the compute nodes
on the basis of the CPU speed. Thus, the allocation of the
larger task on high-speed mobile devices helps to minimize
the execution time. However, in random-based solution, most
of the time this task is assigned to a device that has low
processing capabilities. In the simulation scenario this was
found to cause inefficient resource utilization, which can
degrade task performance by delaying the execution time.
In addition, inefficient resource utilization can increase
energy consumption in the MAC environment.

Fig. 5 depicts the execution time of 30 data traces obtained
from CO- and RM- based task allocation. The results indicate
that the proposed solution helps to execute most of the
data traces in a fast manner as their execution time was
found to be much lower compared with the random-based
mechanism. In random-based task allocation, the controller

FIGURE 5. Execution time of core-based task allocation.
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TABLE 6. Data traces for evaluations of various parameters.

node assigns tasks to the compute nodes without considering
the specification of the compute nodes as noticed in the
simulation scenario. Therefore, random-based task allocation
results in delaying the execution time in most of the data
traces execution. Although using core-based solution execu-
tion time can be minimized, further reduction in execution
time is possible if other parameters, such as workload and
CPU speed, are incorporated. In addition, multiple parameter-
based task allocation solutions can help to obtain an optimal
reduction in execution time.

Fig. 6 presents the execution time of 30 data traces that
are measured through WO- and RM-based task allocation.
The results reveal that workload-based task allocation helps
to execute most of the data traces in a fast manner compared
with the random-based mechanism. In our simulation sce-
nario, it has been noticed that in random-based task allo-
cation, the controller node assigns tasks to compute nodes
that have lower processing capabilities. Therefore, random-
based task allocation prolongs the execution time. However,
through the workload-based task allocation, compute nodes
were being selected in the simulation scenario that have high
specifications, as they have a lighter work-load running in the
background. Although the use of a workload-based solution
can minimize execution time, further reduction in execution
time is also possible if the task allocation decision is based
on two or three parameters instead of just one.

Fig. 7 shows the execution time of the 30 data traces
obtained through SW- and RM-based task allocation.

FIGURE 6. Execution time of only workload-based task allocation.

The results reveal that the execution time measured through
two parameters-based task allocation is much lower com-
pared with a random-based solution in most of the cases.
The simulation scenario reveals that through random-based
task allocation, most of the time the tasks were allocated
to slower devices for the execution. Thus, the tasks took
longer to complete. However, the proposed solution ensures
minimization in task execution time due to the involvement
of two parameters (CPU speed and workload) when the task
allocation decision was made. In our simulation scenario,
through the proposed solution devices that have high
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FIGURE 7. Execution time of two parameters- (CPU speed and workload)
based task allocation.

specifications which ensure minimization in execution time
are selected. Although performing task allocation based on
two parameters helps to minimize the execution time com-
pared with single parameter-based task allocation, further
reduction in execution time is also possible if the task alloca-
tion decision is based on three parameters.

FIGURE 8. Execution time of two parameters- (CPU speed, number of
cores, and coreworkload) based task allocation.

Fig. 8 illustrates the execution time of 30 data traces
obtained through SCW- and RM-based task allocation. The
results show that the proposed solution executes 30 data
traces generally in less time than random-based task allo-
cation. The reason is that in the simulation scenario, larger
tasks were almost always allocated to devices that have lower
processing capabilities. However, through a three parameters-
based task allocation, compute nodes that have high pro-
cessing capabilities were selected in our simulation scenario.
Therefore, the proposed solution outperforms the random-
based task allocation in most of the data traces execution in
terms of execution time. Thus, it is concluded that performing
task allocation based on CPU speed, core, and workload
running in the background can lead to efficient resource

utilization in MAC. This efficient resource utilization
minimizes the execution time of the tasks more than the
random and other four proposed solutions.

FIGURE 9. Energy consumption measured through CPU speed-based task
allocation.

2) ENERGY CONSUMPTION (mJ)
Fig. 9 presents the results of 30 data traces obtained from
SO- and RM-based task allocation. The results reveal that
random-based task allocation consumes more energy com-
pared with CPU speed-based task allocation in most of the
cases. The reason is that the random-based task allocation
performs task assignment to slower devices in most of the
cases, as it has been noticed in the simulation scenario. The
allocation of tasks to slower devices leads to energy wastage.
However, CPU speed-based task allocation enables the con-
troller node to assign all the tasks only to devices that have
high CPU speed, which helps to execute a task by consuming
less energy.

FIGURE 10. Energy consumption measured through core-based task
allocation.

Fig. 10 presents the results of 30 data traces that are
obtained from the CO- and RM-based task allocation.
The results reveal that random-based task allocation usually
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consumes more energy due to allocating tasks to slower
devices in most of the cases, as observed in the simulation
scenario. However, core-based task allocation enables the
controller node to select only the devices for task execution
that have the most cores. Thus, core-based task allocation
helps to select such devices for computation that have high
processing capabilities. In this way, this solution not only
minimizes the execution time but also saves energy compared
with random-based task allocation.

FIGURE 11. Energy consumption measured through workload-based task
allocation.

Fig. 11 illustrates the results of energy consumption
obtained from WO- and RM-based task allocation. The
results clearly show that random-based task allocation usually
consumes more energy for executing different data traces.
However, workload-based task allocation consumes less. The
reason is that, particularly in our simulation scenario, the
devices selected based on workload criteria have high pro-
cessing capabilities. Therefore, this solution consumes less
energy than random-based task allocation.

FIGURE 12. Energy consumption measured through two parameters-
(CPU speed and workload) based task allocation.

Fig. 12 presents the results obtained from SW- and
RM-based task allocation. The results show that the proposed

solution outperforms the random-based task allocation. The
graph shows that most of the data traces are consuming
more energy through random-based task allocation in most
of the cases. The reason is that in our simulation scenario,
it was observed that through random-based task allocation,
the controller node usually assigns larger tasks in terms of
computational lengths to slower devices that lead to the
consumption of extra energy. However, the compute nodes
selected through the proposed solution had high processing
capabilities. Therefore, the proposed solution consumes less
energy than random-based task allocation.

FIGURE 13. Energy consumption measured through three parameters-
(CPU speed, number of cores, and workload) based task allocation.

Fig. 13 presents the results obtained from SCW- and
RM-based task allocation. The results reveal that random-
based task allocation results in the consumption of more
energy than the proposed solution in most cases. The reason
is that through random-based task allocation, tasks are being
assigned to the slower devices as noted in the simulation
scenario. However, the proposed solution ensures that tasks
are allocated to devices that have high CPU speed, core, and
less workload. Based on this defined task allocation criteria,
the devices that have high specifications were being selected
for task execution in our simulation scenario. Thus, such
selection is better at ensuring minimum energy consumption
than random-based task allocation.

VI. SYSTEM MODEL VALIDATION
The correctness of the developed system model is validated
by comparing the results obtained from a system model with
that of simulation. The execution time is used as a parameter
to validate the system model.

A. EXECUTION TIME OF FIVE HETEROGENEITY-AWARE
TASK ALLOCATION SOLUTIONS
1) SO VS. RM
Fig. 14 shows the comparison of execution time measured
through the simulation of a CPU speed-based solution with
the system model results. The X and Y axes show five data
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FIGURE 14. Execution time of CPU speed-based task allocation.

traces and execution times (in seconds), respectively. The
graph shows that the experimental results of five data traces
are closer to the results obtained from the system model. The
differences in execution time through simulation results and
system models are measured at 5.06% of data trace 1, 2.87%
of data trace 2, 3.57% of data trace 3, 3.06% of data trace 4,
and 4.01% of data trace 5.

FIGURE 15. Execution time of core-based task allocation.

2) CO VS. RM
Fig. 15 shows the comparison of execution time measured
through the simulation of a core-based solution with the
systemmodel results. The X and Y axes show five data traces
and execution times (in seconds), respectively. The graph
shows that the experimental results of five data traces are
closer to the results obtained from the system model. The
differences in execution time through simulation results and
system models are measured at 2.59% of data trace 1, 2.68%
of data trace 2, 3.69% of data trace 3, 4.73% of data trace 4,
and 6.35% of data trace 5.

3) WO VS. RM
Fig. 16 shows the comparison of execution time measured
through the simulation of a workload-based solution with the
systemmodel results. The X and Y axes show five data traces

FIGURE 16. Execution time of workload-based task allocation.

and execution times (in seconds), respectively. The graph
shows that the experimental results of five data traces are
closer to the results obtained from the system model. The
differences in execution time through simulation results and
system models are measured at 2.98% of data trace 1, 5.17%
of data trace 2, 4.33% of data trace 3, 5.88% of data trace 4,
and 7.09% of data trace 5.

FIGURE 17. Execution time of two parameters- (CPU speed and
workload) based task allocation.

4) SW VS. RM
Fig. 17 shows the comparison of execution time measured
through the simulation of two parameters (CPU speed and
workload) based on a solution with the system model results.
The X and Y axes show five data traces and execution times
(in seconds), respectively. The graph shows that the exper-
imental results of five data traces are closer to the results
obtained from the system model. The differences in execu-
tion time through simulation results and system models are
measured at 6.69% of data trace 1, 5.28% of data trace 2,
9.01% of data trace 3, 10.42% of data trace 4, and 10.14% of
data trace 5.

5) SCW VS. RM
Fig. 18 shows the comparison of execution time
measured through simulation of three parameters
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FIGURE 18. Execution time of three parameters- (CPU speed, number of
cores, and workload) based task allocation.

(CPU speed, core, and workload) based on a solution with
the system model results. The X and Y axes show five data
traces and execution times (in seconds), respectively. The
graph shows that the experimental results of five data traces
are closer to the results obtained from the system model. The
differences in execution time through simulation results and
system models are measured at 3.85% of data trace 1, 4.10%
of data trace 2, 5.50% of data trace 3, 7.62% of data trace 4,
and 11.86% of data trace 5.

FIGURE 19. Comparison of execution time empirical results obtained
from five proposed solutions with random-based task allocation.

VII. MEAN VALUES-BASED COMPARISON WITH
RANDOM-BASED TASK ALLOCATION
IN TERMS OF EXECUTION TIME
Fig. 19 presents the execution time of five tasks. The x and y
axes represent different types of proposed algorithms and
execution time, respectively. The execution time is measured
in seconds. The comparison results reveal that proposed solu-
tions outperform the RM-based task allocation.

In RM-based task allocation, tasks of various sizes are
assigned to the available mobile devices without con-
sidering resources and operational heterogeneity in the

MAC paradigm. This causes inefficient resource utilization
that can prolong the execution time of the task. In this context,
five task allocation solutions are proposed. One of the solu-
tions is to base the decision on CPU speed while performing
task allocation. The execution of the tasks that are performed
based on high CPU speed mobile devices helps to shorten the
task execution time compared with low CPU speed mobile
devices that can be selected by random-based task allocation.
Thus, the results of the solution based on high CPU speed
show that it can shorten the task execution time by as much
as 56.72% compared with random-based task allocation.

The second possible solution is based on the number of
cores. First, it needs to be made clear that a core-based
solution is different from a CPU speed-based task allocation.
In the experiment, the devices were selected so that high-
speed CPU devices do not have a higher number of cores,
otherwise the result of the high CPU speed and the core-based
proposed solution could remain the same. Thus, the results
of the core-based proposed solution indicate that performing
task allocations based on the higher number of cores helps
to minimize the execution time by up to 53.12% compared
with random-based task allocation. The reason for the shorter
execution time is that the tasks that required more computing
power were being executed on resource-rich mobile devices
with a higher number of cores. The device with a higher
number of cores ensures parallel processing ofmulti-threaded
tasks.

The third proposed solution is based on the workload
parameter. In MAC, the devices may have a different work-
load running in the background. Therefore, basing task allo-
cation only on high CPU speed and a larger number of cores
may not be useful when the workload on high-speed mobile
devices is very high. In such cases, basing task allocation
on high CPU speed or number of cores can degrade the
performance of the tasks in comparison with devices that
have low CPU speed and fewer cores; however, the back-
ground workload on the devices is very low. In this context,
workload-based task allocation can minimize the task execu-
tion time. Thus, the workload-based solution can improve the
task execution by up to 56.97% compared with random-based
task allocation.

Although performing task allocation based on a single
parameter helps to minimize the execution time, a greater
reduction in execution time is possible by selecting compute
nodes based on two and three parameters. Moreover, the solu-
tion of task allocation by considering only one parameter does
not guarantee optimal reduction in the task execution time.
In order to see a shorter execution time, the nodes for per-
forming task execution must be selected based on a simulta-
neous high CPU speed and a lighter running workload. This
ensures improvement in task execution time up to 61.23%
compared with a random-based solution.

Although a significant reduction in execution time is
seen in these four solutions, further reduction is also possi-
ble by basing task allocation on three parameters together,
such as CPU speed, number of cores, and workload.
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The consideration of these parameters together leads to more
appropriate resource utilization than a random-based task
allocation solution. Efficient resource utilization enables the
mobile devices to execute the task quickly. Thus, the results
show a substantial increase in the performance by reducing
the execution time by up to 71.55% through a final proposed
task allocation solution (SCW) that is based on three parame-
ters: CPU speed, workload, and number of cores. In addition,
the three parameters-based solution is analyzed as one of the
best of the five in terms of execution time in our scenario.

FIGURE 20. Comparison of energy consumption empirical results
obtained from five proposed solutions with random-based task
allocation.

VIII. MEAN VALUES-BASED COMPARISON WITH
RANDOM-BASED TASK ALLOCATION IN
TERMS OF ENERGY CONSUMPTION
Fig. 20 presents the results of energy consumption that are
obtained through proposed heterogeneity-aware task alloca-
tion solutions in our simulated scenario. The purpose of this
section is to discuss the performance of proposed solutions in
terms of energy consumption (mJ).

The results of the CPU speed-based task allocation show
that it consumes less energy than the random-based solution.
The reason for less energy consumption is that the proposed
solution enables the controller node in a way that always
assigns the task to a high-speed mobile device that executes
it quickly. Because of the fast execution time, energy con-
sumption is also minimized. However, in random-based task
allocation, the controller node allocates the task to the slower
device as it does not consider the compute node resources that
prolong its execution time and also consumes more energy.
Thus, the CPU speed-based task allocation solution helps to
save energy up to 69.78%.

The results of a core-based task allocation are also
more promising than random-based task allocation in terms
of energy consumption. In random-based task allocation,
resources are not usually utilized in an efficient way, which
wastes energy. However, core-based task allocation ensures
efficient resource utilization by enabling the controller to
select compute nodes that have more cores. Thus, the

selection of such devices helps to execute the task in a quicker
manner than random-based task allocation because of the
former’s high processing capabilities. In this way, the core-
based solution helps to reduce energy consumption up to
68.25% compared with random-based task allocation.

The workload-based task allocation solution enables the
controller node to select only the device that has a lighter
workload running in the background. Based on the workload
criteria, much more energy can be saved than random-based
task allocation. In random-based task allocation, the larger
tasks can be allocated to such devices that already have
lots of workloads running in the background, which causes
higher energy consumption. However, the workload-based
selection of the compute node helps to minimize the energy
consumption. Thus, the results show that workload-based
task allocation helps to save energy up to 69.06%.

The results of the two parameters-based (CPU speed
and workload) task allocation reveal that it helps to reduce
energy consumption when compared with random-based task
allocation. Although performing task allocation based on
two parameters helps to reduce energy consumption up to
67.26% compared with random-based task allocation, single
parameter-based task allocation helps to save more energy.
The reason is that through single parameter-based task allo-
cation, the tasks are being executed only on one device that
usually has high specifications, whereas through multiple
parameters-based task allocation, tasks are usually allocated
to more than one device as noted in our simulation, where
specifications of the compute nodes were quite diverse.

In that simulation scenario, although execution time could
be minimized due to a time slots factor compared with single
parameter-based task allocation, energy consumption could
not be minimized in comparison with single parameter-based
task allocation. Such is also the case with the two and three
parameters-based task allocation solutions (SW and SCW).
Although the results of SW and SCW show that the solutions
save energy consumption up to 67.26% and 57.33%, respec-
tively, these results were not better than two single parameter-
based task allocation solutions, such as SO and WO. Hence,
the discussion concludes that proposed heterogeneity-aware
task allocation solutions use less energy than the random-
based task allocation. In addition, the CPU speed-based task
allocation is one of the most energy-efficient solutions in our
simulation scenario.

IX. SCOPE AND LIMITATIONS
The proposed heterogeneity-aware task allocation algorithms
are effective for all interactiveMAC-based compute-intensive
task execution. To minimize execution time and energy, the
MAC controller node can adopt these solutions to make task
allocation decisions. Moreover, cloudlet based applications
can also take advantage of these algorithms in a particular
case when execution is performed in a distributed manner.

Despite many advantages, there are some limitations of
the proposed algorithms. For example, in single parameter-
based proposed solutions (e.g., SO and CO) all the tasks
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are allocated to only one compute node, which may not be
feasible and can lead to wastage of resources. Moreover,
the proposed solutions require complete device specifica-
tion and workload information in real-time, which may pose
significant overhead on the controller. Furthermore, one of
the limitations is that once the controller collects all the
information of the specifications and workload from the
compute nodes, it makes task allocation decisions based on
the defined policy in the proposed algorithms. However, the
workload information may be changed in between the task
assignment process on the compute nodes. Thus, in such a
situation, the proposed heterogeneity-aware task allocation
solutions do not incorporate any feature that enables the
controller to change the task allocation policy at the run
time.

X. CONCLUSION AND FUTURE DIRECTIONS
This paper has proposed five heterogeneity-aware task allo-
cation solutions to address the issue of longer execution
time and greater energy consumption by enabling the con-
troller node to make an efficient task allocation decision.
The proposed solutions have minimized the task execution
time and energy consumption for MAC-based task execution.
The proposed solutions were implemented using a controller
node that is responsible for allocating the task in the MAC
environment. The developed systemmodel has been validated
by comparing the empirical execution time results obtained
from the five proposed solutions. The differences between
the execution time results obtained from the system model
and each proposed solution were not significant. Performance
evaluation of the proposed solutions have also been done.
The results revealed that heterogeneity-aware task allocation
solutions, such as SO, CO, WO, SW, and SCW outper-
formed the random-based solution by reducing the execution
time up to 56.72%, 53.12%, 56.97%, 61.23%, and 71.55%,
respectively. In addition, these heterogeneity-aware task allo-
cation solutions saved energy up to 69.78 %, 69.06 %,
68.25 %, 67.26 %, and 57.33 %, respectively. Based on the
obtained results, we conclude that the proposed solutions
help to improve task performance in terms of execution time
and energy consumption, in comparison with random-based
solution.

Node turnover is an important factor to consider during
task allocation in MAC, as the mobile nodes may leave
and join at any time. For example, a compute node with an
allocated task may leave the MAC without reporting back
the results. In such situations, task reallocation needs to be
investigated. Moreover, new solutions need to be devised to
engage newly joined compute nodes. Battery power is another
important consideration during task assignment.
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