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ABSTRACT The aim of the radar systems is to collect information about their surroundings. In many
scenarios besides static targets there are numerous moving objects with very different characteristics, such
as extent, movement behavior or micro-Doppler spread. It would be most desirable to have algorithms that
extract all information on static and moving object automatically, without a system operator. In this paper,
we present measurements conducted with a commercially available high-resolution multi-channel linear
frequency-modulated continuous-wave radar and algorithms that do not only produce radar images but a
description of the scenario on a higher level. After conventional spectrum estimation and thresholding, we
present a clustering stage that combines individual detections and generates representations of each target
individually. This stage is followed by a Kalman filter based multi-target tracking block. The tracker allows
us to follow each target and collect its properties over time. With this method of jointly estimating tracks
and characteristics of each individual target in a scenario, inputs for classifiers can be generated. Which, in
turn, will be able to generate information that could be used for driver assistance or alarm trigger systems.

INDEX TERMS Automotive radar, surveillance radar, range-Doppler, clustering, tracking.

I. INTRODUCTION
Starting a few years ago, radar sensors were introduced in
civil surveillance tasks, mainly in the following three differ-
ent fields.

1) One application area is automotive safety. Demands
in automotive scenarios, especially towards protection of
vulnerable road users like pedestrians and bicyclist, have
significantly increased in the last few years. Therefore, cars
are equipped with radar sensors which are used for driver
assistance systems. These sensors enable the driver assistance
system to avoid crashes if obstacles are detected in front of
the cars. In addition to the detection of immediate obstacles,
more elaborate analysis should be able to detect and track
the surrounding of the vehicle. This additional information
allows a prediction whether a further traffic participant or a
vulnerable road user might become an obstacle in the near
future [1].

2) Another field of application for radar sensors is making
road-side infrastructure intelligent. Some countries, e.g., the
United Kingdom, migrate from time-controlled, i.e. pedes-
trian light controlled (pelican), to the demand-controlled,
i.e. pedestrian user friendly intelligent (puffin), crossing for

intersections [2], [3]. An efficient traffic control with fully
automated traffic lights for pedestrian crossings requires
surveillance of traffic participants. To reduce traffic hold-ups,
curb-side sensors are required to detect when a pedestrian
intends to cross the road and when the pedestrian has crossed
over.

Street light control systems could use the same principle.
With the evolution towards LED-based illumination more
complex light control systems rather than simple sunset based
toggling are being considered [4]–[6]. During the night,
lamps are dimmed to save energy and reduce light pollu-
tion. However, in situations where traffic participants are in
the dark, the street lights should automatically turn to full
brightness.

3) Comparable demands are expected for property surveil-
lance. Due to their low price, many existing surveillance
systems rely on infrared based motion sensors. These suffer
from a high false alarm rate, since they can be triggered
by moving foliage or animals like roaming cats. Due to
mass production for the automotive industry, radar sensors
are becoming affordable for other commercial applications.
Using such sensors also in surveillance systems, would have
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FIGURE 1. Block diagram from sampling the IF data to classification. The numbers above the
blocks correspond to the sections in this paper.

the additional advantage of determining the cause of motion
detection triggers. False alarm rate can therefore be lowered
compared to conventional motion detection systems.

Radar sensor based systems can also address privacy issues
which are crucial to any surveillance system. Camera based
surveillance does not only allow tracking and classification,
but also identification of individuals, e.g., by facial recogni-
tion. Following the ‘privacy by design’ approach, individuals
cannot be identified by a radar sensor.

In all of the three cases described above, it is not possi-
ble to employ classical operator based radar systems, since
there is either not enough reaction time (crash avoidance in
automotive scenario) or it is too impractical. Therefore, there
is demand for radar systems which can not only visualize
raw data but automatically process the data to provide a
description of scenario and the individual targets within. This
description should not only contain the position of the targets
over time but also information suitable for classification.

High resolution radar measurements, also called micro-
Doppler and/or micro-range systems, allow for extracting
target properties, i.e. signatures, for classification. These
signatures are used for classification, e.g., by using sup-
port vector machines [7], empirical mode decomposition [8],
or statistical pattern recognition [9]. Signatures suitable
for classification include extent, range-rate, and various
statistics of the micro-Doppler spread like mean of the
Doppler signal, standard deviation (STD) of the Doppler
signal, total bandwidth of the Doppler signal, normalized
STD of the Doppler signal, average Doppler frequency,
periodicities in the Doppler signal, as well as range-
weighted target energy [10]. Heuel et al. [11] used the
extent in the range/Doppler map for classification of pedes-
trians. Bartsch et al. [12] used the physical extent and
Doppler spread from a single range/Doppler/Direction of
Arrival (DOA) measurement. Models of a human’s gait are
broadly available [13]–[17]. References [7], [8], [10] also
analyzed various other activities besides walking. In [18],
Doppler spread measurements originating from scans at dif-
ferent frequencies are used. A comparison of the micro-
Doppler signatures of trees in wind to pedestrians is presented
in [19]. Also, micro-Doppler characteristics of unmanned
aerial vehicles (UAVs) have been studied [20], [21] and
successfully distinguished from the signature of birds [22].
Recently, bicyclists have been studied in [23].

A basic underlying assumption in all of the aforementioned
publications is the presence of a single contributing target.
In an actual scenario, however, it is more likely that several

targets are present in the field-of-view simultaneously. Thus,
a mapping of detections to targets must be made prior to fea-
ture extraction. This mapping can be done efficiently within
a multi-target tracking (MTT) framework. However, a high-
resolution measurement in either range (due to high band-
width), range-rate (due to long observation time) or DOA
(due to large aperture) will produce multiple detections per
physical target. Having multiple detections per target violates
a basic assumption of radar based tracking systems, namely
that a target should be only visible in one cell at a time,
i.e. it produces a single detection at each time step. Cluster
algorithms come into play in order to generate information of
each independent physical target out of the detection list at
each time step.

In this paper, we fill the gap between sampling data and
feeding the classifier by presenting algorithms to condense
suitable inputs for the available classification methods using
raw analog-to-digital converter (ADC) data of a radar sen-
sor. Fig. 1 depicts an overview of the necessary process-
ing steps from data-sampling to classification for the case
of multiple targets, each consisting of multiple detections,
being present simultaneously in a scenario. Moreover, we
present results of our processing technique based on mea-
surement data from a commercially available multichan-
nel linear frequency-modulated continuous-wave (LFMCW)
radar system with a uniform linear array (ULA). The pre-
sentation of the algorithms in this paper is organized as
follows:
• measurement and data preparation in Section II,
• spectrum calculation and thresholding to get a list of
detections in Section III,

• clustering of detections to represent physical targets in
Section IV,

• tracking with cluster information in Section V,
• feature extraction in Section VI, and
• track analysis in Section VII.

In Section VIII, we will address the computational demand
of our framework and draw a conclusion in Section IX.

II. MEASUREMENT PRINCIPLE AND SCENARIO
We use a 77-GHz multichannel LFMCW radar platform
as depicted in Fig. 2. The platform is similar to [24]
and based on Infineon’s monolithic microwave integrated
circuits (MMICs) [25]–[27] and baseband technology from
Inras GmbH [28]. The RF frontend consists of four trans-
mit channels and a linear antenna array for reception with
NA = 8 antennas. A single TX channel was used in this
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FIGURE 2. Image of the radar system. The PCB on top is the RF frontend
which holds the RF components, e.g., chips, distribution networks, and
antennas. The board at the bottom is the IF board comprising the power
supply, the ADCs, the control units for the RF chips and the USB
connection to a PC.

application since multiple channel could only operate in time
divisionmultiple access (TDMA)mode. Using TDMAwould
reduce the unambiguous range-rate region.

We carried out several measurements in different scenarios
of which four will be presented in this paper:
A) an outdoor measurement in a pedestrian area,
B) an outdoor measurement of a cat in a backyard,
C) an indoor measurement of a small UAV, and
D) a measurement in an underground parking lot.
For the measurements in the underground parking lot we
had access to a hardware revision with support for higher
data-rates than the above-ground measurements. Values for
the faster hardware are listed in parenthesis. The follow-
ing parameters were used for the LFMCW measurements:
B = 1GHz sweep bandwidth, 3.3̇MHz (10MHz) sample
rate for each receive channel, 64µs chirp duration of an up-
chirp resulting in N = 210 (620) samples per up-chirp, and
Tc = 130µs (97µs) chirp repetition interval.
We used NC = 200 (NC = 268) consecutive chirps

to form a data cube with a size of N × NC × NA at each
time step, where N is the number of samples during one
chirp and NA is the number of antennas. This corresponds
to an observation interval of approximately 26ms, for each
range/Doppler/DOAmap.We have chosen the update interval
to be equal to the observation interval, resulting in 38.5 data
cubes per second.

With aforementioned parameters, the maximum range is
approximately 16m (48m) and the unambiguous region in
range-rate is approximately ±7.5m/s (10.2m/s). The bin-
width after a fast Fourier transform (FFT) is 1R = 15 cm
in range, 1v = 7.5 cm/s in range-rate, and 22.5◦ in
DOA at broad-sight. Due to the measurement rate of
38.5Hz, variations of the scenario, e.g., target motions,
can be observed up to the unambiguous frequency of

1/2 · 38.5Hz ≈ 19Hz. These values have been chosen to fit
well to the available models of pedestrians [13]–[16], which
state an average velocity of 1.5−3m/s with peaks of approx-
imately ±3m/s around the average and a step frequency of
approximately 2Hz.

FIGURE 3. Camera view of the measurement scenario used for
illustration. In the underground parking lot at the university, two persons
are walking next to parked cars while another vehicle is passing by.

With this setup we conducted experiments in various
scenarios. The results of these are presented in detail in
Section VII. For illustration of the algorithms presented in the
following sections, we have chosen the scenario where two
pedestrians and a car are moving in an underground parking
lot. Fig. 3 shows a picture of this measurement scenario.

III. SPECTRUM AND THRESHOLDING
According to the LFMCWprinciple, the simplified [29] inter-
mediate frequency (IF) signal model for a single point target
in the three-dimensional data cube of the k-th observation
interval can be approximated as three-dimensional complex
exponential function

sIF,k [n, nC, nA] = Aej2π(φ+ψRn+ψDnC+ψθnA). (1)

The desired information on range R = ψR
c
2
N
B , range-rate

vR = ψD
c

2Tcf0
, and DOA θ = asin (2ψθ ) [30] corresponds

to the normalized frequencies ψR, ψD, and ψθ , respectively.
Here, c is the speed of light and f0 = 77GHz is the carrier
frequency. In a measurement the acquired IF signal

xIF,k [n, nC, nA] =
M∑
m=0

Amej2π(φm+ψR,mn+ψD,mnC+ψθ,mnA)

+w[n, nC, nA] (2)

contains a superposition ofM point target reflections, i.e. the
model from (1) with different and unknown parameters Am,
ψR,m,ψD,m,ψθ,m, and φm. Additionally, additive white Gaus-
sian measurement noise w[n, nC, nA] is present. For the theo-
retical case of a single point target, i.e.M = 1, correlating the
measured xIF,k [n, nC, nA] with the model sIF,k [n, nC, nA] and
a subsequent maximum search could be employed to estimate
the unknown parameters of the target. Due to the structure of
the model (1) the correlation can be efficiently carried out
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using the FFT. For a real world scenario with M > 1, the
windowed three-dimensional FFT

P̂k (ψR, ψD, ψθ )

=

∑
n

∑
nC

∑
nA

aR[n]aD[nC]aθ [nA]xIF,k [n, nC, nA]

× e−j2πψRne−j2πψDnCe−j2πψθnA (3)

is commonly used as an estimator for the spectrum. Param-
eters of the peaks in the spectrum are used to deduce the
parameters of the targets.

For the range andDoppler dimension, we successfully used
typical windows aR, aD, like the von Hann window, and the
Nuttall-Tukey window with similar results. However, due to
some strong reflections near DC, we preferred the Nuttall-
Tukey window over the von Hann window to reduce the
blind range close to zero range. In the angular dimension we
used a Taylor window aθ with 2 taps and −20 dB sidelobe
damping. Additionally, we extended the angular dimension
from 8 to ZA = 64 samples by padding with zeros prior
to the calculation of the FFT. The zero-padding technique
is a computationally efficient interpolation of the spectrum
estimate (3) to reduce the effects of discretization.

FIGURE 4. Visualization of the Doppler spectrum over time. There are
three individual signatures that need to be separated. At negative
range-rate the pedestrian moving towards the radar sensor is visible and
with positive range-rates another pedestrian and the car are identifiable
but overlain.

We computed the spectrum from the measurements of the
scenario depicted in Fig. 3 according to (3). The resulting
range-rate over time is depicted in Fig. 4. Range and DOA
dimensions have been eliminated by a maximum search. The
individual micro-Doppler signatures that need to be separated
are perceptible. A different view on the data, which is more
suitable for target separation, is the range/Doppler/DOAmap
as given in Fig. 5 for t ≈ 12.6 s. Next to static reflections
located around zero range-rate the two persons at a distance
of approximately 6m and 20m and at a car at 25m are very
well visible.

Often one of the many constant false alarm rate (CFAR)
algorithms [31], [32] is used for the task of applying a thresh-
old in radar applications. However, this family of algorithms
is not applied here for three reasons. Firstly, CFAR thresholds

FIGURE 5. Plot of the three dimensional spectrum for the measurement
scenario of Fig. 3. The intensity of each pixel represents the magnitude of
the spectrum and the color of each pixel represents the DOA. Lots of
reflections around zero range-rate originating from non-moving
reflections are visible. The three moving targets are clearly visible and
marked with ellipsoids.

are intended to follow the noise floor. In our measurements,
however, the noise floor is flat. Secondly, CFAR algorithms
should avoid detections in cluttered areas. Due to the high
resolution in range and range-rate of our setup, the considered
targets occupy more than a single cell. Thus, in range and
range-rate our expected targets appear like the clutter that
CFAR algorithms are typically designed to suppress. Thirdly,
the DOA dimension has only 8 samples, which is not enough
to apply a CFAR algorithm in a meaningful way. Therefore,
a CFAR based threshold does not apply here.

In our test-scenarios, pedestrians were able to walk
up closely, i.e. less than 3m towards the radar frontend.
As received power increases significantly with lower dis-
tance, the reflections of close pedestrians have much larger
extent in the three-dimensional spectrum than their distant
counterparts. To avoid for different detection and clustering
strategies depending on distance, we used a threshold level
with an 1/R2-shape with 16 dB noise distance at Rmax.
A different thresholding technique for DOA is required,

due to the large difference of the sidelobe levels and number
of samples compared to range and range-rate. In the 3D data-
cube we select each range/range-rate index that has any of
its corresponding DOA bins above threshold. Then we select
every bin along the DOA dimension which is above the
sidelobe level (SLL) (here the−20 dB of the Taylor window)
and the threshold. This method allows us to fully utilize the
processing gain of the FFT in each of the dimensions.

Fig. 6 shows the detections, i.e. elements above the thresh-
old in the spectrum depicted in Fig. 5. These correspond to
each of the pixels in Fig. 5 which are not white. A high
number of reflections above threshold are present, but we
are mainly interested in the ones originating from the three
moving targets. Feeding a tracker with all of the detections
would be computationally very demanding and most likely
produce unusable results.
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FIGURE 6. Plot of all detections, i.e. elements after applying the threshold
on the spectrum of Fig. 5, from the measurement scenario of Fig. 3. The
detections are converted to x-y space for better perception. Feeding a
tracker with all of the detections would be computationally intractable.

The task to combine the individual detections to represent
physical targets is handled by the clustering stage as will be
presented in the following section.

IV. CLUSTERING
The final goal in this work is to produce tracks and prop-
erties of the targets associated with the tracks. Literature
about tracking systems for radar or sonar applications mostly
deals with the assumption that a single target will produce
a single detection. This assumption is not valid for micro-
range and micro-Doppler systems, where a target consists of
several detections. To combine these two worlds we need to
assess which detections belong to which target. This step is
called clustering. Clustering allows to combine detections to
represent a physical target. The cluster center can then be
used as input for a tracker. There are several ways to define a
center of a cluster, e.g., the location of the strongest reflection,
the arithmetic mean over a cluster’s elements, a weighted
arithmetic mean, etc. Once the cluster center is calculated,
it can be used as input for a Kalman-filter based tracker.

The field of clustering mainly originates from data mining
in big databases. There are numerous classes of clustering
algorithms broadly available. Unfortunately, due to their ori-
gin, many algorithms have severe disadvantages which make
them suboptimal for radar applications. Firstly, the number
of clusters, i.e. the number of targets in a radar measurement,
must be known a priory. This information is not available for
radar measurements. Secondly, many clustering algorithms
have shape constraints and tend to produce spherical clusters
only. Thirdly, optimization of available clustering algorithms
often go towards large databases with more than 100 dimen-
sions. Additionally, our data has a property that is not covered
in the literature on clustering. As Fig. 5 depicts, the pedestrian
at a range of approximately 20m has gaps along the range-
rate dimension. These gaps are particular features of a pedes-
trian’s reflection. In our measurements, we observed gaps up
to vgap = 1m/s.

What is needed in our radar tracking application is a
clustering algorithm that is robust against outliers and esti-
mation errors, can cope with gaps in range-rate, and is fast
and suitable for online calculation. We found two applicable

clustering algorithms, the family of density-based spatial
clustering of applications with noise (DBSCAN) and the
inner loop of the family of grid-based clustering algorithms,
which is basically a flood-fill.

A. DBSCAN FAMILY
The DBSCAN family of clustering algorithms aims to find
structures of high densities and arbitrary shapes in sparse
data-sets. A detailed description is presented in [33] and [34].
Considering the detections from Fig. 6, this fits our needs.

DBSCAN is quite fast since it only needs to address
each element once. The original DBSCAN is robust against
outliers but heavily influenced by different densities over
the search area. A measurement scenario with lot of static
clutter and few moving targets, as it is the case in our con-
sidered scenarios, show high density differences. The den-
sity of detections is high around zero range-rate and low
where single targets are located. In this case DBSCAN most
likely combines all elements near the static-clutter-ridge at
v = 0m/s wrongfully to a single cluster.

Purging all static detections, as it will be described in
Section IV-D can alleviate the problem but results in loss
of information. We tackled above mentioned problem of
DBSCAN by introducing the extended density-based spa-
tial clustering of applications with noise (EDBSCAN) [35]
algorithm. EDBSCAN introduces a size attribute for each
detection. The original EDBSCAN approach works well in a
sparse environment and low dynamic range. In a dense envi-
ronment with strong reflections off static targets and weak
reflections off pedestrians, this approach becomes unstable.
In such a case, static targets with high power are merged,
while extended targets with lower power—the pedestrians we
are interested in—will be split into several clusters.

Here we introduce a new size metric for EDBSCAN.
We discriminate between static and moving detections. Static
detections have a range-rate less than vmin = (vmp + vgap)/
2 ≈ 0.8m/s, where vmp ≈ 0.6m/s is the width of the main
peak of the FFT along the range-rate dimension using the
Nuttall-Tukey window. For static detections the size of the
ellipsoid equals the width of a bin of the underlying FFT.
The size of the ellipsoid for moving detections is twice the
size of an FFT-bin in range and vgap in range-rate. With this
setting, just a small gap in range-rate is sufficient to separate
moving from static targets while moving targets can have
larger gaps up to vgap. Using the new size metric, EDBSCAN
produces a good representation of the static environment,
while also combining the reflections of moving pedestrians
reliably.

B. GRID-BASED CLUSTERING
Like every other DBSCAN variant, the EDBSCAN based
clustering approach suffers from the computational demand
of calculating distance metrics between all elements. The
calculation of distance metrics can be avoided by exploiting
the grid-structure of the FFT. After applying the threshold,
a flood-fill algorithm can be used to determine clusters [36].
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FIGURE 7. Clustering results of the detections showed in Fig. 6 with
EDBSCAN applied. The background shows the bins of 3D-FFT which are
above the threshold level. Each individual cluster is indicated by a
separate marker at the location of its center and an outline with
corresponding color. Most of the individual detections belonging to a
physical target are correctly represented as individual clusters. At a
distance of approximately 20m the problem of a moving pedestrian
being merged with non-moving targets is visible.

With a step size greater than one, the flood-fill algorithm
can account for gaps in the clusters. We set the step size
to 13 in the range-rate dimension which accounts for a gap
of vgap = 1m/s. Setting a minimum cluster size makes this
algorithm robust against outliers.

Compared to EDBSCAN the gap size parameter is global
for grid-based clustering. A gap size individual for each
element would correspond to an asymmetric distance metric
and unintended behavior, i.e. the order of execution would
determinewhether detections are combined to a cluster or not.

C. CLUSTERING RESULT COMPARISON
Grid-based clustering is able to produce similar results as
density based clustering. In theory, grid-based clustering has
a higher chance (compared to EDBSCAN) to produce bogus
clusters by merging static with moving elements. This is
due to the global gap size parameter. See, Section IV-D for
further explanation of this phenomenon. However, in our
measurements we did not observe a significant influence of
this difference on the tracking stage.

On the other hand, grid-based clustering is much faster if
the number of detections exceeded a few hundred, which was

FIGURE 8. Clustering after purging of static targets. Compared to Fig. 7,
all the moving targets are correctly clustered.

nearly always the case in our measurements. If computational
demand can be tolerated, super-resolution algorithms might
be used for, e.g., DOA estimation. In such cases EDBSCAN
is a good choice since it does not rely on gridded data.

Fig. 7 shows EDBSCAN clustering applied to the detec-
tions of Fig. 6. The center of a cluster is calculated as
the weighted mean of its elements, where the weight is an
element’s magnitude. To reduce the number of false-alarms
we only use clusters with 50 or more elements for further
processing.

D. CLUSTERING WITH AND WITHOUT STATIC ELEMENTS
For scenarios where pedestrians can get in close proximity
(in terms of resolution) with static targets, reflections of the
moving and the static targets might get merged into a single
cluster. This is the case in the underground parking lot, were
there are a lot of significant reflections from pillars and
parked cars. Fig. 7 depicts a common clustering problem that
can occur in such a scenario. The pedestrian at a distance
of approximately 20m was nearby an extended static target,
i.e. the combined reflections of pillars and cars. The
detections of the pedestrian and the static targets are
combined and form a large cluster with an L-shape in
range/Doppler dimension. The cluster center of such an L-
shaped cluster does not represent anything physically present
and hence will be a problematic input for the tracking
algorithm.
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To avoid such L-shaped clusters in dense scenarios, prior
clustering it can be advantageous to remove all detections
below a minimal range-rate of vmin = vmp/2 ≈ 0.3m/s,
which is half the width of the main peak of the used Nuttall-
Tukey window in Doppler dimension. This measure purges
all non-moving point-targets. Fig. 8 shows the same setup
as Fig. 7 but after pruning static detections. EDBSCAN pro-
duces a smaller number of clusters and deformed clusters do
not occur any more. However, modulated static targets, e.g.,
due to reflections onmoving objects, may leave some remains
and produce some spurious clusters.

Without the static reflections, subsequent analysis has no
information about low-velocity components. This has impli-
cations on performance of the tracker and the quality of
the resulting tracks. Too much clutter, i.e. static targets, will
result in either bogus tracks or no tracks. However, like static
targets, moving targets with a nearly constant distance to the
radar frontend will also be purged. Thus, tracks might be
stopped prematurely. This could be alleviated by complex
gating strategies like the ones already available for air-craft
tracking [37]. Another negative side-effect of purging detec-
tions with low Doppler frequency is that subsequent micro-
Doppler analysis will also lack the low-velocity component.

E. TIME DEPENDENCY
Doing such clustering at consecutive timesteps introduces
another problem. Imagine the case where the i-th target in a
field-of-view is represented by the j-th cluster at timestep k .
In timestep k + 1, the ordering of the clusters might be
different. Thus, a target can not be followed reliably over time
using clustering solely. We will treat this problem in the next
section.

V. TRACKING
The Kalman filter [38] is a fast recursive linear filter which
can be used to estimate the state of a dynamic system from
a time series of noisy measurements. Kalman filters can
estimate the internal state for model variables that cannot
be measured directly, e.g., cross-range velocity. Additionally,
they have a recursive structure, low computational demand,
and are robust against measurement inaccuracies and cor-
relations in a multi-target scenario. Therefore, the Kalman
filter based tracking is one of the most widely used tracking
algorithm in the radar community [37].

A. TRACKING A SINGLE TARGET USING
PSEUDO MEASUREMENTS
The Kalman filter framework requires the definition of a state
vector xk , a state noise process, the variance of measure-
ments and the transition from measurement space to state
space.

Various possibilities are available to select the entries
of the state vector xk . Viable state vector entries are, e.g.,
position, velocity, acceleration, heading, and turn-rate of a
target. Given a certain measurement variance, increasing the
number of elements in the state vector will also increase

the corresponding state variances, and of course computation
time. Consequently, one should choose the number of state
variables as low as necessary to achieve a low variance of
the estimated parameters. Heading and turn-rate are mainly
used for slow-turning vehicles like cars, ships, or airplanes.
Pedestrians or animals can have highly fluctuating heading.
Hence, heading and turn rate are not employed in the tracker
used in this paper. Like inmany other applications, we assume
a constant-velocity model in the x-y plane.With these consid-
erations the state vector

xk =
[
x vx y vy

]T (4)

contains the position and the velocity for each observable
track j in two dimensions.

The state noise process contains the contribution of the
unknown accelerations of a target. We model these as a zero
mean Gaussian noise process with a covariance matrix

Q̃ =
[
σ 2
a,x 0
0 σ 2

a,y

]
(5)

holding the acceleration’s variances σ 2
a,x and σ

2
a,y. Using an

inertial measurement unit (IMU)we empirically assessed that
σa,x = σa,y = 8m/s2 is a reasonable value for pedestrians.
However, we observed that this value also works well for
tracking the cat and the UAV.

The measurement space contains the measurements cor-
responding to a certain track. For the radar sensor from
our setup, these are range, range-rate and DOA for each
target. However, including the range-rate in the Kalman fil-
ter framework would introduce two problems. Firstly, the
Kalman filter’s update stage would become highly non-linear
and even linearization, e.g., with the extended Kalman fil-
ter (EKF) framework [39], [40], is not necessarily stable
anymore [41], [42]. Thus, higher order filters, like the
unscented Kalman filter (UKF), would be necessary.
However, these non-linear filters have significantly higher
computational demand. Secondly, we know that targets like
pedestrians are widely spread in the Doppler dimension.
Of course, the previous clustering stage, in theory, should
combine all velocity components of a target and calculate
the true range-rate. However, due to the heavily fluctuating
radar cross section (RCS) [43], [44] of pedestrians and large
difference between, e.g., hands and torso velocity, the range-
rate estimate might be too inaccurate.

Our approach for a tracker does not include the range-
rate as possible input for the tracker. However, note that
the information is not lost, since it was already used in the
clustering stage. Despite the simplification to avoid the highly
non-linear transform of the range-rate to vx and vy, by not
including the range-rate into the state vector the remaining
transform of a measurement

z̃k =
[
rk θk

]T (6)

to state variables (4) is still non-linear. The idea to overcome
this problem, is to use functions of measurements, so-called
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pseudo-measurements, as input for the Kalman filter. Here we
use x-y coordinates

zk = f (z̃k ) = [rk cos(θk ) rk sin(θk )]T (7)

as functions of the measured range rk and DOA θk .
The measurement variance is also needed. In literature,

the approach of a linearized transform of the measurement
variance is often employed, e.g., in [45]. However, two facts
make this standard approach unfavorable. Firstly, the under-
lying assumption for this approach is that the measurement
variances in range and DOA are known. However, methods
to calculate the measurement variances are only available for
targets that follow a very simple model, e.g., the Cramér-
Rao lower bound for point-targets. For extended targets, as
we have to deal with here due to our high resolution radar
system, there is no reliable way to determine themeasurement
variances. Secondly, our primary goal is to track persons in
the x-y plane. The appearance of persons to a radar sensor
cannot be modeled in a simple way. So, we empirically
assessed an approximate variance

R =
[
σ 2
x 0
0 σ 2

y

]
with σx = σy = 0.5m. (8)

With all parameters defined for the linear Kalman filter
framework, we can use the well-known prediction and update
equations from [38] to solve for the state vector xk for all
timesteps k for a single track. In the next section we will show
how to deal with multiple tracks in a scenario.

B. MULTIPLE TARGETS: THE ASSIGNMENT AND
TRACK-MANAGEMENT PROBLEM
As we most likely observe multiple targets simultaneously,
there is the assignment problem that needs to be solved.
We need a set of rules for a) when a track starts, b) when
a track ends, and c) which measurement should be used to
update which track.

At the first timestep k = 0, each of the targets, indexed
with i, resulting from the clustering stage does start a new
track j. This means, a new instance of the state vector xj,k
is created. At the following timesteps the clustering stage
generates new lists of targets zk,i. These new targets can
either be used to update established tracks or to start a new
track. The problem to determine which target i is used to
update a track j is called an assignment problem. Solving the
assignment problem is crucial for tracking performance, i.e.
to get tracks that are robust and sane. In this context, robust
means that tracks aremaintained as long as the target is visible
and sanemeans that the computed tracks match the scenario.

The most popular assignment algorithms are, the nearest
neighbor (NN) approach, the global nearest neighbor (GNN)
approach, the probabilistic data association filter (PDAF)
approach, joint probabilistic data association filter (JPDAF)
approach, and the nearest neighbor joint probabilistic data
association filter (NNJPDAF) approach. In the following,
we will briefly recapitulate these possible solutions for the
assignment problem, see [37] for a more detailed overview.

1) THE NN APPROACH
This is the simplest and computationally least demanding
algorithm. As initial step, a matrix with χ2-track-scores [37]
for all possible assignments is generated. Then a search is
carried out for the best measurement-track-pair. The assigned
measurement and track are both removed from the matrix.
The last two steps are repeated until all assignments are made.

2) THE GNN APPROACH
Like the NN approach, the GNN approach works on the
score matrix. The GNN approach, however, all possible
measurement-track-pairs by exploring the Hungarian- or
Munkres-algorithm. This decreases assignment errors but
increases computational demand.

3) THE PDAF APPROACH
For each measurement-track-pair the probability that the
measurement represents the correct target is calculated.
Based on these probabilities an artificial measurement zk,i is
calculated as linear combination of all possible assignments.

4) THE JPDAF APPROACH
The JPDAF is based on the same idea as PDAF but includes
the assumption that nearby tracks can interfere. Thus, the
association probabilities are computed jointly across all tar-
gets and measurements. Since this measure increases the
computational demand significantly, approximations have
been developed. In this paper we use the Cheap JPDAF [46].

5) THE NNJPDAF APPROACH
The NNJPDAF works comparable to the NN approach but
used the assignment probabilities of JPDAF instead of the dis-
tances. Any JPDAF can be used to calculate the probabilities.
We used the Cheap-JPDAF again.

Note that for all considered methods, the assignments are
calculated independently for each timestep k . The multi-
hypothesis tracking (MHT) approach [47], [48] forms a tree
of hypothesis of assignments. For unclear situations a definite
assignment is delayed until new information from subsequent
timesteps is available. However, at each timestep k the tree
grows by another level and is becoming broader with a high
number of clutter measurements. Maintaining the tree intro-
duces a very high computational demand compared to the
above mentioned methods, even if unlikely leaves are cut.
Hence, we did not consider the MHT further.

To reduce the complexity of the assignment algorithm and
avoid false assignments, a restriction towards highly likely
target to track association pairs is performed as a first step.
This step is also called gating. In literature [37], [38], [49],
gating is also referred to as the definition of a g-sigma
ellipsoid. Typically g is chosen in the range of one to three.
We used g = 3 throughout this paper. Only detections that
are inside the gate, are considered as possible candidates in
the assignment stage of the considered track.

The algorithms mentioned in this section have the under-
lying assumption that only a single measurement inside the
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acceptance gate of a track is the correct one. The others are
considered as clutter. This is yet another reason for the need
of a reliable clustering algorithm.

We are interested in moving targets. Using all the static
targets as input to the MTT framework will result in com-
putational overhead and a high number of ghost tracks. The
simplest approach for alleviation would be cutting away com-
ponents with low Doppler by either setting them to zero or
applying a high-pass filter. However, a high-pass filter would
also eliminate low range-rate components for moving targets
which results in unintentionally cropping of moving targets.
As alternative, we use the clustering result to eliminate static
clutter. All clusters, i.e. targets, where the cluster center is at
a range-rate below vmin = 0.2m/s are neglected, in addition
to those which were already removed with the optional step
described Section IV-D.

C. TRACK DELETION
A valid target might become unobservable by, e.g., occlu-
sion or simply heading out of the field-of-view. Additionally,
falsely started tracks, e.g., due to clutter, mirror reflections,
wrongly generated clusters, etc., must be eliminated.

Using a NN approach, falsely started tracks will not be
updated. In this case the track purging state is simple. At each
timestep, all tracks that got no update within the last 250ms
are considered as not running anymore and are excluded from
further updates. We assessed this specific value empirically.
A lower value would lead to track loss when a target is
shadowed, e.g., by a pedestrian. On the other hand, a higher
value would keep ghost tracks or legitimately stopped tracks
active unreasonably long.

Unfortunately, the PDAF approach leaves the assignment
and track maintenance problem completely unconsidered.
Unlike the NN approach, using the PDAF approach, there are
now several possible continuations for a falsely started track.

Firstly, there is a chance that it might be not updated any
more. Then the same procedure as for the NN approaches
can be used. However, such a situation rarely occurs in case
of a PDAF approach. It is much more likely, a track gets an
update with a low weight. In this case, the entries of the state
covariance matrix P rise. A track is then purged if the sum of
variances of observable states, i.e. the trace of the transformed
state covariance matrix, exceeds the limit√

Pj,1,1 + Pj,3,3 > 0.6m (9)

Without this measure, stale tracks are kept too long and there
is a high risk of wrong track continuity. E.g., a pedestrian
stops and a car passes by. Then the track of a pedestrian could
be falsely continued with the measurements of the car.

Secondly, falsely started tracks will converge towards
existing tracks within a few time steps. This phenomenon is
called coalescence. To tackle it, we introduce a track elimina-
tion stage which checks for converging tracks by comparing
the most recent state vectors. If∣∣∣∣∣∣(xk,m − xk,n

)
� [1R1v1R1v]T

∣∣∣∣∣∣ < 15, (10)

where� is the element-wise division for normalization to the
bin-widths 1R and 1v, is fulfilled for two tracks m and n,
they are considered as merging. In such a case, the one with
the lowest number of updates is eliminated.

We assessed the comparison values in (9) and (10) empir-
ically during extensive measurement campaigns.

D. COMPARISON OF ASSIGNMENT ALGORITHMS
We tested the different assignment approaches on different
scenarios. See the attached videos for a visual comparison.

The simple NN- and GNN-assignments work well for
separated point targets, e.g., measurements taken from small
objects with low fluctuations like small UAVs. However,
pedestrians have high fluctuations of their RCS, are extended
targets, and additionally have a high possibility of multiple
reflection centers. For these, the NN approach does lead to
a more frequent track initiation and loss compared to the
PDAF approaches, especially when targets are maneuvering,
i.e. taking a turn. Increasing the elements of Q̃ to allow
for higher fluctuation of the target produces more stable
tracks. Increasing the acceptance gate g does not work well.
Although increasing g does increase the chance that a correct
assignment is made, it also increases the chance of wrong
assignments and ghost tracks, i.e. tracks following clutter
detections, or wrong assignments. The PDAF approaches
are less sensitive to this phenomena, however they are more
susceptible to form ghost tracks from erroneous or clutter
detections. Additionally, allowing more than one assignment
in each update stage of the Kalman filter will further com-
bine individual reflections of pedestrians if range-rate is not
incorporated in the tracker.

VI. EXTRACTIONS OF FEATURES OF INDIVIDUAL
TARGETS AFTER TRACKING
The process to generate input for a classifier is called fea-
ture extraction. Our work provide the prerequisite for target
classification and feature extraction. As the vast majority of
publications on classification rely on the fact that only a single
target was observed, it is crucial to determine the features of
each individual target, even for the typical case that multiple
targets were in the field-of-view.

Simple features per target can be derived from the state xk,j
of each track j over time. These features include the traveled
distance, maximum velocity or the histogram of the Kalman
filter gain [1]. However, they are not sufficient for reliable
classification and are thus not considered in literature about
classification.

At each update of a track at a timestep k we do not only
store the state xk,j for the j-th track but also all detections
that contributed to an update. Thus a track contains infor-
mation on all contributing clusters along with their elements
evolving over time. Having this additional information allows
us to thoroughly analyze the features commonly used in
classification of all targets individually; even for the common
case that multiple targets were in the field-of-view. These
features include the extent of a target as used in [1], [12],
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and [50] as the size of the clusters, and the widely used micro-
Doppler signature. The micro-Doppler signature v̆j[k], i.e.
high resolution range-rate, over time is widely used as basis
for feature extractions, e.g., in [8], [10], [11], [18]–[20], [22].
With our framework we can generate

v̆j[k] =
(
ψ̂D,1, ψ̂D,2, ψ̂D,3, . . . , ψ̂D,L

)
(11)

as the n-tupel of the normalized range-rates obtained from
the estimated spectrum (3) of all clusters that contributed to
track j at timestep k . Similarly, we generate the n-tupel of
magnitudes

ăj[k] =
(
â1, â2, â3, . . . , âL

)
(12)

associated with the elements of (11). Using v̆j[k] and ăj[k]
we can generate virtually any statistics of the micro-Doppler
spread over time that is found in literature and already used
for the case of a single target in the field-of-view of the radar
sensor. Furthermore, combined feature like used in [11], [12]
can be extracted using the proposed framework.

To show the possibility of feature extraction after tracking,
in this publication we selected the short-time FFT (STFFT)
of the sample STD std{v̆j[k]} and of the weighted arithmetic
sample average wmean

{
v̆j[k], ăj[k]

}
over the L elements of

the tuples from (11) and (12). Both features exploit the fact
that parts of a human body change their speed periodically
while walking [14]. The swing of the limbs during a step
shows micro-Doppler spreads from approximately 0m/s up
to twice the walking pace. The STD is a reliable measure for
the width of the Doppler-spread. Pedestrians have a signifi-
cant frequency component of about 2Hz, which is not present
for other radar targets, like bicyclists or UAVs. The torso has
a much higher RCS than the limbs. Therefore, the probability
of detection is higher. However, the torso’s velocity variation
is much lower than the variation from the limbs. So, in
addition to the STD the wmean is used to estimate the average
velocity of a target.

A track is not necessarily updated at all timesteps k . If there
was no update at a certain timestep, we filled the missing
data with zeros. The integration time of the STFFT was set
to 2 s to capture the expected human step frequency of
approximately 2Hz well.

VII. RESULTS AND ANALYSIS OF THE SEPARATED
TRACKS
We have conducted different kinds of experiments, of which
we will present four in the following sections:
A) an outdoor measurement in a pedestrian area,
B) an outdoor measurement of a cat in a backyard,
C) an indoor measurement of a small UAV, and
D) a measurement in an underground parking lot.
The measured data from all these scenarios has been pro-
cessed with the same settings for spectrum calculations, clus-
tering, and tracking. This shows that our set of algorithms is
robust against scenario changes. Videos of the experiments
and the results can be found in the attached media files.

FIGURE 9. Camera view of the measurement scenario used for
illustration. Three persons (two walking, one riding a bicycle) are moving
around in a pedestrian area at the university.

FIGURE 10. Doppler spectrum of the pedestrian area over time. The
micro-Doppler signatures of the individual persons are entangled and
overlapping.

FIGURE 11. Detected tracks of the persons moving around in the
pedestrian area. A marker with a number denotes the start of a track,
a circle denotes the end of a track. The size of the circle corresponds to
the acceptance gate. The black dots denote the measurements used to
update the Kalman filters for the tracks.

A. OUTDOOR MEASUREMENT IN A PEDESTRIAN AREA
As first measurement scenario, we present an open space
with low clutter in a pedestrian area at the university cam-
pus to clearly see the micro-Doppler effects of vulnerable
road users. Two pedestrians and one bicyclist were moving
around simultaneously in the radar sensor’s field-of-view.
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FIGURE 12. Pedestrian walking radially. The pulsating spread is clearly visible in the micro-Doppler plot, which originates from reflections off the
swinging arms. In the STFFT plots the periodicity of 2 Hz, which is an indicator for the step frequency, is clearly visible, despite the clustering errors
between second 14 and 18. Also in the mean of the micro-Doppler the step frequency can be observed.

Fig. 9 shows a photograph of the scenario. As the persons
have been moving around concurrently, their micro-Doppler
signatures are entangled and overlapping. This is depicted
in Fig. 10.

The acquired data allows us to show that the algorithms
are capable of separating multiple targets in a low clutter
environment. A video attached to this paper shows that all
assignment approaches work well. In Fig. 11 depicts the
resulting tracks from the PDAF approach.

Even in cases where a person is not visible to the radar
sensor for example when it is occluded by another person,
the tracker is able to follow the occluded person. A problem
only arises when targets get close and cannot be separated
any more. In this case, one of two things will happen. Either
only one track gets the update and is continued, or both
tracks are continued. The latter case differs whether an NN
approach or a PDAF approach is used. The reader is referred
to the attached videos. In the NN approach, the update is
arbitrarily appended to one of the tracks. This leads to holes
in the information used for feature extractions. Using a PDAF
approach, both tracks might get the update with the com-
bined information of both targets. This leads to tracking
errors like a wrong position estimate or to the case that
tracks of two separate targets are stitched together wrongly.
Such errors could be avoided by using a sensor with higher
resolution.

The next paragraphs focus on the clearly visible micro-
Doppler signatures of the individual persons. Fig. 12 shows
the track of a pedestrian moving radially towards the radar.
The swinging of the arms, which corresponds to the step
frequency, is very well visible. As predicted by other
authors [13]–[16], the periodicity in the STD of the micro-
Doppler spread resembles the step frequency very well.
Additionally, the periodicity of the mean, i.e. the motion
of the torso, does show a certain periodicity. Between
seconds 14 and 18 clustering errors occurred and static reflec-
tions became part of the cluster representing the pedestrian.
They are visible as spurious velocity components around
v = 0m/s in the reconstructed micro-Doppler spectrum.
However, they have no significant influence on the standard
deviation and mean.

A radial motion like in the previous example is ideal
for micro-Doppler extraction. Thus, we take a closer look
at a more difficult case, where the second pedestrian per-
formed a direction change. For this example we ran the
evaluation twice. Fig. 13 shows the result with and Fig. 14
without static detection removal according to Section IV-D.
In both cases the tracker was able to follow the reflections
of the pedestrian. The step frequency is very well visible
in both cases in the micro-Doppler whilst moving radially
and obliquely. Around second 14 the pedestrian was moving
nearly tangentially with a very low range-rate. Including
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FIGURE 13. Reconstructed Micro-Doppler information of a pedestrian walking in an empty parking space. The swinging of the arms is clearly visible in
the STFFT plots despite the non-radial movement. At approximately 14 s the pedestrian was moving nearly tangentially. As static detections have been
included, this leads to a track-loss.

static detections leads to an undesiredmerge of the reflections
of the pedestrian with the reflections of static targets and
the track was subsequently lost. Purging all static detec-
tions prior clustering does prevent this effect as depicted
in Fig. 14.

Fig. 15 shows the signature of the bicyclist, whose sig-
nature is quite different from the pedestrians. As expected,
there is no 2-Hz periodicity, since a bicyclist obvi-
ously does not swing its arms. However, the reflec-
tions off the spokes are observable and flank the average
velocity. This difference could be a suitable input for
a classifier.

Note that the data for Fig. 10 to Fig. 15 was captured while
all three persons were moving simultaneously in the field-
of-view of the radar system. This is only possible due to the
successful tracking.

B. OUTDOOR MEASUREMENT OF A CAT IN A BACKYARD
As second experiment, an outdoor scenario as depicted in
Fig. 16 was selected. We conducted measurements in a
backyard with a lawn. This is a tough scenario since grass
is a highly reflective scatterer [51] and a cat has a small
RCS. Even with significant clutter from the grass and the
surroundings, the algorithms were able to track the cat. The
result is shown in Fig. 17. It has to be noted that we were
also able to track pedestrians and extract their micro-Doppler
signatures in this scenario. Due to the similarity of the results
compared to Section VII-A we omit the corresponding plots.
However, we can conclude that a) a cat moving on the lawn
can be tracked with our system and b) its signature is quite
different to a human’s signature. In the case of the moving
cat, the step frequency can be more clearly seen in the mean
of the micro-Doppler rather than in the STD as in the case
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FIGURE 14. Same setting as in Fig. 13 but static detection have been purged prior clustering. The tracker can follow the turn around second 14, however
spikes of the micro-Doppler profile going to zero range-rate are purged too.

for the pedestrian. The reason is the limited sensitivity of our
radar sensor which was not capable to detect the short feet of
the cat in the comparably tall grass. However, we are confi-
dent that the separation between humans and small animals,
which is crucial for surveillance systems, is possible when the
presented algorithms are accompanied with a suitable
classifier.

C. INDOOR MEASUREMENT WITH A SMALL UAV
As third scenario, an indoor location was selected. We used
the small UAV Blade 200 QX with a side-length of 142mm
and a height of 90mm as a flying target. Fig. 18 shows a
photograph of the scenario.

This scenario was selected since it has a high amount of
static clutter reflections and a single, simple target with a very
different micro-Doppler signature compared to the ones pre-
viously shown. Due to the sharp and unprotected rotor blades

no pedestrian was allowed in the scenario for safety reasons.
The high number of static reflectionsmakes it crucial to purge
static detections prior clustering according to Section IV-D.
Fig. 19 shows a portion of a track of the UAV while it was
flying in front of the radar sensor. Similar to [20], the basic
characteristics of the UAV are perceptible. The UAV’s only
internal motion is due to the fast rotation of the rotor blades.
There are no other moving parts. Most of the time they reflect
the impinging waves into an arbitrary direction. However, at
a certain angle of approach, the reflections coming back to
the radar system are visible. Due to the high rotation speed
of up to ≈20 000 rpm and the rotor diameter of 90mm, the
reflections of the rotor blades cover the whole unambiguous
range-rate region.

In the bottom plot of Fig. 19 we ceased purging static
reflections to visualize the difference. The cluster algo-
rithm wrongfully generates L- or T-shaped clusters by
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FIGURE 15. Bicyclist taking a turn. Unlike the pedestrian, the micro-Doppler of the bicyclist has no outstanding periodicity visible. However, a skirt of
reflections around the average velocity might appear. These reflections originate from the spokes of the wheels and are especially visible around
second 15.

FIGURE 16. Measurement scenario cat in a backyard. The cat is a small
target within a high clutter, due to the grass, scenario.

merging the detections of the moving UAV with reflections
of static targets. Quite a lot of missing updates are visible as
gaps. They occur when the range-rate of the center of the
L- or T-shaped cluster is too low to be used for a tracker
update. Additionally, bogus clusters (where static detec-
tions have been included) produce the ridge around zero
velocity.

The reflections off the rotor-blades and the motion of the
UAV itself modulate the reflections of static targets appear

like reflections of moving targets. This is caused by the
forward scattering effect and will give rise to a number
of ghost tracks. However, our framework is still capable
of tracking the UAV. See the attached videos for more
details.

D. UNDERGROUND PARKING LOT
The fourth scenario was the underground parking lot at the
university from which the examples from the previous chap-
ters were taken. The numerous static objects, like parking
cars or supporting pillars, on both sides of the driveway make
it mandatory to purge static detections prior clustering in
order to get stable tracks. On the left side of the driveway
a pedestrian was moving away from the radar sensor. On the
right side of the driveway a pedestrian was moving towards
the radar sensor. In the middle of the driveway a car was
heading away from the radar sensor. Due to its reflective
surface, the car gives raise to numerous multipath detections
and ghost targets. We were able to track both pedestrians
and the car and reconstruct their individual micro-Doppler
signatures, despite this difficult scenario. Fig. 20 depicts the
result using the NNJPDAF approach. See the attached video
for details.
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FIGURE 17. Cat moving on a lawn towards the radar system. Compared to
the pedestrian, the step frequency in the time dependency of the mean of
the velocity can be seen. The standard deviation did not produce usable
results since the clutter of the grass was too high to the capture the feet
of the cat.

In Fig. 21, the track and the reconstructed micro-Doppler
signature of one of the pedestrians is depicted. Despite
the cluttered environment with a high number of multipath

FIGURE 18. Measurement scenario UAV flying indoors. The UAV is a fast
target and the scenario produces lots of multi-path detections.

reflections, the pedestrian could be tracked successfully. The
micro-Doppler plot clearly shows the signature of a single
pedestrian, despite the fact that a car and another pedestrian
also have been moving in the scenario.

Fig. 22 shows the track and the reconstructed micro-
Doppler signature of the car. A difference between the
NN- and PDAF-based trackers can be seen between sec-
ond 7 to 10. The car has multiple strong and separated
reflection centers. When the car entered the scenario, this
resulted in two individual clusters spawning two tracks for
the car. The NN approach allows only for a single clus-
ter to be used as update of a track. Thus, the assignments
made to the wrongfully started track are missing between
second 7 and 10. The JPDAF did not leave such a
hole.

VIII. COMPUTATIONAL DEMAND
We implemented all algorithms presented in this paper in
Matlab 2016a, running on an Intel i7-2600k desktop CPU.
The fastest evaluation we could achieve was a real-time1

evaluation using single precision FFTs with ZA = 32 and
grid-clustering for the measurement scenarios with the low
data-rate, i.e. the scenario with the bicyclist, the cat and the
quadcopter.

The computational demand is mainly governed by the
3D-FFTs, the additions and multiplications during the cal-
culation of the distance metrics for EDBSCAN, and the
matrix inversions during the calculation of the chi-square
track score in the PDAF tracking stage. Fluctuation of
necessary CPU time originates from the dependency of
the computational demand on the number of detections.
While calculation of the FFTs can be done in constant
time, the computational demand of the clustering stage and
the PDAF tracker depends on the number of detections.
Computational demand, of course, varies with the thresh-
old level and also varies over the discrete time k and the
scenario.

1We use the definition of real-time in digital signal processing. This means
that the processing time is shorter than the time it takes to capture the
data.

1234 VOLUME 5, 2017



T. Wagner et al.: Radar Signal Processing for Jointly Estimating Tracks and Micro-Doppler Signatures

FIGURE 19. Snapshot of a tracking result of a small UAV Blade 200 QX
flying indoors. Most of the time the rotor blades are not visible. Thus the
UAV is mainly a point target. If the fast revolving rotor blades are at an
angle where they reflect back to the radar system, their velocity will cover
the whole unambiguous region.

A significant speed up can be expected by offloading the
calculations of the FFTs, the thresholding, the distance met-
ric calculations as well as the matrix inversions to graph-

FIGURE 20. Detected tracks of the persons and the car in the
underground parking lot. Due to the vast number of multipath reflections
in this scenario, more ghost tracks have been formed compared to the
measurements in the pedestrian area. However, the car and both
pedestrians could be successfully detected and tracked with our
framework.

FIGURE 21. The track and reconstructed micro-Doppler signature of a
pedestrian in the underground area. Despite the high amount of clutter in
this scenario, the pedestrian’s track could be followed. The reconstructed
micro-Doppler shows a clear signature of a single pedestrian, although
the car and another pedestrian where moving simultaneously.

ics processing units (GPUs) or even field-programmable
gate arrays (FPGAs). Also doing fast neighborhood searches
during the calculation of the EDBSCAN by exploiting an
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FIGURE 22. The track and the reconstructed micro-Doppler signature of
the car in the underground parking lot. The reflections of the rim are
clearly visible from second 7 to 9. The JPDAF assignment method was
used to generate the top micro-Doppler plot, whereas for the bottom one,
the NNJPDAF was used. Between second 7 and 10, the NN approach did
some assignments to a wrongfully started track, thus leaving a small gap
in the micro-Doppler signature.

R* tree data-structure [33], [34] can reduce the neces-
sary CPU time. Finally, computation time reduction can be
achieved by choosing a programming language that effi-
ciently allows pipelining.

However, implementing such optimizations is out of the
scope of the work presented in this paper.

IX. CONCLUSION AND OUTLOOK
In this paper, we have shown a method for jointly estimat-
ing micro-Doppler signatures and tracks of multiple targets
present simultaneously in a scenario. Features suitable for
classification of the individual targets could be extracted.
A CFAR algorithm is not needed. Two types of cluster-
ing stages for target recognition have been presented. Grid
clustering allows fast computation while EDBSCAN can be
configured in more detail.

An MTT framework with different assignment methods
has been presented which allows for tracking individual tar-
gets over time. The principle has been shown to work at least
for pedestrians, bicyclists, UAVs, cars, and cats in indoor as
well as outdoor scenarios. All tested assignment approaches
produce satisfying results. However, NN approaches have a
slightly higher chance to leave holes in the micro-Doppler
signature whereas PDAF approaches have a slightly higher
chance to wrongfully add a cluster to a track. Post-processing,
like classification, might be sensitive to this different behav-
ior.

Depending on the measurement scenario, real-time eval-
uation is possible on common PC hardware. Computa-
tional demand is mainly governed by the calculation of the
3D-FFTs, which can be offloaded to hardware in future
works.

With the presented methods, micro-Doppler plots, suit-
able for classification [7], [10] can be produced even when
multiple targets are in the scenario. As possible candidates
for feature extraction, we exemplarily presented the mean
and STD (along with their STFFTs) of the micro-Doppler
signatures of the moving target after separation. However,
other signatures can be easily generated with the algorithms
present in this paper.

Future work include classification based upon the
acquired information and implementing our suggested code
optimizations.
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