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ABSTRACT Wireless power transfer (WPT) has long been one of the main goals of Nikola Tesla,
the forefather of electromagnetic applications. In this paper, we investigate radio-frequency beamforming
in the radiative far field for WPT. First, an analytical model of the channel fading is presented, and a blind
adaptive beamforming algorithm is adapted to the WPT context. The algorithm is computationally light,
because we need not explicitly estimate the channel state information. Then, a testbed with a multiple-
antenna software-defined radio configuration on the transmitting side and a programmable energy harvester
on the receiving side is developed in order to validate the algorithm in this specific power application. From
the results, it can be seen that the implementation of this version of beamforming indeed improves the
harvested power. Specifically, at various distances from 50 cm to 1.5 m, the algorithm converges with two,
three, and four antennas with an increasing gain as we increase the number of antennas. These encouraging
results could have far-reaching consequences in providing wireless power to Internet of Things devices, our
target application.

INDEX TERMS Wireless power transfer, radio-frequency energy harvesting, software-defined radios,
experiments, beamforming.

NOMENCLATURE

BABF Blind-Adaptive Beamforming
CPU Central Processing Unit
CW Continuous Waveform
DC Direct Current
EGC Equal Gain Combining
EM Electromagnetic
FPGA Field Programmable Gate Array
IoT Internet of Things
MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output
MR Magnetic Resonance
MRC Maximal Ratio Combining
PA Power Amplifier
PLL Phase-Locked Loop
PPS Pulses per Second
RF Radio Frequency
RSSI Received Signal Strength Indicator

SMA SubMiniature Version A
USRP Universal Software Radio Peripheral
WPT Wireless Power Transfer

I. INTRODUCTION
Wireless power transfer (WPT) is undoubtedly a concept of
the future, but compared to most technologies, it has had
a long history, beginning in 1899 with renowned scientist
Nikola Tesla. While he was able to show a preliminary
proof-of-concept of power being transferred wirelessly, it was
not at a level meaningful or safe enough to power any
real devices [1]. Today, an encouraging trend is emerging,
as there are many academic and industry experts attempting
to improve wireless power transfer efficiencies to usable
levels. In particular, there are two prevailing approaches
of WPT: (a) non-radiative near-field coupling, and
(b) far-field RF radiation.

Under the umbrella of non-radiative near-field coupling,
there are two different techniques: (a) inductive coupling,
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and (b) magnetic resonance coupling. Since all of the mag-
netic and electric field generation happens in the reac-
tive near field, propagation is minimal due to the power
attenuating at 1/d3, where d is the distance between the
transmitter and receiver [2]. The first approach, inductive
coupling, allows for energy to transfer between a transmit
and receive coil. The industry standard Qi protocol adopts
inductive coupling and specifies ranges up to 40 mm, e.g.,
see [3]. Researchers in the ‘MagMIMO’ project are also
looking to expand this range further and to use multiple
devices [4], [5].

In the second approach of non-radiative near-field cou-
pling, magnetic resonance (MR) coupling, the two coils are
now tuned to a resonant frequency, which increases trans-
fer efficiency. ‘WiTricity’ has looked into systems using
MR [2], [6], and Smith et al. sought to develop effi-
cient prototypes [7] with magnetic resonance. The industry
standard A4WP has also adopted MR as its main tech-
nology for WPT [8]. In a slightly different application of
WPT, Poon et al. have investigated a variation of WPT
known as ‘‘mid-field powering’’ for deep-tissue implantable
devices [9]. However, near-field techniques do not scale well
in an Internet of Things (IoT) architecture, where we hope to
have devices receive power across wide indoor and outdoor
environments.

Thus, we turn our attention to the radiative far field, a more
viable alternative to produce longer distance wireless power
transfer, on the order of meters. Under this umbrella, there
are two approaches: (a) non-directive RF, and (b) directive
beamforming. Arbabian et al. have explored a system level
analysis of RF power delivery at mmWave frequencies using
non-directive RF [10]. Another interesting application of non-
directive RF is to use ambient radio waves to power devices,
specifically from cellular or WiFi. Smith et al. developed
the ‘PoWiFi’ testbed using extremely efficient RF-to-direct
current (DC) rectifiers [11], but this does not help to solve
the still-limiting propagation inefficiency of 1/d2 in the far
field [12].

The other approach in far-field RF, and one method to
overcome free-space path loss, is directive beamforming.
Beamforming has been widely adopted as one of the future
5G technologies for data communication [13]. Conceptually,
beamforming manipulates each antenna’s transmission such
that all of them constructively interfere at the receiver. It can
be used to overcome propagation loss by directing the radi-
ation exactly to the desired receiver while nulling adjacent
interference.

Zhang et al. investigated RF beamforming for wirelessly
powered communication networks, in which there is a joint
design of downlink power transfer and uplink informa-
tion transfer [14]. Ahn created an implementation of rough
RF beamforming at 5.8 GHz using analog phased arrays in
hardware. The group hopes for applications in such projects
as Google Loon [15], but the prototype requires extensive
hardware implementation and provides only coarse beam-
forming. As it stands, there have neither been theoretical

frameworks nor practical prototype implementations of digi-
tal beamforming for WPT in academia.

The objective of this paper is to explore the use of digital
beamforming for far-field WPT. We consider a lightweight
beamforming algorithm that does not require explicit channel
estimation, and proceed to investigate the algorithm’s effect
in maximizing the harvested power. We then empirically
validate the analytical results with a novel prototype imple-
mentation of the multi-antenna transmitter using software-
defined radios and a receiver with an efficient RF energy
harvester.

The rest of this paper is structured as follows. An analytical
fading model for the adaptive beamforming scheme as well
as a theoretical framework are discussed and validated in
Section II. The detailed hardware configuration of the exper-
imental testbed is described in Section III. The measurement
results are presented and analyzed in Section IV. Finally,
Section V concludes the paper.

II. BLIND ADAPTIVE BEAMFORMING
With transmit beamforming, the considered signal model can
be expressed as follows:

y =
√
GhHw x (1)

where x is the transmitted signal, h is the complex channel
coefficient vector, andw is the complex beamforming weight
vector, all of dimensionN that denotes the number of transmit
antennas. The parameter G is the overall gain of the channel,
taking into account the antenna gains at both the transmitter
and receiver, as well as the general free-space path loss deter-
mined by the operation frequency and propagation distance.

Given the context of wireless power transfer, the received
signal strength indicator (RSSI) pertaining to the signal y at
the harvester is computed as follows:

RSSI = G |hHw|2 Px , (2)

where Px is the power of the transmitted signal.
Our goal is to maximize the RSSI in the above equa-

tion. Theoretically, the optimal weights to maximize received
power are equivalent to the typical matched filter in commu-
nications that maximizes the signal-to-noise ratio subject to
‖w‖2 = N :

wmf =
√
N ·

h
‖h‖

. (3)

With the matched filter, the resulting RSSI is given by

RSSImf = N · G ‖h‖2 Px . (4)

One should note that we adopt herein the somewhat uncon-
ventional normalization whereby the total transmit power of
the system is directly proportional to the number of transmit
antennas rather than a constant. This is because the operation
of our testbed heavily suffers from the low maximum output
power of the software-defined radios in use, and thus we
need to broadcast all available energy in order to measure
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reliable (if any) RSSI values at longer distances. Neverthe-
less, the experimental results still reveal the true relative gain
of adaptive beamforming compared to random beamforming
that adopts the same normalization if we keep in mind that
there is the absolute gain of 10 log10(N ) decibels in both due
to the unconventional transmit power scaling.

We observe from our experiments that Nakagami-m fad-
ing models accurately each element of h, i.e., hn for n =
1, 2, . . . ,N . Thus, RSSI in a single-antenna configuration,
RSSI |N=1 = G |hn|2 Px , is approximately a Gamma random
variable with parameters m (shape) and θ (scale). We denote
RSSI |N=1 ∼ Gamma(m, θ) and estimate specific values for
m and θ from the measurement data, i.e., m ≈ 23 and θ ≈
0.11 mW when the distance between the transmit antennas
and the harvester is 50 cm and average RSSI ismθ ≈ 2.6mW.
Unfortunately, the single-antenna setup does not yield enough
power with larger distances to get any readings.

For analytical purposes, let us further assume that all ele-
ments of h, i.e., hn for n = 1, 2, . . . ,N , are independent
and identically distributed (i.i.d.). This is not only because
the analysis becomes cumbersome otherwise but also because
our measurement data are not statistically suitable for charac-
terizing potential imbalance or correlation in the first place.

The matched filter in (3) combines the channel branches
coherently such that the total resulting RSSImf in (4) is a
sum of respective values of RSSI |N=1 = G |hn|2 Px , n =
1, 2, . . . ,N , achieved by each branch alone. Furthermore, it is
common knowledge that the sum of i.i.d. Gamma random
variables is still a Gamma random variable. Thus, we may
denote that RSSImf ∼ Gamma(mN , θN ) when using the
matched filter (3). The corresponding cumulative distribution
function (CDF) of RSSI is given by

P
(
RSSImf < x

)
= 1−

0
(
mN , x

θN

)
0(mN )

, (5)

where 0(·) and 0(·, ·) are the Gamma function and upper
incomplete Gamma function, respectively. The average and
variance of RSSI are given by E

[
RSSImf

]
= mN 2 θ and

Var
[
RSSImf

]
= mN 3 θ2, respectively.

Since the transmitter does not explicitly know the channel,
wmf cannot be used in practice in our experiments. In fact,
even the harvester cannot estimate the channel well because
it only feeds back RSSI values. Thus, we now discuss a prac-
tical solution called blind-adaptive beamforming (BABF),
which learns channel characteristics by optimizing
w iteratively [16] such that it also avoids the computational
complexity associated with explicit channel estimation. Its
performance is superior to random beamforming or equal
gain combining (EGC), and approaches that of optimal beam-
forming (in which h is explicitly estimated) after a number of
iterations [16]. In our experiments, the weights converge over
a finite number of iterations, which is a reasonable tradeoff to
make for a wireless power transfer application, since latency
is not as significant a concern as it is in data communication.

BABFwill attempt to converge to the matched filter, essen-
tially mimicking maximal ratio combining (MRC) over a

number of iterations. Note that the performance of (3) cannot
be fully achieved in reality even with MRC. In particular,
redistributing the power budget across separate transmitters
does not practically hold because it requires violating the
strict per-antenna power constraints which may be impos-
sible if an antenna is already transmitting at the maximum
power like in our experiments. Thus, BABFmanipulates both
the amplitude and phase while the reference case of EGC
assumes weights of unit magnitude and optimizes the phases
only, which leads to poorer performance.

In our BABF implementation, an initial beamforming
weight vector is randomly generated. Then, a continuous
wave of constant amplitude and frequency is sent from each
transmit antenna, with this weight vector applied to the signal.
The receiver then measures the power of the received sig-
nal, and feeds back that small packet of information to the
transmitter in the form of RSSI. After repeating this process
and comparing the received power of each weight vector for
that iteration, the index of the weight vector that produces
the maximum received power is fed into the blind-adaptive
algorithm to determine the next best set of weights. These
weights sharpen over a number of iterations to produce the
highest received signal within a specified threshold.

Algorithm 1 BABF for Wireless Power Transfer [16]

Initialize i = 0 and w[0]
M ∼ N (0, I )

while flag do
i⇐ i+ 1
Generate K perturbation vectors of dimension N ,
pk ∼ CN (0, I ), k = 1, ...,K

Form K weight vectors, w[i]
k ⇐

√
N ·

w[i−1]
M +βpk

||w[i−1]
M +βpk ||

for k = 1 to K do

Measure RSSI [i]k = G
∣∣∣hHw[i]

k

∣∣∣2 Px at the
harvester and feed it back to transmitter

end
Determine M = argmaxkRSSI

[i]
k

if (RSSI [i]M − RSSI
[i−1]
M ) <ε then

flag = False
end

end

Algorithm 1 highlights the pseudocode for the implemen-
tation of BABF in the context of wireless power transfer,
as adapted from [16]. Specifically, at the ith iteration, we will
generate the best weight vector w[i−1]

M from the (i − 1)th
iteration, where M = argmaxk=1,2,...,KRSSIk , out of a
total of K perturbation vectors. Then, this vector is adjusted
by K new random perturbation vectors, whose distributions
are normal and complex, pk ∼ CN (0, I ), thus formingK new
weight vectors:

w[i]
k =
√
N ·

w[i−1]
M + βpk

||w[i−1]
M + βpk ||

, (6)
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where k = 1, . . . ,K . The perturbation factor β affects the
weights by adjusting the amplitude and phase of each antenna
element, but the entire weight vector is normalized to have
unit norm. We empirically choose K = 10 and β = 0.2 for
the experiments in our prototype system.

Having established an analytical framework for comput-
ing practical beamforming weights in a WPT application,
the next task is to verify these results in a real-world system.
In the next section, we develop the physical implementation
of the pseudocode above in a MISO experimental testbed
using software-defined radios and an off-the-shelf energy
harvester.

III. HARDWARE CONFIGURATION
A major impediment to powering IoT devices using beam-
forming is the practical realization of the algorithms.
In this paper, considerable effort is spent to discover
methods in implementing such algorithms. Toward that
objective, this section highlights the importance of the hard-
ware configuration necessary to transmit EM energy wire-
lessly from multiple antennas to an energy harvester. While
accounts of successful implementation were developed using
RFID backscattering [16], no efforts have been made with
WPT as the objective or with a testbed greater than two anten-
nas. In contrast to RFIDs, our application requires the use of
an energy harvester such that we are able to use an actual
power metric as feedback to the transmitters for sharpening
of the beamforming weights. Consequently, the developed
testbed is entirely different.

FIGURE 1. USRP N210 transmitter; the setup uses four of these in a
planar array to transmit to the energy harvester.

On the transmit side of the configuration, our setup con-
tains four antennas. We use National Instruments Ettus
Research USRP N210 units, shown in Figure 1. Each unit
is a software-defined radio that contains an FPGA and an
RF front end. The signal processing is performed in the
FPGA and a connected CPU. Each unit’s RF front end is
connected to an L-Com 8 dBi flat patch antenna through
an SMA connector. These directional antennas are faced
toward the receiver, the Powercast P2110 Energy Harvester

Evaluation Board Sensor (PS), and are programmed to trans-
mit at an operating frequency of 915 MHz, as constrained by
the energy harvester’s antenna. The transmit antennas, as a
result, are spaced at λ2 from one another, making the spac-
ing approximately 17 cm. In addition, each USRP’s analog
transmit power is at its maximum of 20 dBm, or 100 mW,
though BABF ultimately changes the output due to its digital
amplitude scaling.

The operation of our testbed is mainly limited at the larger
distances by the fact that the maximumUSRP transmit power
is rather low while the PS only powers up if it receives at
least −12 dBm (i.e., approximately 63 µW) of power from
RF radiation after conversion to DC. Then, the PS uses
a 2.4 GHz antenna operating under the Zigbee protocol to
send the RSSI value to the Powercast Receiver (PR). The
general flow between the transmitters and receiver is depicted
in Figure 2. Note that the off-the-shelf PS has an RF to
DC conversion efficiency of 45% to 50% at 915 MHz.

FIGURE 2. Flow with four antennas: Each USRP transmits K signals, each
with a weight vector applied, and then the energy harvester collects the
RSSI of the combined signals. In practice, the system then feeds back all
RSSI values to the PC for comparison in order to determine the index of
the weight vector that produces the largest RSSI. Finally, this index is fed
into the BABF algorithm to sharpen the weights for the next iteration.

The USRP units (see Fig. 1) run real-time code devel-
oped in Python and GNURadio, initially connected to a
Lenovo X1 Carbon laptop and then later to a Dell Power-
bench desktop (the transition is explained shortly). Since we
require feedback from the energy harvester, a novel method
that we devised is to connect the PR directly to the desk-
top via USB using minicom, a modem control and terminal
emulation program for UNIX-based operating systems. The
RSSI data are fed back from the energy harvester to the PC
(which is connected to the transmit USRPs). We then use
Python code to parse the RSSI data coming from the PR
in order to determine the index of the weight vector (out
of K weight vectors) that produces the largest RSSI. This
index is then fed into the BABF algorithm to produce new
beamforming weights for each antenna, which are then pro-
grammed into the FPGAs of the four USRP units. When
we order the USRPs to transmit CW tones, these signals are
multiplied by the beamforming weights loaded into memory,
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and then transmitted out of the antennas toward the energy
harvester.

Initially, it was discovered that there was a considerable
amount of variation at the RSSI circuit on the energy har-
vester. Since the channel was generally static in the lab, this
variation was coming from the transmitter, receiver, or both.
RSSI circuits are generally imprecise, and after much inves-
tigation, we soldered a 1 µF smoothing capacitor on the
RSSI pin of the circuit board. This decreased the variation to
a reasonable level in which the same signal was producing the
same received power to the nearest hundredth of a milliwatt,
assuming a constant distance and environment.

Another underlying issue was the intermittence of the sig-
nal transmission that was causing unpredictable RSSI read-
ings. This was not discovered until an investigation using
a Keysight E4440A PSA spectrum analyzer displayed the
single tone at 915MHz frequently disappearing over multiple
transmissions. A phenomenon existed in which underflows
led to samples from the CPU not arriving at the USRPs for
transmission quickly enough. This occurred for two reasons:
(a) the 10/100-gigabit Ethernet connection between the CPU
and USRPs was not sufficient to transmit a large number
of samples across multiple USRPs at a reasonable rate, and
(b) the speed of the CPU was not quick enough to manage
the number of samples being requested by GNURadio. For
these reasons, we were forced to switch from using a lap-
top configuration to a more powerful desktop configuration
with dedicated Ethernet switches, as otherwise too many
samples were inundating the CPU and not reaching all the
four USRPs.

The speed of the code was also a challenging aspect.
GNURadio out-of-treemodule blockswere developed in both
Python and C++. While in this testbed the Python blocks
were implemented, they are slower than those created in
C++ because Python code is interpreted at runtime while
C++ code is compiled to native code at compile time. This
means that the extensibility to even more antennas may
require the C++ blocks moving forward.
In addition to the above requirements, a necessity formulti-

antenna beamforming systems is that time and frequency syn-
chronization need to be achieved so that each unit is phase-
aligned with one another. In order to do this, we connect
using SMA cables each USRP’s reference clock and PPS
signal to the National Instruments Octoclock-G device. The
Octoclock-G is a high-accuracy timing and distribution sys-
tem, so all transmit units have a common clock, as shown in
the four antenna setup in Fig. 4. The 10MHz and PPS outputs
of the Octoclock-G were tested using a Tektronix MSO 2024
Mixed Signal Oscilloscope, as displayed in Figure 3. While
typically these signals are square waves, jagged artifacts exist
because the oscilloscope is not impedance matched to the
Octoclock-G.

In initial testing, there existed a random phase offset at each
initialization of the USRPs, which occurred at each trial of the
algorithm. After programming two USRPs as receivers and
using GNURadio timed commands, it was realized that this

FIGURE 3. Output of Octoclock-G 10 MHz signal to each USRP to
determine the alignment of each transmit USRP’s clock.

behavior happened due to the default fractional-N PLL of the
USRPs. As a result, the code required refactoring to program
the boards to perform the tuning of the local oscillator to the
proper RF frequency using integer-N PLL.

Finally, given the planar structure of our transmit array,
we require that the harvester be positioned at a distance
greater than or equal to 49 cm from the transmit structure,
as that ensures that it will be in the far-field Fraunhofer region
of the antenna aperture. As a result, no unpredictable behavior
like Fresnel diffraction is expected. As depicted in Fig. 4,
the antennas were placed onto an insulating wooden board
using nonconductive tape and oriented vertically so that the
harvester’s positioning could be systematically adjusted on
the lab bench.

IV. MEASUREMENTS AND RESULTS
Having successfully devised a way to measure the received
signal power at the energy harvester and collect it back at the
transmitter, we now present and discuss the results obtained
in the practical implementation of the BABF algorithm
for WPT.

Given a pre-determined ε = 0.001 and an empirically
determined β = 0.2, we show that the BABF algorithm
converges for two, three, and four antenna configurations, and
it produces greater received power gains as we increase the
number of antennas. While the value of β is originally 0.2,
we lower it to 0.02 once the algorithm reaches a steady-state
received power, as verification of the stability of the platform.
The number of samples collected for each configuration var-
ied based on the sensitivity of the harvester, the interference
patterns of the antenna transmissions, and the number of
antennas active.

In Fig. 5, the average RSSI is plotted over the number of
iterations for the following cases at all four antenna config-
urations: (a) 50 cm with BABF weights, (b) 100 cm with
BABF weights, (c) 50 cm with EGC weights, (d) 100 cm
with EGC weights, (e) 50 cm with random weights, and
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FIGURE 4. The system setup with four transmit antennas and energy
harvester at 100 cm distance.

(f) 100 cm with random weights. Figure 5(e) shows that with
randomweights, the general pattern of RSSI over a number of
iterations is unpredictable but hovers around the same level,
averaged over a number of trials.

Contrasting the above with Fig. 5(a), in which we run the
same antenna configurations but with the BABF algorithm,
we can see not only increased gains over a number of iter-
ations but also the convergence to a greater specified value
for each antenna setup. Relative to equal gain combining
in Fig. 5(c), the BABF algorithm produces higher RSSI,
as it converges to the optimal matched filter. In addition,
the consistency of the harvester’s getting a sufficient signal
was significantly higher with BABF, as out of 65 attempted
trials with four and three antenna configurations, we collected
60 each, and out of 20 attempted trials with two antennas,
19 were collected.

The harvester was then moved further away from the
transmitters to 100 cm, and similar results were obtained.
Naturally at a longer distance, the received power was lower,
even with BABF, but the algorithm was able to increase
the received power and converge to specific values around
30 iterations, as shown in Fig. 5(b). BABF expectedly per-
formed better than EGC as well, and both expectedly showed
drastic improvement compared to random weights. Accord-
ingly for random weights, in Fig. 5(f), the received power

for all four antenna configurations stayed relatively constant,
with some unpredictable variations, but only a limited number
of samples were able to be obtained due to the difficulty for
the harvester to receive a sufficient signal. Out of 150 trials
with random beamforming, only 75 trials were completed
with four antennas, 20 with three antennas, and only 3 with
two antennas, suggesting that the distance was much more
of a factor than interference at 100 cm. However, with BABF,
100%were successfully obtained with four and three antenna
configurations, and 80% with two antennas. This yield varies
depending on the amount of time allotted to collect data and
the nature of the random weights selected, but theoretically
the yield should monotonically decrease with the number
of antennas. Using random weights for a single antenna,
the power was not sufficient to collect any data, hence its
absence in Fig. 5(f). In general, not only are the gains greater
with BABF in various antenna configurations, but also there
is greater consistency in obtaining any energy, an important
component of WPT.

Plotting the empirical cumulative distribution func-
tion (CDF) of RSSI values over all iterations and trials in
each configuration, we can see in Figs. 6(a) and 6(b) that
increasing the number of antennas using BABF contributes to
a greater received power at the harvester. The β perturbation
value determines how different the random weight vectors
are from the base vector (the larger the β, the greater the
possible discrepancy from the base vector’s performance).
An empirically-derived β value of .2 was used, and then it
was decreased to β = .02 after a steady-state RSSI value
was noticed. The left tails of the CDFs indicate the nature
of this convergence, as the algorithm comes to a level close
to the final convergence level quickly (steady-state RSSI
value), and then hovers around that level for the bulk of
iterations, which makes sense given the smaller β value and
thus the smaller variation from the base vector. This left
tail behavior exists for EGC in Figs. 6(c) and 6(d) as well.
Figs. 6(e) and 6(f) display the extremely low received power
at 50 cm and 100 cm, respectively, when using random
weights; the coarseness of the plots reflects the lower number
of available samples for these configurations.

Based on the single-antenna data collected at a har-
vester distance of 50 cm, illustrated in Figs. 6(a) and 6(b),
we can estimate and model the statistics of the channel
branches. In particular, we have E [RSSI1] ≈ 2.56 mW and
Var [RSSI1] ≈ 0.286 mW2 so that basic moment matching
yields m = (E [RSSI1])2/Var [RSSI1] ≈ 22.82 when we
assume that the channel branch follows Nakagami-m fading.
As shown in Fig. 6(a), the analytical CDF plotted as per (5)
for the single-antenna setup matches well with the empirical
CDF plotted from measurement data.

In multi-antenna configurations, the practical gain
achieved with BABF is significantly less than what is pre-
dicted by the ideal case with the matched filter. From
Figs. 6(a) and 6(b), we can see that the mean initial power
tends to increase, marginally with up to three antennas and
up to 3 mW with four antennas. However, it appears that the
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FIGURE 5. The convergence of RSSI gain with BABF, EGC, and random weights at 50 cm (1–4 antennas) and 100 cm (2–4 antennas). The
error bars indicate the standard deviation around the average RSSI values. (a) Beamforming with BABF, harvester at 50 cm.
(b) Beamforming with BABF, harvester at 100 cm. (c) Beamforming with EGC, harvester at 50 cm. (d) Beamforming with EGC, harvester
at 100 cm. (e) Beamforming with random weights, harvester at 50 cm. (f) Beamforming with random weights, harvester at 100 cm.

gain does not scale as expected with 10 log10(2) = 3 dB
and 10 log10(4) = 6 dB, suggesting there could be other
parameters at play. The maximum theoretical distance based

on a link budget with f = 915 MHz, Pt = 20 dBm,
Gtx = 8 dBi, Grx = 0 dBi, and the aforementioned
maximum array gain of 6 dB with a minimum received power
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FIGURE 6. Cumulative distribution function of RSSI with BABF, EGC, and random weights at 50 cm (1–4 antennas) and
100 cm (2–4 antennas). (a) Beamforming with BABF, harvester at 50 cm. (b) Beamforming with BABF, harvester at 100 cm. (c) Beamforming
with EGC, harvester at 50 cm. (d) Beamforming with EGC, harvester at 100 cm. (e) Beamforming with random weights, harvester at 50 cm.
(f) Beamforming with random weights, harvester at 100 cm.

of −12 dBm at the energy harvester, is 5.2 m with three
antennas (2.6 m with one antenna). However, our setup does
not achieve this distance. One reason could be that since both

amplitude and phase weighting are done, analog irregularities
in the RF circuit could result from the digital scaling, and
since the devices are not frequently calibrated, potential phase
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drift among the USRP clocks as well as amplitude distortion
could arise. Spurious tones were detected on the spectrum
analyzer occasionally as well, which could also limit per-
formance. Another reason is that the power amplifier (PA)
efficiency may also be lower than in the optimal operating
regime. This is a function of temperature and frequency,
as well as intrinsic device characteristics of the PA [17],
which were not optimized in this testbed. This may lead to
less power available at the input of the transmit antenna.

It is no surprise that BABF yields better RSSI than EGC
because the former is allowed to violate the per-antenna
power constraint. EGC does not allow for dynamic power
allocation to antennas with good channels, as BABF does.
This effect, as we can see, is more pronounced with more
antennas. Typically, in multi-antenna systems, the total power
is kept as a constant. In this scenario, we scaled by the number
of antennas for BABF, and transmitted the maximum power
from each antenna for EGC. Since BABF distributes the
power across the antennas more optimally, it performs better
than EGC, while both of course perform much better than
random weights.

FIGURE 7. Average RSSI compared to distance with BABF, EGC, and
random weights. The number of antennas for each type of weight
varies from 1 to 4, and the distances vary between 50 cm and 150 cm,
depending on the type of weight.

Figure 7 shows a curve of best fit between average RSSI
and distance in different antenna and weighting configu-
rations. Having collected data at 50 cm, 70 cm, 100 cm,
and 150 cm, we see, unsurprisingly, that the greatest gains
occur at the shortest distances as we increase the number
of antennas. The relationship generally follows the 1/d2

inverse square law behavior of free space path loss, but
we can see greater gains using BABF. The random weights
clearly cannot compete with the BABF weights in produc-
ing higher RSSI. No data could be collected with random
weights at a distance greater than 50 cm with a single
antenna or at distances greater than 100 cm with two-to-four
antennas. In addition, the number of data points at a distance
of 100 cm for two antennas with BABF is small, as shown
in Fig. 6(b).

The implementation of the BABF algorithm using an
energy harvester clearly shows that as the number of antennas
increases, the gain continues to increase over a number of
iterations until the algorithm converges. In addition, from
Fig. 7, we can see that at greater distances, a greater minimum
number of antennas is required to realize the benefits of
beamforming in the MISO architecture. In Fig. 7, a range
of 50 to 150 cm between the antennas and energy harvester
was tested, peaking at 150 cm due to the speed of the data
collection becoming exceedingly slow at greater distances.
These encouraging results suggest that the algorithm is a
suitable choice for extending the setup to more antennas with
more optimal software and hardware for practical wireless
power transfer applications.

V. CONCLUSION
In this paper, we have presented both an analytical frame-
work as well as a practical implementation for a wireless
power transfer (WPT) application using beamforming. The
analytical framework describes a lightweight iterative com-
putation of the beamforming weights without costly explicit
channel estimation, as well as a channel model. In the practi-
cal testbed, we implement this blind adaptive beamforming
scheme in a multi-antenna transmit setup using software-
defined radios. These radios are aligned such that they have
a common clock, and they transmit continuous tones at the
same time to the energy harvester, which feeds back to the
algorithm the index of theweights that produces the best RSSI
signal.

Our encouraging results show that the algorithm substan-
tially improves the received power over a number of itera-
tions at various antenna configurations and distances of up
to 1.5 m. Compared to no beamforming at one antenna, ran-
dom beamforming in two-to-four antenna setups, and equal
gain combining in two-to-four antenna setups, blind adaptive
beamforming sees the greatest increases. When the range of
the system is increased to 1.5 m, it is observed that a higher
minimum number of antennas is necessary to realize greater
received power, suggesting that if the system is scaled tomore
antennas, even larger gains and thus longer distances can be
achieved.

The present testbed could easily be extended to more
antennas, in hopes that eventually a true radio frequency inte-
grated circuit could be developed for WPT. Antenna design,
mutual coupling, and software latency will be challenging
when developing such a circuit. With many IoT devices, such
as implantable sensors, wearable electronics, and motion or
temperature sensors - all requiring power on the order of
milliwatts, as shown in the testbed-beamformed power over
noticeable distances is a reality.
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