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ABSTRACT Due to the prevalence of smartphones and various wearable devices, the collection of rich
personal data that can be used for human activity recognition, user modeling, and personalized services has
become feasible. Because of its popularity and high accessibility, the smartphone has not only become an
effective terminal in personal data collection, but also a gateway connecting wearable devices and gathering
various types of personal data from these wearables. In most current applications, such wearables operate
to collect data according to a fixed schedule, often preset manually by a user. The main problems in the
data collection arising from such fixed scheduling are weak adaptiveness to wearables’ state changes, a high
level of redundancy in collected data, and possible mismatches in the dynamic precision requirements of data
capture. Therefore, we propose a context-aware scheduler, that is able to dynamically adjust a data collection
schedule based on contingent situations in the condition of wearables, system resource availability, and user
behavior. This paper is focused on context data detection and data collection scheduling in a smartphone-
based client-server system. The smartphone functions as not only a gateway gathering data from multiple
wearables, but also a terminal for the performance of a context-aware scheduler. A context-aware engine
is implemented to handle different contextual information. The data quality and system performance have
been evaluated and verified in practical experimental tests.

INDEX TERMS Context-aware, smartphone, data collection, schedule, wearable, adaptiveness, user pattern.

I. INTRODUCTION
Due to the rapid progress of information and communica-
tion technologies (ICT), various digital explosions in terms
of data, connectivity, service and intelligence explosion are
emerging in an integration of the cyber and physical world,
the hyper world [1], [2]. Ubiquitous/pervasive computing,
Internet of things (IoT), cyber-physical system (CPS) and
others can be seen as means to practically bridge and even
merge the digital cyber world and the physical world for the
formation of the hyper world [3], [4]. In this new world,
numerous items, including various devices, machines and
persons are interconnected, and these are able to compute
and also generate huge amounts of data, i.e., big data, day by
day. Based on our study of Cyber-I [5], a novel wearable sys-
tem called Wear-I (Wearable Individual) has been proposed
recently as a new paradigm for wearable computing in per-
sonal data collection and personalized service provision [6].
In a Wear-I, multiple wearable devices are used to collect
personal data from sensors embedded in these wearables.

As an increasing number of wearable devices appear in
our ambient environment, a great deal of personal data could
be collected by a smartphone, making further personality

computing possible [7]. As the smartphone comes to play a
greater and greater role in human life, such a smartphone-
based and wearable-combined personal data collection
system could exhibit two basic features, dynamic resource
utilization and variable personal data requirement, in terms of
different application scenarios. Two representative scenarios
are shown in Fig. 1. A user checks their email at home with
wearing a bracelet and an LG watch in the first scenario.
While in the other scenario, a user takes a walk to an office
wearing an LG watch and a ring. It can be seen that both the
wearable devices and smartphone resources change accord-
ingly in the two scenarios.

Concerning the features mentioned above, two fundamen-
tal issues are (1) how to collect and manage data from various
wearables effectively under different scenarios, and (2)
how to use the limited system resources in a smartphone
efficiently. In our previous research, a smartphone-based sys-
tem was developed with fixed scheduling for personal data
collection [8]. Such a fixed schedule preset by a user adapted
poorly to different scenarios and proved to be inflexible.
Therefore, this paper presents a context-aware scheduler that
is able to dynamically adjust a data collection schedule based
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FIGURE 1. System conditions in two different scenarios.

on contingent situations in the condition of wearables, system
resource availability and user behavior.

Hence, the first research objective in this study was to
rebuild the system’s architecture and functions specifically
to adapt to wearables’ changing states and their heteroge-
neous data types. The data collector aims to collect and store
data, while the data preprocessor is in charge of fundamental
processes i.e. data type normalization and data redundancy
elimination. The data uploader is to send processed data to a
server.

Our next research objective was to convert the fixed sched-
uler into a context-aware scheduler to collect data according
to various contexts. To fully evaluate possible factors that
may impinge on data collection, three contexts were used in
this study; the wearable context, the system context and the
user context. These sensed the state of the wearable, system
resource utilization, and user behavior patterns, respectively.
Context detection is one of the key techniques necessary for
measuring each of these contexts.

A third research objective was to achieve high wearable
data quality and good system performance [9], [10]. Data
Quality (DQ) is judged according to three criteria; namely,
data accuracy, (DA) referring to the degree to which a
user’s state is described, Data Integrity (DI), referring to the
number of possible data types that could be collected by
certain wearables, and data efficiency (DE), referring to the
non-redundancy of collected data. System performance (SP)
is assessed using two criteria, namely power consumption
and resource utilization. To realize optimal data quality and
system performance, a context-aware engine embedded in
the context-aware scheduler is implemented according to
three different models, namely a system power consumption
model, a multiple resource utilization model and a data qual-
ity optimization model.

The remainder of this paper is organized as follows. The
next section is about related studies and their relation to
our research. Section III describes our system architecture
and gives a general illustration of the proposed context-
aware scheduler. Section IV explains how a context broker
manages a context from assessing the three contexts

mentioned above. Section V shows working flows in the
context-aware scheduling process. Section VI explains the
models in the context-aware scheduler in detail. Experimen-
tal results and their analyses are presented in Section VII.
Conclusions are drawn and future work suggested in the last
section.

II. RELATED WORK
Over a relatively short period of time, computing has come
to focus on the personal in human life. Human-centered
computing (HCC) aims to bridge the gaps between various
disciplines such as signal processing, machine learning and
ubiquitous computing involved with the design and imple-
mentation of the computing systems that support people’s
activities [11]. As a fundamental step for HCC, personal data
collection and analysis is increasingly common nowadays
following on from the prevalence of wearable devices [12].
As a result, a great deal of research is on, or related to,
personal data collection. B. C. Singh, et al, developed a risk-
benefit driven architecture to focus on protecting personal
data through an approach that empowers individuals and
measures possible risk and benefits during data release [13].
X. Zhou, et al, concentrate on personal data analytics to
facilitate cyber individual modeling [14] by systematically
organizing and refining a personal stream of data, which
can help improve data processing and management in the
CI-Spine tier and CI-Pivot tier of Cyber-I. E. Aïmeur and
M. Lafond focus on internet personal data collection and
voluntary information disclosure, with an emphasis on the
problems and challenges facing privacy [15]. In contrast to
these personal data related research efforts, which focus on
personal data from the internet, our research is specific to
the gathering of personal data from wearables under a data
collection schedule. Such wearables could provide stable
physical personal data continuously.

However, hardware limitations, in terms of battery life,
CPUs, networks etc. restrict the possibility of unlimited
data gathering. Therefore, by considering wearable battery
levels and system resources utilization changing dynami-
cally, a context-aware scheduler which senses various related
factors would be ideal for personal data collection. Various
categorizations of context have been proposed in the past.
Schilit et al. [16] introduced the concept of context which is
related to the location of nearby person hosts or objects, and
how they change over time [17]. Hence, research related to the
context above is regarded as research into context awareness.
This is the first research into data collection with context
awareness. C. Perera, et al, provided some context-aware
computing methods for the Internet of Things by providing
an in-depth analysis of context life cycle and evaluated a
subset of projects which represent the majority of research
and commercial solutions proposed in the field of context-
aware computing conducted over the last decade [18].
Y. Lee [19] proposed a cooperative context monitor-
ing system (CoMon+) for multi-device personal sensing
environments. A benefit-aware negotiation method to
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FIGURE 2. General process of context-aware data collection.

maximize the energy benefit of context sharing was devel-
oped during his research, and cooperators likely to remain
in a vicinity for a long period of time were detected with
CoMon+ [20]. Alternatively, T. Tran [21] focused on sensing
interflow network coding and scheduling which adaptively
encodes data across traffic to maximize a network’s quality
of service (QoS). Such a context-awareness concept is well
suited for personal data collection under multiple wearable
devices.

Similar to that research which focuses on data collection
under different contexts, our research also schedules data
collection under three contexts; a wearable context, system
context, and user context. However, little research into
context-awareness has considered users’ influence on each
context, i.e. location and event. The data collection sys-
tem which was implemented in our previous research also
ignored the problem of the influence of user behavior, which
precludes simultaneous and consistent data quality and sys-
tem performance. Therefore, we proposed a user context to
describe a user’s behavior pattern.

Some researchers are focusing on detecting and analysing
the influence of users’ behaviour. To analyse the exact
influence, T. Mavridis, et al, provide a close-to-user prop-
agation model to describe the users’ influence in different
scenarios [22], while Matsumura and Sasaki [23] focus on
understanding leadership behaviour in human influence net-
works. Besides users’ proactive behaviour, some inactive
behaviour is also valuable to research. Dzvonyar, et al. [24]
described a context-aware feedback system which consists of
collecting user feedback enriched with usage context data, as
well as a process for integrating such feedback into develop-
ment activities. E. S. Marin and C. L. Carvalho [25] devel-
oped a number of models that maximize human influence
of increasing the probability of finding reliable connections
between numerous paths and interpersonal influences.

Different from the research little considering human
behaviour influencing scenarios, we have further devel-
oped user behaviour patterns in this paper to classify user
behaviour in three different aspects, namely user location
pattern relating to spatial-temporal features [26], a user action
pattern [27] and a battery charge pattern [28]. In order
to achieve optimal data quality and system performance,

system power consumption and multiple resource utilization
are measured under these patterns respectively.

III. SYSTEM OVERVIEW OF CONTEXT-AWARE
SCHEDULING
Our context-aware scheduling system has adopted the
client/server mode, where a smartphone acts as a client
embedded in a context-aware scheduler. The modules within
the context-aware scheduling system are described below,
and its architecture is illustrated in the second subsection.

A. GENERAL DESCRIPTION
As mentioned above, there are two distinct characteristics in
the Wear-I system that may influence data quality and system
performance. One is the use of multiple wearable devices
that may be heterogeneous and subject to dynamic change.
The other is the use of a mobile system that may only be
able to carry out processes intermittently. Accordingly, the
context detection in a multi-context broker is responsible for
detecting these two situations. As shown on the left in Fig. 2,
the wearable context detection and system context detection
function inside the context broker is in charge of sensing
the resource and basic state in each device. For example,
the wearable wearing state and smartphone CPU utilization
can be separately detected by these two context detections.
However, some contexts which may have a great influence
on personal data collection are hard to detect. Take the battery
charging time as an example. The next battery charging event
which could directly influence the battery life is hard to detect
from these two contexts. Therefore, user context detection is
set up to detect a user’s behavior pattern constantly according
to the wearable context and system context.

The context-aware scheduler is responsible for the poten-
tial factor analysis which may influence the process of data
collection according to each context and then for further
analysis using such factors in the resulting scheduling. The
context-aware engine contains three kinds of models for
independent contextual information; modelling in terms of
system power consumption, multiple resource utilization,
and data quality optimization. Meanwhile, these models
could guide three sub-schedulers for personal data gathering,
namely a data collection sub-scheduler, a data preprocess
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FIGURE 3. System architecture.

sub-scheduler and a data upload sub-scheduler. The detail of
such a context-aware scheduler is introduced in section V.

B. SYSTEM ARCHITECTURE
For the purpose of clarifying the process in our smartphone-
based system, the system architecture contains three parts,
as shown in Fig. 3. For the first part, multiple wearable
devices are grouped as the personal data source, as shown
at the bottom of Fig. 3. The second part is the smartphone,
which plays a role as a terminal to handle the schedule and
preprocessing, as well as data upload, while the third part
is a server, which receives the preprocessed data from the
smartphone for permanent storage.

The major functions are implemented inside the smart-
phone as shown in the middle of Fig. 3. The total process
is largely separated into three steps. Firstly, the data from
the wearables and system resource information are gathered
from the multiple wearable devices and system monitor
respectively. Such data including the wearables’ states, sys-
tem resource utilization and the network state will then be
sent to the context broker for the next process. Secondly, the
context broker will start, and the detected context will then
be transmitted to the context manager for storage and further
provision of services. The multiple context information in
terms of the wearable context, system context and user con-
text is stored in a local database for further scheduling. As an
engine of the whole data collection process, the context-
aware scheduler conducts the final step for scheduling each
process. The preprocessing, data collection and data upload
is controlled accordingly by the context-aware scheduler.
Consequently, the processed data is sent to and stored in a

server database on the server side. After that, the process
continues to the next round.

IV. MULTIPLE CONTEXT BROKER
As described in the last section, the multiple context broker
primarily arranges the transactions between heterogeneous
data and the context-aware scheduler to optimize multiple
schedules. Three context detection methods for wearable,
system and user are illustrated respectively in the following
three subsections. The last subsection will introduce data
management according to ontology classification.

A. WEARABLE CONTEXT DETECTION
As one of the fundamental context sources, a wearable device
senses a lot of information which benefits the schedule
adjustment. For example, the battery level of a certain wear-
able device can be measured to calculate the battery life.
Consequently, the scheduler could adjust data collection
frequency in order to provide a sustainable time of use.

The function of wearable context detection (WCD) aims
to detect wearable data in three different aspects. The first
is the wearable system condition, including the battery level,
available sensor type, and connection status. WCD detects
this system condition by directly mapping each datum with
a fixed period. For instance, the wearable connection status
can be easily detected by querying the Bluetooth pairing
state with a certain system API. The second aspect is wear-
able sensor data. WCD serves to monitor each sensor data
collection event and collecting state consistently. Basic infor-
mation such as the wearable data throughput and each
datum’s time stamp could be recorded in detail, which could
also be further detected by user context detection. The third is
the activity state of the wearable under use. In contrast to the
wearable system condition, the activity state should be judged
by continuously sensing multiple wearables’ data variation in
acceleration data and the like.

B. SYSTEM CONTEXT DETECTION
To our knowledge, the context-aware scheduler is embedded
and runs on the smartphone system, which could exert great
influence when the software is run without system resource
utilization being monitored. For example, the smartphone
could crash and not respond when the preprocessed operation
is executed, and CPU utilization reaches 100%. Therefore,
system context detection (SCD) is well prepared to sense con-
ditions related to the smartphone, including various system
resources utilization and network states. Similar to wearable
context detection, system context detection primarily senses
system monitor data by using a direct mapping method.
Multiple system contexts could be used in context-aware
scheduling, and the system battery level for further user
context detection.

C. USER CONTEXT DETECTION
In contrast to wearable context detection and system con-
text detection, user context detection (UCD) is high level
detection which integrates both wearable context and system
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context. In this paper, the user context is divided into three
patterns: a user location pattern (ULP), a user battery charg-
ing pattern (UBCP) and a user action pattern (UAP). These
three patterns describe the feature of users’ behavior in terms
of location, battery charging behavior and action behavior.
Such user patterns could also be regarded as the influence of
a user’s behavior on the smartphone system.

The progress of user pattern detection is divided into
two parts. The first part is user pattern classification, and the
second part is user pattern calculation.

The user location pattern records the GPS coordinate loca-
tion, which refers to places frequented by the user. The
classification is shown in the formula (1),

L = {l1, l2, . . . , ln}
SL (t) = lk (1)

where each location element of lk belongs to the location
set L, and SL (t) refers to a certain location at an exact time t .
The location set L could be clustered with the DBSCAN
(Density-Based Spatial Clustering of Applications with
Noise) Algorithm [29]. Due to the fact that the number of
items in location set can’t be determined in advance, the
DBSCAN is highly suitable for location clustering owing to
the features it has as a density-based algorithm. Therefore,
DBSCAN doesn’t need to specify the number of cluster
centers. As shown in formula (2), DBSCAN only needs to
specify a fixed parameter ε and the minimum number of
points Minpts to form a dense region.

L = DBSCAN (L(D), ε,Minpts) (2)

The user action pattern covers basic action behaviors
directly related to the wearable sensor, such as sitting, jump-
ing, walking and running. The classification is shown in
formula (3),

A = {a1, a2, . . . , an
SA (t) = ak (3)

where each action element ak belongs to the user action
set A, and SA (t) refers to a certain action at an exact time t .
The battery charging behavior contains two battery states

as shown in formula (4),

SC (t) =
{
0 vbattery ≥ 0
1 vbattery < 0

(4)

where SC (t) refers to a certain action at a certain time t .
If vbattery is above zero, the battery charging state equals 0,
which indicates that the battery is charged at time t . In con-
trast, if vbattery is below zero, the battery charging state
equals 1, indicating that the battery is discharged.

In order to integrate each user pattern for further pattern
calculation, in this context, M refers to the user pattern set,
and Ei is each element of M , as shown in formula (5).

M = {E1, E2, . . . , En} (5)

After three user behavior states are classified, the user
pattern calculation is carried out as follows. A user pattern

contains two fundamental elements, event duration and event
probability. In this context, an event could happen at a certain
time. Accordingly, a user pattern aims to record the probabil-
ity of the occurrence of an event and its prolonged duration at
a certain time. Therefore, a user pattern could also be regarded
as a user’s behavior feature record.

A matrix N is mainly established to record the incidence
of each event in each hour, as shown in formula (6),

N =


nt1E1 nt2E1 · · · ntEE1
nt1E2 nt2E2 · · · ntEE2
· · · · · · · · · · · ·

nt1Em nt2Em · · · ntEEm

 (6)

where each element n
tj
Ei corresponds to a certain time tj with

a certain event Ei. The element count could also be expressed
as C j

i , as shown in formula (7).

C j
i = n

tj
Ei (7)

As one element of a user pattern, the durationD of a certain
event εi is shown in formula (8), where duration is calculated
by integrating the event with its time.

D (εi) =
C ji∑
u=1

∫ X

0
S−1{εi}d(εi) (8)

As shown in formula (9), probability Pji is another ele-
ment of a user pattern, which refers to the probability of
element n

tj
Ei . It could be calculated by using the incidence of

the event at a certain time C j
i divided by the total count of all

events at the same time.

Pji =
C j
i

m∑
k=1

C j
k

(9)

After event duration D and event probability P are cal-
culated, the user pattern UP could be referred to as a set
of D and P, as shown in formula (10).

UP = {D,P} (10)

An example of user battery pattern detection is roughly
described, as shown in Fig. 4. The process can be broken
down into four steps. At the beginning, the wearable con-
text detection function and system context detection function
detect the wearable battery level (WBL) and system battery
level (SBL), respectively. Subsequently, the battery level vari-
ation could be calculated by consistently detecting the battery
level. Each irregular battery variation will be further recorded
as a battery charge event. Therefore, the battery charge data
set consists of bothwearable battery charge events and system
battery charge events. Finally, the battery charge pattern can
be calculated from the battery charge data set by calculating
the charging probability and charging time simultaneously.
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FIGURE 4. An example of battery state detection.

FIGURE 5. An example of ontology construction.

D. CONTEXT MANAGER
As a fundamental and indispensable part of the multiple
context broker, a context manager mainly functions as storage
for heterogeneous context data, as well as a context provider
for ensuing processing by the context-aware scheduler. The
contextual data storage structure is primarily to index related
data for reading/writing. Hence, the ontology structure is well
suited for contextual information management. Ontology is a
specific data structure that describes the elements, attributes
and related elements [30], as shown in Fig. 5.

Our system ontology consists of three categories; val-
ues, properties, and interrelationships. Such a contextual
information organizing structure not only effectively lim-
its complexity, but also provides useful related information,
according to the interrelationship category. For example, as
shown in Fig. 5, the context ‘‘walk’’ could be recorded as
a value. Subsequently, the properties store two attributes;
location and time. In the interrelationship part, some related
wearable contexts and system contexts are stored, including a
home context, a GPS context, and a school context. The easy
access to related contexts facilitates the further processes of
the context-aware scheduler.

V. CONTEXT-AWARE SCHEDULER
The context-aware scheduler serves to overcome the poor
adaptiveness of fixed scheduling and improve data collection
based on detected context information. The context-aware
engine and three context-aware sub-schedulers for data col-
lection, preprocess and upload are illustrated respectively in
the following four subsections.

A. CONTEXT-AWARE ENGINE
As described in Section III, the context-aware engine, which
acts as a core part, serves to sense the contextual data
for three context-aware sub-schedulers. The context-aware
engine contains three different models in terms of power,
resources, and data quality. These models are explained
respectively in the following three subsubsections.

1) SYSTEM POWER CONSUMPTION MODEL
Since the system could be impinged upon by user behavior,
modeling the system power consumption is conducive to
improving the running performance of the system and extend-
ing battery life. Therefore, the system power consumption
model was established to model the relationship between
wearable battery consumption and data collection frequency,
as well as the relationship between smartphone battery con-
sumption and data preprocess frequency. When it comes to
element input, the current battery level, the current time, the
current frequency, and the user battery charging pattern will
be calculated, and then the optimal scheduling frequency can
be worked out. The detail of the system power consumption
model is described in the next section.

2) MULTIPLE RESOURCE UTILIZATION MODEL
Similar to the system power consumption model, multiple
resource aims to build a relationship betweenmultiple system
resources and system operation frequency. System opera-
tion also includes data preprocess operation and data upload
operation. As for function input, the user action pattern, the
current time, the current resource utilization and the network
state will be calculated, and then an optimal frequency can
be arrived at in terms of multiple resource utilization. The
details of a model building algorithm are described in the next
section.

3) DATA QUALITY OPTIMIZATION MODEL
In contrast to the previous two models, the data quality
optimizationmodel focuses on data quality. Thismodel estab-
lishes the relationship between data collection frequency and
data accuracy, and then separately establishes the relationship
between data collection frequency and data efficiency. The
optimal collection frequency is then calculated based on these
two relationships. As for the input for the model, a wearable
device set, a user location pattern, a user action pattern,
and a current time will be calculated, and then the optimal
frequency in terms of data quality will be arrived at. The detail
of the modelling process is described in the next section.
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FIGURE 6. Flowchart of data collection sub-schedule.

B. DATA COLLECTION SUB-SCHEDULER
The process of the context-aware data collection sub-
scheduler is illustrated in Fig. 6. In order to guarantee low
scheduling consumption, the process begins when variation
in the wearable context is detected.

Three wearable contexts are detected at the beginning of
the data collection schedule. The first is the device connection
state (DCS). DCS is a set of devices which indicate schedu-
lable devices. Subsequently, the connection device variation
is responsible for calculating the collection data set (Dc),
according to DCS. The second context is the network state.
The quality of the network is mainly determined by the
distance between wearables and the smartphone. Such a
determination of quality could be used for calculating the
maximal schedulable frequency (MSF) by amaximal schedu-
lable frequency (FM) determination function. Meanwhile, if
the wearable battery level (WBL) is above the threshold T,
the temporal frequency will be computed by a data qual-
ity optimization model. Otherwise, the temporal frequency
will be computed by the system power consumption model.
The parameter amendment function is in charge of the final
frequency adjustment, according to the temporal frequency.
If the modified frequency is different from the original fre-
quency, this new schedule will correspondingly be handled
by data collection.

C. DATA PREPROCESS SUB-SCHEDULER
The process of the context-aware data preprocess
sub-scheduler is illustrated in Fig. 7. The process begins when
changes in the system context are detected.

Similar to the processing step of a data collection
sub-schedule, the data preprocess sub-schedule firstly detects

FIGURE 7. Flowchart of data preprocess sub-schedule.

the system battery level (SBL), resource state set (RSS)
and preprocess amount (PA) simultaneously. Subsequently,
the system measures the preprocess amount. If the amount
reaches the minimal preprocess amount T, the system power
consumption model will subsequently calculate the temporal
frequency (TF1) by SBL. The multiple resource utilization
model calculates the temporal frequency (TF2) by using
the parameter RSS correspondingly. Finally, the parameter
amendment function is prepared to coordinate two temporal
frequencies according to RSS. For example, the strategy of
the parameter amendment function is to choose the lower of
the two frequencies. For instance, if TF1 is above TF2, the
new preprocess frequency will be TF2.

D. DATA UPLOAD SUB-SCHEDULER
The process of the context-aware data uploading
sub-scheduler is shown in Fig. 8. The process begins when
changes in the network state are detected.

In contrast to the data collection sub-scheduler and data
preprocess sub-scheduler, the data upload sub-schedule only
needs to compare the upload amount with the minimal upload
amount T. When this requirement is reached, the system
will dispatch the network state into the multiple resource
utilization model for optimal frequency calculation. In this
schedule, the factor of system power consumption is not
considered because battery consumption during the upload
process can be ignored due to the high speed of the network
and shortened upload times.

VI. MODELS IN CONTEXT-AWARE ENGINE
As described in the last section, contextual data acts as blood
does in the human body, while the context-aware engine
is analogous to a pumping heart that analyzes contextual
information continuously. Three different models provide the
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FIGURE 8. Flowchart of data upload sub-schedule.

same type of optimal frequency separately, according to dif-
ferent kinds of contextual data. A sub-scheduler could utilize
different models under different conditions. The details of
three models are illustrated respectively in the following three
subsections.

A. SYSTEM POWER CONSUMPTION MODEL
As mentioned in a previous section, there are mainly three
factors that influence the power consumption of the system;
idle battery consumption (IBC), operation battery consump-
tion (OBC) and user battery charging behavior. Therefore, the
basic mechanism for the system power consumption model is
to consider three factors at the same time.

By measuring IBC and OBC, the system total energy con-
sumption can be easily calculated with a period of time t , as
shown in formula (11),

E (t, f ) =
∫ t+ 1

f

t
(Power idle + Poweroperation( f ))dt (11)

where the energy consumption E at each schedule interval
with a certain frequency f is calculated by integrating the idle
power consumption power Power idle and operation power
consumption power Poweroperation(f ).
The optimal frequency with power consumption is

presented in Procedure 1. In this model, the user charging
time t0 is measured first according to the user battery charging
pattern UP(t)bc at a certain time tc. The battery life t1 can then
be calculated according to formula (11). After sound prepara-
tion of necessary parameters, the system power consumption
model will increase the operation frequency f continuously
in order to arrive at the maximal operation frequency while
guaranteeing a sufficient duration until the next charging
time.

As shown in the scheduling results in Fig. 9, the red line
refers to the original battery consumption with a certain
operation frequency. It shows that the device is charged by the
user for 12 hours, which indicates that the battery is not fully
used, because the battery level is still at a high level when it is
charged. Therefore, the power consumption model increases

Procedure 1 Optimal Frequency With Power Consumption
Input: Current Battery Level BLc, Current timetc, Current
Frequency fc, Battery Charging Pattern UP(t)bc
Output: Optimal Frequency f0
1: t0 = UP(t)bc {D (tc)}

2: t1 =
BLc

E(tc,fc)

3: if t1 6= t0 then
4: f = 1
5: while E (tc, f ) < BLc do
6: f = f + 1
7: if BLc

E(tc,f )
then

8: break
9: end if
10: end while
11: end if
12: f0 = f

FIGURE 9. An illustration of power consumption model.

frequency to ensure the most efficient battery usage as well
as a sufficient duration until the next charging time.

B. MULTIPLE RESOURCE UTILIZATION MODEL
As mentioned in the last section, the multiple resource
utilization model aims to build the relationship between sys-
tem resource utilization and operation frequency. This model
is mainly for the data preprocess scheduler and data upload
scheduler since both scheduling operations are closely related
to the system resource. For example, the preprocess operation
should both take into account the current CPU utilization and
memory utilization. Only when both resources are satisfac-
tory for the operation at the current frequency can this process
be operated successfully. Therefore, building the relationship
between each operation and multiple resource is crucial.

In this paper, the fundamental modeling element set is
shown in the following formula,

U = {ua (f ) , ub (f ) , . . . , un(f )} (12)

where U refers to the utilization resource set, including each
resource element ui (f )with a certain frequency f . According
to previous research, this paper considers the relationship
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between frequency and resource to be linear, as shown in
formula (13),

ui ( f ) =
fi − f

′

i

ri − r
′

i

(13)

where fi refers to original operation frequency, while ri is
current resource utilization. And f

′

i refers to the new operation
frequency, while r

′

i is new resource utilization under this
frequency.

It’s easy for the presented system to obtain each linear
relationship between a certain frequency and a corresponding
multiple utilization ratio. However, it’s harder to arrange the
frequency to ensure sound resource utilization. For example,
if CPU utilization is 100%, but memory utilization is 60%,
it’s impossible to increase operation frequency due to the
‘Buckets effect’. One of the basic criteria for increasing oper-
ation frequency is to ensure that utilization of all resources
does not reach 100%. Therefore, in this study, two strategies
to optimize multiple resource utilization are classified.

FIGURE 10. An example of maximal resource utilization strategy.

The first strategy is to ensure maximal resource utilization,
as shown in Fig. 10. In this strategy, the operation frequency
is increased until utilization of one resource reaches 100%.
For example, the frequency keeps increasing until the system
detects that the CPU has reached 100%. The advantage of
this strategy is that it guarantees at least one resource is fully
utilized. However, when multiple operations run at the same
time, some resources may still undergo low utilization under
the first strategy. That’s why the second strategy is called for.

The second strategy is an idle resource balance strategy,
in which each operation frequency is adjusted to reach the
balance of each resource. Although a single resource may not
be fully used, total usage is higher than in the former strategy,
as shown in the Fig. 11.

C. DATA QUALITY OPTIMIZATION MODEL
The data quality optimizationmodel is specialized to improve
data quality. In this research, we regard data accuracy as
the degree to which data integrity completely describes user
behaviour, while data efficiency describes the data set with

FIGURE 11. An example of idle resource balance strategy.

Procedure 2 Data Quality Optimization Model Construction
Input: Current Frequency fc, Current Time tc, Data
Set D (fc)
Output: DAE (fc)
1. Initialize:

D (fc) = {d2 − d1, d3 − d2, . . . , dn − dn−1|F = Fc}

CountA = 0

CountE = 0

2: for i = 2ton do
3: if (di − di−1)≤θAthen
4: CountA = CountA + 1
5: end if
6: if (di − di−1)≤θE then
7: CountE = CountE + 1
8: end if
9: end for
10: DA =

CountA
n−1

11: DE =
CountE
n−1

12: DAE (fc) = DA • DE

less redundancy. The data quality measuringmethod is shown
in formula (14),

DAE (f ) = DA • DE (14)

whereDA refers to the degree of data accuracy, andDE refers
to the degree of data efficiency. DAE is the total degree to
measure the data quality with certain f . The data quality
optimization model constriction is presented in procedure 2.
At the beginning of algorithm, the variation between each
datum is calculated successively. Subsequently, CountA and
CountE record the variation between two consecutive data
according to two thresholds θA and θE , respectively. After the
process of calculation of each data quality, DA and DE can be
calculated according to CountA and CountE . Finally, the data
quality measuring degree DAE can be arrived at.

With the construction of the data quality optimization
model, the algorithm for optimal frequency to data quality
is directed at providing the optimal data collection frequency
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Procedure 3 Optimal Frequency With Data Quality
Optimization Model

Input: Current time tc, Current Frequency fc, User
pattern UP(t), Maximum Frequency fM
Output: Optimal Frequency f0
1: Initialize:

P = UP(t) {P (fc)}

D = UP(t) {D (fc)}

f = 1

f0 = 1

DMaxAE = 0

2: while f ≤ fM
3: if DAE (f )> DMaxAE then
4: f0 = f
5: end if
6: end while

FIGURE 12. Example of data accuracy-efficiency-frequency.

according to the former constructed DAE model, as presented
in procedure 3. By changing the data collection schedule
frequency, the DAE is calculated. The frequency with the
maximal relatedDAE value is also obtained. This frequency is
then the result of an optimal frequency according to the data
accuracy and data efficiency.

An example of the data quality optimization model is
shown in Fig. 12. The curve in three-dimensional coordinates
reflects the data collection frequency related to data accuracy
and data efficiency, respectively. According to formula (14),
the data quality can be calculated by the following different
frequencies. Accordingly, the curve which describes the data
quality and data collection frequency is shown in Fig. 13.
The peak of this curve suggests that the maximal data quality
corresponds to frequency f . As a result, the system can choose
the frequency f as the optimal frequency to reach the highest
quality under the current context condition.

VII. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
Our experiments contained two parts, one was the evaluation
of data quality and the other the evaluation of system per-
formance. For the first part, an iPhone6 plus was used as a

FIGURE 13. Example of data quality optimization curve.

FIGURE 14. Low frequency with fixed schedule and context-aware
schedule.

FIGURE 15. Medium frequency with fixed schedule and context-aware
schedule.

client to handle data collection, data pre-process and uploads
to a server. The client on the smartphone had been developed
under the Mac OS X with the Swift programming language.
For the second part, a simulation of a virtual smartphone
model reflecting the multiple system resource utilization was
implemented with multiple-programming languages, includ-
ing LabVIEW 2015 and Java. Experimental charts are dis-
played under LabVIEW 2015 and MATLAB 2016.

B. EVALUATION OF DATA QUALITY
We conducted three groups of experiments to collect user
step data under the same experimental environment. An apple
watch was worn by an experimenter to provide original step
data, while a fixed schedule and a context-aware schedule
with a data quality optimization model were embedded into
two smartphones for data collection, respectively. 15 hours of
step data was recorded subject to two different schedules, as
shown in Fig. 14, Fig. 15, and Fig. 16.

We mainly classified the frequency into three frequencies.
That is low frequency, medium frequency and high frequency.
Three figures draw the three differing scheduling frequencies
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FIGURE 16. High frequency with fixed schedule and context-aware
schedule.

TABLE 1. Experimental data with fixed schedule.

TABLE 2. Experimental data with context-aware schedule.

under the same step data set. The black curve is the original
step data, while the red curve illustrates the step data collected
under a fixed schedule. A blue curve also shows the step
data collected by a context-aware schedule. The experimental
data under two schedules is shown in Table 1 and Table 2
respectively.

According to the experiments, four evaluable factors can be
calculated for data quality evaluation, namely data accuracy,
referring to the number of data which are equal to the original
data, data efficiency, referring to the number of redundant
data, data quality optimization, referring to the combination
of data accuracy and data efficiency, and the quality of the fit,
referring to the degree of similarity between the scheduling
data curve and original data curve. The result shows that the
data collected by context-aware scheduler is overwhelmingly
better than data collected by fixed scheduler according to each
factor. These two set of results also show that, in a certain
frequency range, the higher frequency scheduled, the better
performance of data quality is.

C. EVALUATION OF SYSTEM PERFORMANCE
We conduct two groups of 15 hours’ experiments with
different smartphone resource utilization at a virtual Environ-
ment. The simulation of smartphone resources contains CPU,
memory and battery level. The first group of experiments
was four kinds of data processing experiments which show

FIGURE 17. Data preprocess with four kinds of scheduling models under
idle resource utilization.

FIGURE 18. Dynamic CPU and memory utilization.

the scheduler guided by four kinds of scheduling models
under the idle resource utilization, and the second part of
experiment is operated under dynamic resource utilization.

In Fig. 17, the red curve refers to the total preprocess
counts, while the blue curve shows the variation in battery
level. During the first experiment, the system idle resource
utilization stayed at a constant utilization, whereas the battery
separately charged at 5 hours, 14 hours and 20 hours pre-
cisely. It’s clear that the highest preprocess counts are 980,
which were scheduled by fusing the battery consumption
model with the multiple resource utilization model, while
the lowest preprocess counts are 210, which were scheduled
by the fixed scheduler. In addition, the scheduler with the
battery consumption model and the scheduler with the mul-
tiple resource utilization model are both better than the fixed
scheduler due to the dynamic frequency changing strategy
based on the charging time.

The second group of experiments were conducted under
the dynamic CPU and Memory utilization as shown in
Fig. 18. After the first 5 hours, both CPU and Memory are
in low usage, which means there is no extra app usage.
At 5 to 10 hours, resources are in high usage, whichmeans the
user is using the smartphone during this period. Then, some
random apps ran from 10 to 18 hours. Finally, both resources
increased from low utilization to high utilization.

Fig. 19. shows the data preprocess operation scheduled
under four kinds of model. The result is similar to the exper-
iments conducted in the idle resource utilization. The best
preprocess performance was scheduled by fusing the battery
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FIGURE 19. Data preprocess with four kinds of scheduling models under
dynamic resource utilization.

power consumption model and multiple resource utilization
model, while the worst performance was conducted sub-
ject to a fixed schedule. Regarding the two aspects of the
experiments, we can also the draw the conclusion that the
performance of multiple resource utilization is based on
the battery charging pattern. This means the best schedule
could also be the best multiple resource utilization, if the
battery continues charging or the resource utilization can be
neglected.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a context-aware scheduler
for three main objectives. The first objective is to auto-
matically collect user personal data from multiple wearable
devices. Due to the popularity and compatibility of multiple
wearables, a smartphone was chosen as a terminal for data
collection as well as data preprocess and upload. The second
is to fully take advantage of contexts which may influence
data collection, preprocess and upload. To do so, a context
broker was proposed and implemented accordingly. By sens-
ing the wearable context and system context, the context
broker was able to provide guidance for further adjusting
scheduling parameters to reach a generally acceptable level
system performance for practical use. Considering the influ-
ence of user behavior, an extra user context was detected
according to wearable context and system context. Three user
patterns were detected to measure data quality as well as
set further scheduling, namely a user location pattern, a user
action pattern and a battery charge pattern. In addition to
the context detection, a context manager inside the context
broker was implemented based on an ontology for contextual
information storage and provision. The third objective is
to reach the optimal schedule in terms of data quality and
system performance. A context-aware engine was proposed
for modeling contextual data under three different models,
namely a data quality optimization model, a system bat-
tery consumption model and a multiple resource utilization
model.

However, muchwork remains for future study into two spe-
cific aspects. First, more contextual factors should be taken
into consideration for the context-aware scheduler, especially
the user context. Secondly, models from the context engine
should be refined for more precise context estimation. Third,
more experiments will have to be carried out to further evalu-
ate and improve data collection, preprocess and upload in the
system.
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