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ABSTRACT As a powerful nonparametric Bayesian model, the infinite mixture model has been successfully
used in machine learning and computer vision. The success of the infinite mixture model owes to the
capability clustering and density estimation. In this paper, we propose a nonparametric Bayesian model
for single-image super-resolution. Specifically, we combine the Dirichlet process and Gaussian process
regression for estimating the distribution of the training patches and modeling the relationship between the
low-resolution and high-resolution patches: 1) the proposed method groups the training patches by utilizing
the clustering property of Dirichlet process; 2) the proposed method relates the low-resolution and high-
resolution patches by predicting the property of Gaussian process; and 3) the mentioned two points are
not independent but jointly learned. Hence, the proposed method can make full use of the nonparametric
Bayesian model. First, the Dirichlet process mixture model is used to obtain more accurate clusters for
training patches. Second, Gaussian process regression is established on each cluster, and this directly reduces
the computational complexity. Finally, the two procedures are learned simultaneously to gain the suitable
clusters with the ability of prediction. The parameters can be inferred simply via the Gibbs sampling
technique. Thorough super-resolution experiments on various images demonstrate that the proposed method
is superior to some state-of-the-art methods.

INDEX TERMS Super-resolution, Dirichlet process, Gaussian process regression, Gibbs sampling.

I. INTRODUCTION

S INGLE image super-resolution has been successfully
used in various computer vision applications [1]–[3].

It is remained a fundamental task in computer vision
for different image degradation causes, such as optical
blurring, motion blurring, and noising. In general, super-
resolution methods can be divided into three categories:
interpolation-based, regularization-based and example-based
methods [4], [5]. Interpolation-based methods recover the
degradation image through some upscale algorithms based on
smooth functions, such as piecewise smooth [6] and smooth
kernel [7]. Regularization-based super-resolution methods
pay more attention on sequence images. This kind of meth-
ods aim at deblurring by constructing the regularization
based on local or nonlocal constrains [8]–[11]. Example-
based methods establish the mapping function between the
LR patches and HR patches through machine learning algo-
rithms. Most of the learning-based super-resolution methods
utilize the dictionary or example which draw more atten-
tion in recent research, especially for single image super-
resolution [5], [12]–[15].

Example-based single image super-resolution methods
provide good frameworks to represent the local structure
of images by patches or features. The recent and pop-
ular example-based methods involve two kinds, neigh-
bor embedding approaches [16]–[18] and sparse coding
approaches [13], [19], [20]. Neighbor embedding approaches
usually model the relationship between the LR and HR
patches with subspaces learning or manifold methods. The
LR patches are potentially considered as low-dimensional
embedding of HR patches. The sparse coding approach is
first introduced to super-resolution by Yang et al. [19]. With
the help of sparse representation, sparse coding based SR
approaches can learn compact LR and HR dictionaries via
regularized optimization. In order to achieve high quality HR
image with detail texture and structure information, example-
based SR methods require large and abundant datasets to
generate the adequate dictionaries. However, the large dataset
will induce series problems in the process of super-resolution.
Firstly, for a LR patch, the nearest neighbor search would
need much computation time, and at the same time, the per-
formance of search results may be influenced. Secondly, large
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patch datasets will make the correspondence relationship
between LR and HR patches ambiguity, such as different HR
patches may generate same LR patch due to the reason of
down sampling. Thirdly, exampled-SR methods usually train
the mapping functions from the space of LR patches to the
space of HR patches. Given the large training dataset, the
selection of mapping function or machine learning model is
very difficult.

In this paper, we propose a novel algorithm for example-
based single image super-resolution based on the infinite
mixture model. The proposed algorithm focuses on different
type of way tomodel the training samples. Using the grouping
performance of Dirichlet process, the large number of LR/HR
training patches will be clustered as active nodes. Then for
each cluster, we establish the relationship between LR patch
and the pixel point in HR patch using Gaussian process
regression. The Gaussian process regression can give more
accurately mapping function from patch to center pixel in HR
patch rather than from patch to patch. On the other hand, the
computation complexity of mapping function is determined
by the number of patches in each cluster, which would lower
than that on the whole patches.

The rest of the paper is organized as follows. Several
related works are given in Section II. Section III introduces
the proposed super-resolution model and its parameter infer-
ence. Section IV presents the experimental results. Finally,
the conclusions are reached in section V.

II. RELATED WORKS
In recent years, there have been extensive works on single
image super-resolution in machine learning and computer
vision. In general, existing methods can be classified into
two main categories: parametric models and nonparametric
models. We will review some related works in two kinds in
the following.

A. PARAMETRIC MODELS
Parametric models target on designing a batch learning
algorithm from LR patches/space to HR patches/space.
The model parameters are determined in the training pro-
cess and they are considered as fixed values. Most of
example-based SR methods belong to parametric models,
such as neighbor embedding approaches and sparse coding
approaches.

B. NONPARAMETRIC MODELS
Unlike parametric models, nonparametric methods provide
series of statistical methods, which estimate the parame-
ters as random variables. Therefore, nonparametric mod-
els require no or very limited assumptions to be made
about the data. By contrast with parametric models, non-
parametric models have drawn more attentions in recent
years.

Tipping and Bishop propose generative Bayesian SR
model for multiframe images [21], which estimates the
unknown point spread function with a Gaussian process prior

over images. As well known, Gaussian process is widely used
as nonparametric priors on functions in probabilistic models.
Gaussian process regression (GPR) is one of the most pop-
ular examples in Bayesian nonparametric models for their
powerful generalization capability and intuitive probability
interpretation. In recent years, GPR has been introduced to
the framework of image SR. He et al. use GPR for pre-
dicting each pixel in HR image by its neighbors [22]. The
performance of the method is restricted because the high-
resolution image is produced from a single low-resolution
imagewithout any external training set. Then some extend SR
works are proposed for large scale external training sets and
low computational complexity, such as semi-local Gaussian
process [23], active-sampling GPR [24] and prototype-based
GPR [25].

Dirichlet process (DP) is another prominent representative
which is widely used in nonparametric models. Compared
with GP, DP or DP mixture model (DPMM) is able to flex-
ibly adapt to the data. Zhou et al. propose a nonparametric
Bayesian dictionary learning method for dealing with incom-
plete and noisy images [26]. Akhtar et al. extend the dictio-
nary learning to hyperspectral image super resolution [27].

While few attempts have been made towards nonpara-
metric Bayesian super-resolution methods, there are some
problems cannot be neglected. Firstly, due to the restriction
of the inputting images without any external training set,
the performance of super-resolution results would be influ-
enced [22]. Furthermore, aim to obtaining the target HR
image with rich texture and edge details, some dictionary
learning based super-resolution methods have been
proposed [28]–[30]. The LR/HR dictionaries are often
learned from observed LR/HR pairs. Then it is very important
to obtain a good representative dictionary. Most existing dic-
tionary learning methods are based on the finite distributions,
such as Gaussian distribution and Gaussian mixture distribu-
tion, and they deal with the observed patches as finite clusters.
This would limit the ability of the dictionary to represent
image details. Finally, the processes of training dictionary
and correlating between LD/HR images are independent, so it
may be difficult to preserve the consistency of two processes.
In other words, the dictionary learning should be related to
the latter SR process, which can improve the quality of SR
images.

In this paper, we develop a nonparametric Bayesian single
image super-resolution method. The model combines the
clustering property of DPMM and the powerful predicting
property of GP. The DP-GPR super-resolution method par-
titions the training dataset into several clusters and learns a
regression procedure for each cluster. The clustering proce-
dure and GPR are jointly learned to gain the clusters with the
ability of prediction.

III. PROPOSED WORK
In this section, we present the details of the proposedDP-GPR
method. For convenient expression, we first give the notations
used in the following.
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Let XL and YH be the training LR patches and desired
HR patches respectively, where XL =

{
xL,i

}N
i=1 ∈ Rd×N

and YH =
{
yH ,i

}N
i=1 ∈ RD×N . The LR set XL ={

xL,i
}N
i=1 is interpolated the same size with YH =

{
yH ,i

}N
i=1,

i.e., XLH = {xi}Ni=1 ∈ RD×N . At the same time, draw the
center pixel of each patch yH ,i and denote as yi. Initial training
samples with {xi, yi}Ni=1. The testing LR image Ican also be
represented with patch set {Ii}Mi=1.

A. DIRICHLET PROCESS
The DP is a simply extension of the Dirichlet distribution
to continuous spaces, which has been widely used for den-
sity estimation and clustering [31], [32]. We will cluster the
training LR dataset XLH using DPMM in the proposed super-
resolution model.

The DP is defined by two parameters, a positive concen-
trate scalar α and a probability base measure G0. Assuming
the observed sample Y draws from a DPMM, the distribu-
tion of the dataset with parameter θj can be defined through
G ∼ DP (G0, α). The DP model can be expressed as
follows,

xj ∼ p
(
xj
∣∣θj ) ,

θj ∼ G,

G ∼ DP (α,G0) . (1)

Given the training dataset and the number of the clusters K ,
DP is adapted to present the mixture distribution. With-
out loss of generality, the prior of base measure is
defined with normal Wishart distribution. By utiliz-
ing the stick-breaking construction, the DPMM can be
expressed as

vk |α ∼ Beta (1, α) ,

θk |G0 ∼ G,

zj |θ (π) ∼ Multi (θ (π)) , xj |z j = k

θk ∼ p (Y |θk ) . (2)

where πj = vj
j−1∏
k=1

(1− vk) and zj is an indicator variable.

If zj = k , the sample xj belongs the cluster k . For the finite
training dataset, the number of clusters is fixed, then discrete

distribution G =
∞∑
k=1

πkδ (θ, θk).

B. GAUSSIAN PROCESS REGRESSION
In the proposed method, the training dataset will be first
clustered by the DPMM. For each cluster, the distribution
of samples is represented with Gaussian distribution. Then
we will use GPR to establish the relationship between the
LR and HR patches.

GPR has been proven to be a powerful method for super-
vised learning. It defines a smooth mapping f on function
space by the mean function m (x)and covariance function
k
(
xi, xj

)
,

f |X ∼ GP
(
m (x) , k

(
xi,, xj

))
. (3)

where k
(
xi, xj

)
composes the covariance matrix K (X ,X)

with Ki,j = k
(
xi, xj

)
. Given a GP prior on f and Gaussian

noise ε on the observation y, the GPR model can be repre-
sented as

y = f (x)+ ε, ε ∼ N
(
0, σ 2

n

)
(4)

For a testing x∗, the joint distribution of the training
output Y and the testing output y∗ can be
written as[

Y
y∗

]
∼ N

(
0,
[
K (X ,X)+ σ 2

n I K (X , x∗)
K (x∗,X) K (x∗, x∗)

])
. (5)

Then the prediction formulation for y∗ can be written as
mean value and covariance,

y∗
∣∣X ,Y , x∗ ∼ N

(
y∗, var(y∗)

)
. (6)

where y∗ = K (x∗,X)
[
K (X ,X)+ σ 2

n I
]−1

y, and var (y∗) =

K (x∗, x∗)−K (x∗,X)
[
K (X ,X)+ σ 2

n I
]−1

K (X , x∗). In the
learning process, the similarity between the samples is mea-
sured by the kernel function,

K
(
xi, xj

)
= σ 2

f exp

(
−
1
2

(
xi − xj

)T (xi − xj)
γ 2

)
. (7)

The hyperparameters λ =
{
σ 2
n , γ, σ

2
f

}
of the GPR can be

induced by maximizing the posterior which is proportional to
the marginal likelihood,

p (λ |X ,Y ) ∝ p (Y |X , λ) . (8)

That is, λ =
{
σ 2
n , γ, σ

2
f

}
can be chosen by optimizing the

marginal log-likelihood,

log p (Y |X , λ) = −
1
2
log

∣∣∣K (X ,X)+ σ 2
n I
∣∣∣

−
1
2
Y T

(
K (X ,X)+ σ 2

n I
)
Y −

n
2
log 2π.

(9)

The main limitation of GPR is the computational com-
plexity, and the reason is that reference requires inver-
sion of the matrix in equation (6). Given a n × n
matrix, the time complexity of inversing the matrix is
about O

(
n3
)
.

C. THE DP-GPR SUPER-RESOLUTION MODEL
In this subsection, we will represent the proposed DP-GPR
super-resolution method in detail. As shown in the above
subsection, the computational complexity of GPR is deter-
mined by the number of training samples. So if the train-
ing dataset is divided into some clusters, the number of
samples in each cluster is much smaller than that in the
whole dataset. Therefore, if the GPR is implemented on
clusters, the computational complexity would be significantly
reduced.
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FIGURE 1. The flowchart of the proposed method.

According to the DPMM in equation (2) and GPR in
equation (4), DP-GPR super-resolution model can be defined
as follows,

vk |α ∼ Beta (1, α) ,

θk |G0 ∼ G,

zj |θ (π) ∼ Multi (θ (π)) , xj |z j = k

θk ∼ p (Y |θk ) ,

λk
∣∣{xi, yi, zj = k

}
∼ p (λk |X ,Y ) . (10)

where λk is the hyperparameter of GPR in cluster k .
The proposedDP-GPR super-resolutionmodel uses a unify

framework to combine the DP and GPR. The hyperparame-
ters of the model can be estimated through utilizing MCMC
algorithm [33]. The Markov chain is obtained by Gibbs sam-
pling approach, in which each hyperparamter is updated in
turn by sampling from the posterior distributions on all other
hyperparamters.

With the assumption that GPR tasks are independent iden-
tically distributed (i.i.d) for each cluster, the likelihood func-
tion of the training dataset is written as

p (Y|X , λ) =
∏
k

p (Y |X , λk)p
(
zj = k|X ,Y , (α, π)

)
. (11)

It can be rewritten as

log p (Y |X , λ)=
∑
k

∏
j

p ([yi : zi = k] |[xi : zi = k] , λk)


·p
(
zj = k |X ,Y , (α, π)

)
. (12)

In the model, the DPMM concentration parameter α, GP
parameters λ and indicator variables z are updated by infer-
ence on the posterior distribution. In the following, Gibbs
sampling is adopted to represent the posterior of the Gibbs
sampling.
From Ref. [33], [34], the concentration parameter α can be

updated using the Metropolis-Hasting algorithm. The poste-
rior can be written as

p (α |K ,N ) ∝ p (α) p (K |α,N ) . (13)

p (α |K ,N ) ∝ p (α)
αK0 (α)

0 (N + α)
. (14)

Similar to equation (8), the posterior distributions of the
hyperparameters are proportional to the marginal likelihood.
The joint distributions of the hyperparameters can be esti-
mated as follows,

p (λ,Z , π,V |X ,Y )

∝ p (Y |X ,Z )
∏
k

p
(
zj = k

∣∣vj ) p (vj |α )
·

∏
k

p
(
λk
∣∣X ,Y , zj = k

)
. (15)

In order to update the indicator variables z, we also need
to inference the posterior conditional distribution of zi. Let
Z−i = {z1, · · · , zi−1, zi+1, · · · , zN },

p (zi |Z−i, λ,X ,Y ) ∝ p (zi |Z−i, λ) p (X ,Y |zi ,Z−i, λ) .

(16)
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The detail inference for the optimization can be found
in [33], [34], [41], and [42]. Once the parameters of the
DP-GPR model are obtained, we can use them to reconstruct
the LR image with equation (6).

TABLE 1. An Algorithm for DP-GPR Super-Reconstructing

The flowchart of the proposed method is shown in Fig.1
and the detail steps of the proposed method are given
in Table 1 .

The computational complexity of the proposed method
is mainly determined by two parts, i.e., Gibbs sampling
for updating the indicators and Hybrid Monte Carlo for
optimizing the hyperparameters of GP covariance function.
Assume there are totally M components, since each of
Gibbs sample take about O

(
n2
/
M2
)
computations, the pro-

cess of modeling the distribution for an iteration requires
O
(
n3
/
M
)
.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
To illustrate the validity of our proposed algorithm for
single image super-resolution reconstruction, we conduct
3× magnification experiments on the same test images
as in [35] and [36], which is commonplace in single
image super-resolution. The dataset contains various test
images containing persons, plants, animals and buildings.
We compare the proposed method with five state-of-the-art
approaches including the NE [16], Sparse Coding (SCSR)
[19], Gaussian process regression (GPRSR) [22], Active-
Sampling Gaussian Process Regression method (AGPSR)
[24] and Convolutional neural networks (SRCNN) [37]. The
performance of different algorithms is evaluated by three
objective quality assessment methods, i.e., peak signal to
noise ratio (PSNR), structural similarity (SSIM) and feature
similarity (FSIM) [38]–[40].

A. EXPERIMENTAL CONFIGURATION
In our experiments, we use the same 69 HR training images
as [19] to prepare our training database, and these training
images do not include any image in the testing set. To imitate
the real imaging system, all the training images are first
blurred by a 5×5 Gaussian filter with standard deviation 1.6,
and down sampled by using the bicubic interpolation with
scaling factor of 3 to obtain the corresponding LR images.
The test images are also degraded by this model.

TABLE 2. Parameter Configurations

Because human eyes are more sensitive to luminance
changes, we implement all the SR methods on the luminance
component and directly enlarge the chromatic components to
the desired size with the bicubic interpolation. For SRCNN
and GPRSR methods, we keep the default parameters. In the
DP-GPR model, the parameter K is the number of clus-
ters generated by DP model, and the number of clusters
is determined adaptively according to different training
dataset. The parameters of the other methods are listed
in Table 2.

B. EXPERIMENTAL RESULTS
Table 3 presents the quantitative results on the 9 test images
by different methods, each image has three rows, the first
row is PSNR value, the second row is SSIM value, and
the last row is FSIM value. These values show clearly
that the proposed method produce more competitive results
than the other methods. The average PSNR, SSIM and FSIM
gains of the proposed method over the second best method
(i.e., the AGPSR method) are 0.37 dB, 0.01, and 0.003,
respectively.

To further demonstrate the visual quality of the SR results
produced by different methods, the 3×magnification results
of images ‘‘Butterfly’’, ‘‘Parrot’’ and ‘‘Flower’’ using var-
ious algorithms are compared in Fig.2∼Fig.4 respectively.
It can be seen that the Bicubic interpolation method produces
blurred and jaggy artifacts along the edge regions. NEmethod
can reduce the jaggy effects, but it introduces themore blurred
edges. The SCSR method can recover high-frequency details
while simultaneously it produces over smooth results with
unnatural details. GPSRmethod produces comparable results
with sharpen edges. However, it also produces noticeable
artifacts along the edge regions, particularly in the reconstruc-
tion of image ‘‘Butterfly’’ and image ‘‘Parrot’’. Although
SRCNN method produces comparable quantitative results,
there remain noticeable blurred artifacts in the zoomed local
regions. The AGPGR method achieved pleasing results, but
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FIGURE 2. Comparison results on ‘‘Butterfly’’ image by different methods (s=3). (a) the original image, (b) Bicubic method, (c) NE method,
(d) SCSR method, (e) GPRSR method, (f) SRCNN method, (f) AGPRSR method, (h) the DP-GPR method.

TABLE 3. PSNR (dB), SSIM and FSIM Results by Different Reconstruction Methods (s=3)

the recovered details are incomparable to these by the pro-
posed method. The proposed method can afford clearer
image edges and richer texture detail without noticeable
artifacts.

C. ANALYSIS OF PATCH SIZE
The size of image patch plays an important role in the
proposed method. Too large patch size will lead to blurred

edges and losing of detailed texture; too small patch size
will lead to unwanted artifacts and jaggy effects. In order
to evaluate the influence of the patch size on SR results,
we perform a set of experiments on the test images
with different patch sizes including 3×3, 5×5, 7×7, 9×9
and 11×11.
We first trained the GPR models with different patch sizes,

and then we applied these GPR models to the 9 test images.
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FIGURE 3. Comparison results on ‘‘Parrot’’ image by different methods (s=3). (a) the original image, (b) Bicubic method, (c) NE method, (d) SCSR method,
(e) GPRSR method, (f) SRCNN method, (g) AGPRSR method, (h) the DP-GPR method.

FIGURE 4. Comparison results on ‘‘Flower’’ image by different methods (s=3). (a) the original image, (b) Bicubic method, (c) NE method, (d) SCSR method,
(e) GPRSR method, (f) SRCNN method, (g) AGPRSR method, (h) the DP-GPR method.

The experimental results with different patch sizes are
presented in Table 4, from which we can see that dif-
ferent patch sizes lead to different PSNR, SSIM, and
FSIM values. It is clear that the best results are obtained when

the patch size is defined as 5×5. Fig.5-7 present the SR results
of the ‘‘Butterfly’’ image and ‘‘Flower’’ image and ‘‘Hat’’
image from different patch sizes, from which we can see that
a smaller patch size (e.g., 3×3) produces some unwanted
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FIGURE 5. Comparison of SR results on ‘‘Butterfly’’ image with different patch sizes (s=3). (a) Original. (b) 3×3 result.
(c) 5×5 result. (d) 7×7 result. (e) 9×9 result. (f) 11×11 result.

FIGURE 6. Comparison of SR results on ‘‘Flower’’ image with different patch sizes (s=3). (a) Original. (b) 3×3 result.
(c) 5×5 result. (d) 7×7 result. (e) 9×9 result. (f) 11×11 result.

artifacts and a larger patch size (e.g., 11×11) produces blur-
ring results. Therefore, we adopt 5×5 as the image patch size
in our implementation.

D. ANALYSIS OF THE NUMBER OF ITERATIONS
The number of iterations in testing process has a great influ-
ence on the performance of iteration-based SR approach.
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FIGURE 7. Comparison of SR results on ‘‘Hat’’ image with different patch sizes (s=3). (a) Original. (b) 3×3 result.
(c) 5×5 result. (d) 7×7 result. (e) 9×9 result. (f) 11×11 result.

FIGURE 8. Average curves with different iterations. (a) PSNR. (b) SSIM. (c) FSIM. (d). RMSE.

Less iteration will lead to poor reconstruction quality, and
too much iteration will increase the running time. Thus,
it is necessary for us to conduct a set of experiments to

determine the right number of iterations. We perform the
experiments oneach test image by changing the number of
iterations from 1 to 30. The curved lines of the average values
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FIGURE 9. Comparison of SR results on ‘‘Butterfly’’ image with different iterations number. (a) Original. (b) 1. (c) 6. (d) 11. (e) 16. (f) 21.
(g) 26. (h) 30.

FIGURE 10. Comparison of SR results on ‘‘Girl’’ image with different iterations number. (a) Original. (b) 1. (c) 6. (d) 11. (e) 16. (f) 21. (g) 26. (h) 30.

of PSNR, SSIM, FSIM and RMSE varying with the number
of iterations for the 9 test images are plotted in Figs.8.

As shown in Fig.8(a), the value of PSNR increase rapidly
with the increasing number of iterations, when the num-
ber of iterations reaches 6, the values of PSNR begin to
rise slowly, peak value of PSNR can be achieved when the

number of iterations is 16, and then it begins to decrease
moderately. The same tendency of SSIM and FSIM are
presented in Fig.8(b) and Fig.8(c) while the inverse ten-
dency of RMSE is presented in Fig.8(d). We can conclude
from the above experiments that good performance can be
achieved when the number of iterations is set to be 16.
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TABLE 4. PSNR (dB), SSIM and FSIM Results by Different Patch Size (s=3)

FIGURE 11. Comparison of SR results on ‘‘Raccoon’’ image with different iterations number. (a) Original. (b) 1. (c) 6. (d) 11. (e) 16. (f) 21. (g) 26. (h) 30.

Fig. 9-11 visually demonstrates the reconstructed results
obtained by our method on ‘‘Butterfly’’ image, ‘‘Girl’’ image
and ‘‘Raccoon’’ image using different number of iterations.
We can observe that fewer iterations (i.e., n=1) produce
blurred and jagged edges in the SR result, when the number of
iterations is larger than 16, the SR images are strongly resem-
bling to each other. Thus, the optimal number of iterations is
set to 16.

V. CONCLUSIONS
This paper proposes an effective super-resolution approach
based on Dirichlet process and Gaussian process regression.
The method can discover the number of clusters automat-
ically and at the same time, the method can obtain more
accurate regression model on one cluster. The parameters and
hyperparameters have been inferred simply and effectively
via Gibbs sampling. The proposed method can adaptively
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deal with large-scale and complex distributed data. The objec-
tive and subjective assessments on the benchmark test images
suggest the effectiveness of the proposed SR method.

Although the proposed method is effective in SR recon-
struction, there is still room to boost up the performance
of the method. The optimization and computational com-
plexity of nonparametric Bayesian model is still an opening
problem, and the reconstruction result would be influenced.
On the other hand, the super-resolution for LR image is pixel
by pixel. Hence the prediction does not involve semantic
information for edge or texture. It is a worthy investigation
to develop the method to handle more complex feature in the
real application.
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