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ABSTRACT Internet of Energy is considered as a promising approach to solve the problems of energy crisis
and carbon emission. It needs to collect user’s real-time data for optimizing the energy utilization. However,
such data may disclose user’s privacy information. Previous works usually adopt specific obfuscation value
to mask user’s data and counteract the deviation through data aggregation; these works can preserve the data
privacy effectively, but most of them consider less about the data-utility (precision). In this paper, we propose
a utility-privacy tradeoff scheme based on random data obfuscation in Internet of Energy. In the proposed
scheme, we adopt random data-obfuscation to mask the real-time data and realize the fault-tolerance during
data aggregation, and the random obfuscation value obeys the Laplace distribution. We use the signal-to-
noise ratio to quantify the level of utility; we measure the level of privacy through information entropy.
Based on these two Indicators, we balance the utility-privacy tradeoff by calculating the optimal parameters
of the Laplace distribution. The analysis shows that our scheme can meet the security requirement, and it
also has better performance than that of other popular methods.

INDEX TERMS Internet of energy, utility-privacy tradeoff, random data obfuscation, fault-tolerance.

I. INTRODUCTION
Internet of Energy is a pluralistic energy network. This com-
plex energy network takes power system as the core, and
combines natural gas, transportation and some other systems
by the technologies of Internet and renewable energy gen-
eration [1]. As shown in figure.1, Internet of Energy can be
divided into energy network and information network Energy
from various users turns into electricity and interacts with
the power plant through the energy transfer network and the
system model of information network likes the Internet of
things [2] to some degree. As the issues of environmental
pollution and energy crisis are becoming increasingly seri-
ous, Internet of Energy that supports the large-scale use of
renewable energy sources has been given broad intensive
attention. Internet of Energy underlines the use of Internet
and various distributed energy comparing with smart grid [3],
therefore, Internet of Energy must pay attention to various
energy management [4] and big data analysis [5].

There are various users in Internet of Energy such as
distributed energy providers, energy consumers, and electric
vehicle users and so on. The control center needs to col-
lect data related to the energy consumption from each kind
of users to make the power generation plan and determine
the efficient energy trading scheme [6]. However, such data
may disclose user’s privacy information [7]. For example,
an adversary can deduce the company’s energy production
efficiency, production cycle and other commercial secrets by
analyzing the real-time bidding data of the distributed energy
provider. The adversary can also infer user’s house behavior
and living habits by observing the real-time power consump-
tion curve of the specific user.What’s more, the adversary can
also learn of the user’s recent outdoor activities and planning
arrangements by analyzing the real-time battery charging and
discharging status of electric vehicle or position message.

Therefore, how to design a secure privacy-aware data col-
lection scheme is one of the most popular research topics
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FIGURE 1. The architecture of internet of energy.

in Internet of Energy. Because Internet of Energy underlines
the use of Internet and various distributed energy, privacy
problems in Internet of Energy are more complex than smart
grid. Existing research methods can be divided into two main
categories.

The first category is protecting user’s identity through
anonymity or pseudonym. User’s attributes can be classi-
fied into identity information, quasi-identifier, and sensitive
information. Given an anonymity table, if the attributes in
the table have not been properly treated, an adversary may
deduce the relationship between user’s identity and sensitive
information according to the user’s quasi-identifier such as
the age and gender. Although there are k-anonymity algo-
rithm [8] and l- diversity algorithm [9] to address the dis-
advantages of identity-protection scheme, it is very difficult
to find a credible party to complete the secure anonymity
work.

The second category is using data aggregation to protect
the user’s real-time data, in which the homomorphic encryp-
tion and data-obfuscation are used. In fact, these twomethods
are often used together. Data-obfuscation can be divided into
non-random data obfuscation and random data-obfuscation.

Non-random data obfuscation refers that the obfuscation
value of each user is assigned by the trusted third party so
that the sum of all obfuscation values after data aggregation
is zero. However, when there happens the data loss that may
be caused by the malfunction of a user’s meter, the result of
data aggregation will be wrong. Therefore, data processing
scheme which supports fault-tolerance is necessary [10].

Random data-obfuscationmeans that the obfuscation value
of each user is generated by themselves. Since the random
obfuscation value generated by each user is irrelevant, even if
a meter is malfunctioning, it will not impact the normal data
aggregation operation. Therefore, the computational burden
will decrease for taking no account of fault-tolerance.

However, there is a tradeoff between data-utility and data
privacy. For data-utility, final obfuscated curve should share
the same trend with the original load curve. For data privacy,
data can be only accessed by authorized users with fine-
grained policies. If the random obfuscation value chosen
by the user is unreasonable, the data-utility will be greatly
reduced. Therefore, designing a reasonable obfuscation value
generation algorithm is the key of the whole scheme, which
is the focus of our paper.
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We summarize our contributions as follows:
1. We adopt random data-obfuscation to mask the real-

time data and realize the fault-tolerance during the data
aggregation, and the random obfuscation value obeys
the Laplace distribution.

2. We use the signal-to-noise ratio to quantify the level
of utility; we measure the level of privacy through
information entropy. Based on these two Indicators,
we resolve the utility-privacy tradeoff by calculating
the optimal parameters of the Laplace distribution.

3. We prove the feasibility of our scheme, analyze the
relevant parameters through simulation experiment and
compare with other similar schemes in computational
cost and error rate.

The rest of this paper is organized as follows.
Section 2 introduces the related work. In section 3, some
preliminaries are given. Section 4 shows the system model
and design goals. In section 5, our scheme is stated. In section
6, security analysis is given. In Section 7, the performance of
our scheme is evaluated. In Section 8, the paper is concluded.

II. RELATED WORK
We elaborate related works about privacy-preserving in Inter-
net of Energy from two aspects. One is the specific strategy
aimed at protecting user’s privacy; the other one is aimed at
resolving related problems caused by privacy-preserving.

For the specific strategy aimed at protecting user’s privacy,
we can divide it into three categories.

The first category is the scheme based on household bat-
tery [11]–[13]. Internet of Energy and the household battery
provide users with electricity at the same time. When the
household consumption curve goes high, the battery dis-
charges. Otherwise, it charges. In this way, we can hide the
user’s real-time data to protect user privacy. The disadvan-
tage is that charging and discharging the battery may collide
with dynamic electricity price.Jiyun Yao and Parv Venkita-
subramaniam [14] try to use the revealing state approach
and rate distortion bounds to realize the optimal tradeoff
between privacy and cost savings, but it is still limited to
the capacity of battery.what’s more, the battery of elec-
tric vehicle is often used to facilitate the demand response,
Weifeng Zhong et al. [15] propose a battery strategy on
stability and robustness of demand response.

The second category is protecting user’s identity through
anonymity [16] or pseudonym [17]. User’s attributes can be
classified into identity information, quasi-identifier, and sen-
sitive information. Given an anonymity table, if the attributes
in the table have not been properly treated, an adversary
may deduce the relationship between user’s identity and
sensitive information according to the user’s quasi-identifier
such as the age and gender. Although there are k-anonymity
algorithm [8] and l- diversity algorithm [9] to address the
disadvantages of identity-protection scheme, finding a cred-
ible party to complete the secure anonymity work is very
difficult. Virtual ring is also a common solution to mask
the user’s identity and Jun Long et al. [18] propose an

energy-efficient and sink-location privacy enhanced scheme
through ring based routing to mask the identity and route.

The third category is using data aggregation to protect the
user’s real-time data. The common solutions contain homo-
morphic encryption [19], [20] and data obfuscation [21].
In fact, these two solutions are often used together. Data
obfuscation can be divided into non-random data obfusca-
tion and random data-obfuscation. For the non-random data
obfuscation, if there happens the data loss caused by the
malfunction of a user’s meter, the result of data aggregation
will go wrong, and we have to face the problem about fault-
tolerance. Le Chen et al. [22] try to use the third party to
realize the fault-tolerance, but the security of the third party
is difficult to guarantee. Zhiguo Shi et al. [23] propose the
DG-APED scheme to resolve the problems caused by mal-
functioning SMs, which is based on grouping. When there
are several malfunctioning SMs, it will aggregate the data by
grouping, and drop the group which contains the damaged
SM. However, the error rate is not ideal and searching the
damaged member needs to spend much computational cost.
Song Han et al. [24] propose the PPM-HDA to support fault-
tolerance, but using Pollard’s lambda method to compute the
discrete logarithm is complex. Jongho Won et al. propose a
fault-tolerance scheme based on future ciphertext [25], but
the effect is not very ideal because of the limited buffering.
Jin He et al. [26] achieve fault-tolerance among virtual mid-
dlebox failure for cloud computing security. Besides, differ-
ential privacy is also an important problem during the data
aggregation andmany schemes [27]–[29] have been proposed
to realize the differential privacy.

For the strategy aimed at resolving related problems caused
by privacy-preserving, we can divide it into four categories.

The first category is about the tradeoff between privacy-
preserving and limited computing ability [30]–[32]. For any
cryptographic-based encryption scheme, there is no doubt
that the complexity of the encryption algorithm comparing to
original one will increase. Theoretically, the better is the level
of privacy-preserving, the higher is the computational cost.
However, smart meter installed on the user side has limited
computing ability and can’t run overly complex encryption
algorithm. Asmaa Abdallah et al. [33] propose a light-weight
scheme based on NTRU to encrypt the data during message
transmission.

The second category is about the tradeoff between privacy-
preserving and security authentication [34].
Privacy-preserving and security authentication are two
related problems. Theoretically, the better is the level of
privacy-preserving, the more difficult is security authentica-
tion.

The third category is about the tradeoff between privacy
and billing [35], [36]. As far as we know, data collected from
users can be divided into two kinds. One kind is the real-time
data for creating power generation plan and dynamic price;
the other kind is non-real-time data which is used for billing.
However, to some degree, the non-real-time data for billing
may also be related to user’s privacy, but protecting these
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TABLE 1. Related work.

data may impact normal billing. Lei Yang et al. [37] turn this
problem into an equivalent problem, which can be solved by
using only the current observations. However, it is still limited
to the battery capability.

The fourth category is about the tradeoff between pri-
vacy and utility [38], [39], [41]. If users adopt the random
data-obfuscation scheme to protect their electricity consump-
tion data, when the random obfuscation value chosen by
user is unreasonable, it will impact the accuracy of aggre-
gated result and reduce the utility of the data. Therefore,
designing a reasonable random number generation algorithm
to set obfuscation value for each user is necessary.
Lalitha Sankar et al. [40] use the theory of rate distortion
to quantify the tradeoff between the utility (mean square
distortion) and privacy (information leakage).

In table. 1, the summary of the related work is given.
Our scheme belongs to the tradeoff between privacy and
utility and can also realize fault-tolerance in a lightweight
way. Comparing with other schemes for the utility-privacy
tradeoff such as [38] and [39], we propose two new indica-
tors to measure the utility (SNR) and privacy (Information
entropy). Besides, we also calculate the value of related
parameters through simulation experiment. Comparing with
fault-tolerance schemes such as [23] and [24], our scheme can
realize fault-tolerance in a lightweight way.

III. PRELIMINARIES
In table. 2, the notations used in preliminaries are listed.

A. PAILLIER CRYPTOSYSTEM
Paillier cryptosystem is an asymmetric encryption algorithm,
which has the additive homomorphism property. It includes
three procedures: key generation, encryption and decryption.

1) Key generation: Chooses two prime numbers p, q with
the same length and calculates n = pq. g is a generator of
cyclic group Z∗

n2
, and gcd(L(gλ mod n2), n) = 1. The public

key is (n, g), and the private key is λ.

λ = lcm(p− 1, q− 1) (1)

TABLE 2. Notions in preliminaries.

2) Encryption phase: For the plain text m ∈ Zn we can
select a random number r < n. Then, the ciphertext can be
calculated as follows:

C = gmrn mod n2 (2)

3) Decryption phase: After receiving the cipher text C,
the receiver can get the plain text m with the secret key λ by
the following formula

m =
L(Cλ mod n2)
L(gλ mod n2)

mod n (3)

B. SIGNAL-TO-NOISE RATIO
Signal-to-noise ratio (SNR) is a common ratio and it is often
used to measure the performance of electronic system. SNR
is calculated as follows:

SNR = 10 lg
PS
PN

(4)

PS represents the power which produces the normal signal
and PN represents the power which produces the noise. The
higher is the SNR, the stronger is the signal. In this paper,
we take the entropy power of normal SMs’ data as PS and
take the entropy power of obfuscation value as PN . For con-
venience, we take e as the base of the logarithmic function.
Then, we can measure the error rate of our scheme through
SNR.

SNR = 10 ln
Ps
PN
= 10 ln

σ 2
s

σ 2
N

(5)

C. INFORMATION ENTROPY
Information entropy is a concept in information theory, which
is used to measure the level of system chaos. The larger is the
information entropy, the higher is the level of system chaos.
The nature of privacy-preserving is to increase the level of
system chaos. Therefore, we can use information entropy to
measure the level of privacy-preserving.

For the information entropy of continuous variables,
we have

H (x) = −

+∞∫
−∞

f (x) log2 f (x)dx (6)

f (x) denotes the probability density function of variable x.
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D. LAPLACE DISTRIBUTION
The Laplace distribution is a continuous probability distribu-
tion in probability theory. The probability density function
of variable obeying Laplace distribution can be described as
follows:

f (x) =
1
2b
e−
|x−µ|
b (7)

The expectation and variance are calculated as follows:

E(x) = µ (8)

σ 2
= 2b2 (9)

µ is the position parameter, which has the highest prob-
ability of occurrence. b is the scale parameter and it affects
the ranges as the figure.2. The greater is the value of b,
the larger is the variance. In this paper, we adopt random data-
obfuscation which obeys the Laplace distribution to mask
user’s real-time data, and the level of privacy-preserving and
level of data-utility are related to the value of b.

FIGURE 2. Probability density function of Laplace distribution.

IV. MODELS AND GOALS
As shown in figure.1, energy from various users turns into
electricity and interacts with the power plant through the
energy transfer network. Real-time data collected from dif-
ferent users transports to the control center through the
data transmission network. The system model of information
network is showed as follows:

A. SYSTEM MODEL
The information network in our paper is comprised of the con-
trol center (CC), the key initialization center (KIC), the data
aggregation device (DA), and various users.

1) Users: We divide all the users into distributed energy
providers, energy consumers and electric vehicle users. They
all need to upload their real-time data to the control center
for the energy optimization through smart meter(SM). As the
real-time data is related to user’s privacy, the data must be
encrypted by the SM before sending to the control center.

2) Data aggregation device: The data aggregation device is
responsible for collecting all the data sent by SMs, calculat-
ing the sum of real-time data by running the homomorphic
algorithm and uploading the sum to the control center.

FIGURE 3. System model.

3) Key initialization center: The key initialization center
is responsible for initializing all of the keys for SMs and
CC. It publishes the encryption parameters by running the
paillier cryptosystem and sends the decrypted key to CC.
In particular, the key initialization center is also responsible
for setting reasonable parameters for the random obfuscation
function.

4) Control center: The control center can acquire the sum-
mary of real–time data from DA. With these data, control
center can get the trend of power consumption and create the
power generation plan or dynamic price immediately.

B. ADVERSARIAL MODEL
We assume that smart meter installed on the user side is
vulnerable to external attacks. The communication channel
is not secure and adversary may eavesdrop on the channel.
CC and DA are honest-but-curious. That is to say, they do not
destroy or modify user’s data, but always attempt to snoop
the user’s private information through the background knowl-
edge. What’s more, CC may conspire with several smart
meters to increase the probability of successful attack.

C. DESIGN GOALS
Considering the above scenarios, our design goals can be
divided into three aspects.

1) Privacy-preserving: A residential user’s data is inacces-
sible to any other users. The outside adversary, DA or CC
should not acquire the real-time data of users even if they try
to conspire with each other.

2) Data-utility: We adopt data aggregation based on
random data-obfuscation to protect user’s electricity con-
sumption data. However, if the random obfuscation value
chosen by user is unreasonable, the accuracy of aggregated
result will decrease largely. Therefore, we need to guarantee
the data-utility during the data-obfuscation.

3) Fault-tolerance: For the conentional data aggregation
scheme, if there is a malfunctioning SM, the data aggregation
can’t run in the right way. Therefore, we must ensure our
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FIGURE 4. System initialization.

data aggregation can run normally, even if there are several
malfunctioning SMs in a user group.

V. OUR SCHEME
A. SYSTEM INITIALIZATION
In table. 4, the notations used in system initialization are
listed. As figure.4 shows, firstly, the KIC generates (g, n)
by running the paillier encryption algorithm and creates
(pkk , skk ) by running RSA. It chooses two big primes pq,
and computes n = pq. g is an integer chosen from
Z∗
n2
, where gcd(L(gλ mod n2), n) = 1 and L(x) = x−1

x .
(pkc, skc)(pkk , skk )(pkd , skd ) are the public and private keys
for CC, KIC and DA by running RSA. (pksi, sksi) repre-
sents the public and private key of SMi, which is cre-
ated by the valid manufacturer. h : {0, 1}∗ →

{0, 1}1 represents a classical hash function and 1 denotes
the length of message digest. Then, the KIC publishes
(g, n, pkk , h) using a common channel, and calculates
λ = lcm(p− 1, q− 1) as the decrypted key.

Secondly, when KIC receives the message Cc, it will create
reasonable parameters µ and b by running the Algorithm 2,
where Cc denotes the concatenation of the average electricity
data m, variance σ 2

s , timestamp t and hash value hc, which is
encrypted by the KIC’s public key pkk . hc = h(m||σ 2

s ||t) and
|| denotes the concatenation operation. (m, σ 2

s ) is calculated
byCC according to the historical data set.Algorithm 2 repre-
sents the detailed solution to calculate the optimal parameter
of Laplace distribution and we will analyze this algorithm
below.

Thirdly, KIC calculates hk1 = h(µ||b||t) and sends C1
k

which denotes the concatenation of µ, b, t and hk1 encrypted
by the SM’s public key pksi to SM. Similarly, it sends C2

k
which denotes the concatenation of λ, t and hk2 encrypted
by the CC’s public key pkc to CC. hk2 = h(λ||t). we show the
detailed algorithm in table.3.

B. THE OPTIMAL VALUE OF µ AND b
As we analyze before, the parameters of Laplace distribution
µ and b are related to the utility-privacy tradeoff. Reasonable

TABLE 3. System initialization.

TABLE 4. Notations in the system initialization.

values of µ and b can protect user’s privacy while don’t
impact the data-utility. Therefore, KIC needs to calculate the
optimal value ofµ and b based on the averagem and variance
σ 2
s in the current time period.
µ denotes the expectation of Laplace distribution and is

related to the performance of obfuscation. If the value of
µ is too small, the random obfuscation value generated by
Laplace distribution can’t obfuscate the original real-time
data. However, if the value of µ is too large, the random
obfuscation value will grow large, which has a bad impact
on the final result. To obfuscate the original data while has a
lower error rate, we can set µ ≈ m.

We adopt the information entropy H (b) in the information
theory to measure the level of privacy-preserving. The larger
is H (b), the higher is level of privacy-preserving. Therefore,
H (b) has the lower bound and we can use ε to denote. Then,
we calculate the lower bound of b as follows:

H (b) = −

+∞∫
-∞

f (x) log2f (x)dx

= −
1
2b

+∞∫
−∞

e−
|x−µ|
b log2

1
2b
e−
|x−µ|
b dx ≥ ε

⇒ b >
2ε−1

e
(10)
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TABLE 5. The optimal value of b.

We use the signal-to-noise ratio SNR(b) to measure the
error rate which represents the level of data-utility. The larger
is SNR(b), the better is level of data-utility. Thus, SNR(b) has
the lower bound and we can use γ to denote. Then, we can
calculate the higher bound of b as follows:

SNR(b) = 10| ln
σ 2

2b2
| ≥ γ ⇒ b <

σ
√
2e-

γ
20

(11)

We use θ to denote theweight of privacy and (1−θ ) denotes
the weight of utility. Generally, we can set θ = 0.5, which
means privacy-preserving has the same weight with data-
utility. Then, the optimal objective function can be calculated
as follows:

g(b) = θH (b)+ (1− θ )SNR(b)

= −
θ

2b

+∞∫
−∞

e−
|x−µ|
b log2

1
2b
e−
|x−µ|
b dx

+ 10(1− θ ) ln
σ 2

2b2
(12)

k represents the infinitesimal of difference between g(bi)
and g(bi−1), which is set according to the historical data set.
g(bi) and g(bi−1) are two values calculated at different times.
We analyze the detailed algorithm for the best value of b in
table.5.

C. DATA AGGREGATION
In table. 6, the notations used in system initialization are
listed.

1) SMART METER
After receiving the parameters of Laplace distribution µ and
b, each SM generates random obfuscation value xi following
by laplace(µ, b) and encrypts his real-time datami as follows:

ci = gmi+xirni mod n2 (13)

TABLE 6. Notations in the optimal value of µ and b.

Then, SM calculates the hash value hsi = h(id ||ci||t) and
encrypts the concatenation of id, ci, t and hsi by the DA’s
public key pkd as formula (14). At last, it sends Csi to the
DA through data transmission internet.

Csi = Enc(pkd , (id ||ci||t||hsi)) (14)

2) DATA AGGREGATION DEVICE
After receiving the data from all the SMs, DA decrypts the
Csi using his private key skd and checks hsi to guarantee the
message integrity. Then, it counts the number of functioning
SMs denoted by N and multiplies all the encrypted data ci as
follows:

csum =
N∏
i=1

ci =g

N∑
i=1

(mi+xi)
rni mod n2

≈ g

N∑
i=1

mi+Nµ
(r1r2..rN )n mod n2 (15)

Then,DA calculates the hash value hD = h(csum||N ||t) and
encrypts the concatenation of csum,N , t and hD by the CC’s
public key pkc as formula (16). At last, it sends CD to the CC
through data transmission internet.

CD = Enc(pkc, (csum||N ||t||hD)) (16)

3) CONTROL CENTER
After receiving the data from DA, CC decrypts the CD using
his private key skc and checks hD to guarantee the message
integrity. Then, uses the decrypted key λ to calculate the
summary of users’ data as follows

msum =
L(Cλsum mod n2)
L(gλ mod n2)

mod n− Nµ (17)

Then, it will calculate the new average mt =
msum
N and

compare it with the previous one. If the difference is bigger
than β which is a parameter set by CC, CC will send the new
average mt to KIC for resetting.

It is worth nothing that m′t is the previous average. If the
difference of two averages is smaller thanβ,KIC doesn’t have
to reset the parameter of Laplace distribution. We show the
major process in figure.5.and describe the detailed algorithm
in table.8 Related notions during the data aggregation are
presented in table.7.
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FIGURE 5. Data aggregation.

TABLE 7. Notions in data aggregation.

VI. SECURITY ANALYSIS
In table. 9, the notations used in system initialization are
listed.

A. PRIVACY-PRESERVING
To prove the feasibility of our scheme, we analyze the security
of our scheme using an adversary game. As CC only has the
decrypted key λ and the aggregated result Csum, so he can’t
snoop a single user’s privacy information without ci supplied
by DA. Similarly, DA can’t snoop user’s privacy information
without the help of CC. Therefore, in our adversary game,
we take the collusion between DA and CC as the assumed
adversary. For the standardization and formalization of our
proof, we give a symbolic definition as follows:
A represents the assumed challenger. B represents the

random oracle. A can communicate with B to confirm the
plaintext space, ciphertext space and encryption algorithm.
However, B doesn’t tell A the related key. For this paper,
the related key is the random obfuscation value chosen by
each user. What’s more, A knows several context of cipher-
text, which means that CC or DA can get several users’

TABLE 8. Data aggregation.

real-time data by observing user’s activities or conspiring
with several users for the real situation. Then, we can give
a definition of privacy challenge for the conspiracy attack:
Definition 1 (Privacy Challenge): The challenger A sends

a piece of ciphertext to random oracle B. Then, B decrypts
the ciphertext and returns the plaintext to A. Next, A and B
repeat above steps several times, and we call this behavior
‘‘Cryptography Training’’. When A is satisfied with the train-
ing result, he will send two different messages (m0,m1) to
B for encryption. After encrypting the two messages denoted
by Ek (m0) and Ek (m1), B toss a coin to confirm the value of
e ∈ {0, 1} and sends c∗ to A.

c∗ =

{
Ek (m0) e = 0
Ek (m1) e = 1

(18)

If A can apply a decision algorithm to guess the right value
of c∗, we say he wins the challenge. Otherwise, he loses the
game, which means our scheme is privacy-friendly.
Definition 2 (δ-Privacy): The random obfuscation algo-

rithm satisfies δ-Privacy if A doesn’t have decision algorithm
to confirm the value of c∗ with the probability larger than δ.
We define a advantage function Adv to represent the prob-

ability of success, the detailed formula is showed as follows:

Adv = |Pr[0←A(c∗ = Ek (m0)]−Pr[0← A(c∗ = Ek (m1))]|

(19)

Pr[0 ← A(c∗ = Ek (m0)] represents the probability of
correct answer. Pr[0 ← A(c∗ = Ek (m1))] represents the
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probability of wrong answer. Therefore, if Adv is close to δ,
we have

Pr[0← A(c∗ = Ek (m0)]= Pr[0← A(c∗ = Ek (m1))]± δ

(20)

Therefore, A is not sure which one is the right answer
because of similar probability.
Theorem 1: If random obfuscation values obey

laplace(µ, b) during the data aggregation, the scheme can
defend the conspiracy attack launched by the honest-but-
curious entity.
Proof:
1) According to the relationship between the adversary

game and our scheme, we have

Ek (m0) = m0 + x0,Ek (m1) = m1 + x1 (21)

2) As the random obfuscation values obey the Laplace
distribution, xi ∼ laplace(µ, b). therefore,

Pr[0← A(c∗ = Ek (m0)] = Pr(|x − x0| < ζ )

=

x0+ζ∫
x0−ζ

1
2b
e−
|x−µ|
b dx (22)

Pr[0← A(c∗ = Ek (m1))] = 1− Pr[0← A(c∗ = Ek (m0))]

= 1−

x0+ζ∫
x0−ζ

1
2b
e−
|x−µ|
b dx (23)

Note that ζ denotes the infinitesimal amount of variable x.
3) According to formula (22) and (23), we can calculate

Adv as follows:

Adv = | Pr[0←A(c∗=Ek (m0)]−Pr[0←A(c∗ = Ek (m1))]|

= 1− 2

x0+ζ∫
x0−ζ

1
2b
e−
|x−µ|
b dx (24)

4) Therefore, we can calculate the parameter

δ = 1− 2

x0+ζ∫
x0−ζ

1
2b
e−
|x−µ|
b dx. (25)

We complete the proof.

B. DATA-UTILITY
As we analyzed before, SNR can be used to measure the
level of data-utility in the system and it’s value is related to
the value of b. Therefore, if we set the lower bound of SNR
when we are calculating the value of b, the random value
following laplace(µ, b) doesn’t impact the data-utility in
theory.
Theorm 2: If random obfuscation values obey laplace(µ, b)

distribution and SNR > γ , scheme based on the random data-
obfuscation can guarantee the data-utility.

Proof:
1) As the random obfuscation values in our scheme obey

the laplace(µ, b) distribution, we have

E(xi) = µ, σ 2
i = 2b2 (26)

2) After the data aggregation carried by DA, we have

csum =
N∏
i=1

ci =g

N∑
i=1

(mi+xi)
rni mod n2

≈ g

N∑
i=1

mi+Nµ
(r1r2..rN )n mod n2 (27)

3) After the decryption carried by CC using the decrypted
key λ, we have

msum =
L(Cλsum mod n2)
L(gλ mod n2)

mod n− Nµ

=

N∑
i=1

mi +
N∑
i=1

xi − Nµ (28)

4) According to the Wiener-khinchin law of large Num-
bers, if variables are mutal independent and obey the same
distribution, we have

lim
N→∞

Pr{|
1
N

N∑
i=1

xi−
1
N

N∑
i=1

E(xi)| < τ } = 1 (29)

5) As the random obfuscation values in our scheme are
mutal independent and obey the laplace(µ, b) distribution,
and the amount of SMs in Internet of Energy is very huge.
Therefore, we have

lim
N→∞

Pr{|
1
N

N∑
i=1

xi−µ| < τ } = 1

⇒ lim
N→∞

Pr{|
N∑
i=1

xi − Nµ| < τ } = 1

⇒ msum =
N∑
i=1

mi + τ (30)

6) Because we set the SNR as SNR > γ , we limit the range
of b. As b is the scale parameter and is related to τ .therefore,
the range of τ has been restricted, which means

msum ≈
N∑
i=1

mi. (31)

We complete the proof.

C. FAULT-TOLERANCE
Data aggregation scheme often involves fault-tolerance.
When there is a malfunctioning SM, the final result will go
wrong.
Theorm 3: If random obfuscation values are mutal inde-

pendent and obey laplace(µ, b) distribution, scheme based on
the random data-obfuscation can realize the fault-tolerance.
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TABLE 9. Notions in Security analysis.

Proof: The first 5 steps of the proof are same with that
of Theorm 2.

6) If there are K malfunctioning SMs, we still have

lim
N→∞

Pr{|
N−K∑
i=1

xi−(N − K )µ| < τ } = 1

⇒ msum1 =
N−K∑
i=1

mi + τ (32)

7) Therefore, when there are several SMs damaged, we still
have

msum1 ≈
N−K∑
i=1

mi msum ≈
N∑
i=1

mi (33)

We complete our proof

VII. PERFORMANCE EVALUATION
In table. 10, the notations used in system initialization are
listed.

A. THE LOWER BOUND OF INFORMATION ENTROPY
The information entropy represents the level of privacy-
preserving. Therefore, as the lower bound of information
entropy, ε should represent original level of system chaos
for the real-time data. We assume that user’s real-time data
follows the normal distribution, then, ε can be calculated as
follows:

ε = −

+∞∫
−∞

1
√
2πσs

e
−

(x−µ)2

σ2s log2
1

√
2πσs

e
−

(x−µ)2

σ2s dx (34)

In our paper, we use two hundred users’ real-time data
collected at 00:00 to evaluate µ and σs. According to our
analysis, µ ≈ 0.148, σ 2

s ≈ 0.03. Therefore, we can calculate
the value of ε = −0.8424 and b > 0.132.

B. THE LOWER BOUND OF SNR
The SNR represents the accuracy of the final aggregated
result. To set the lower bound of SNR, we need to confirm
the relationship between SNR and error rate.
Given the data set collected from two hundred users,

we calculate SNR and error rate by changing the value of b to
get different results of obfuscation. We show the relationship
between SNR and error rate as follows:

FIGURE 6. Relationship between error rate and SNR.

FIGURE 7. Real-time load curve.

Through the figure.6, we can set the lower bound of SNR
according to the acceptable error rate.when the value of SNR
is close to 50.8849, the error rate will be closed to 1. There-
fore, γ ≈ 50.8849 and b < 1.533.

C. EXPERIMENTAL EVALUATION
Accroding to the previous analysis based on two hundred
users’ real-time data, we can draw the real-time load curve
and obfuscated load curve as figure.7 from 00:00 to 23:00.

We set the weight of privacy θ = 0.5. For the real-time
data at 00:00, we have

ε = −0.8424, γ = 50dB, θ = 0.5,

µ = m ≈ 0.148, N = 200

Inputting these parameters into Algorithm 2, we can get
the optimal value of b which satisfies b = 1.34, and the
random obfuscation value follows the Laplace distribution
laplace(0.148, 1.34) at 00:00. Values ofµ and b at other times
are calculated in the same way.

As shown in figure.7, we can find the obfuscated load
curve is very close to the original load curve, which doesn’t
deviate from the main trend. Therefore, CC can create right
power plan and dynamic price according to the main trend in
different times, while it has no information of user’s real-time
data. The tradeoff between data-utiliy and privacy-preserving
can be resolved in an optimal way.
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Because our scheme can also realize the fault-tolerance,
we will compare our scheme with other schemes which sat-
isfy fault-tolerance in computational cost.

PPM-HDA scheme is proposed by Song Han et al. [21],
which is a novel scheme to realize the fault-tolerance.
It adopts Boneh-Goh-Nissim cryptosystem to encrypt the
real-time data and use Pollard’s lambda method to compute
the final discrete logarithm. DG-APED scheme is proposed
by Zhiguo Shi [20] to realize the fault-tolerance. It encrypts
data based on grouping and drops a group if the group con-
tains malfunctioning SMs.

FIGURE 8. Computational cost in normal situation.

FIGURE 9. Computational cost considering fault-tolerance.

We compare with DG-APED and PPM-HAD for compu-
tational cost at figure.8 and figure.9, and show the detailed
calculating formulas in table.11. We compare our scheme
with DG-APED and PPM-HDA at computational cost under
the assumption that all the SMs run normally. Then, we com-
pare our scheme with DG-APED and PPM-HDA at compu-
tational cost considering the malfunctioning SMs. From the
two pictures, we can find that our scheme has the smallest
computational cost whether or not there are malfunctioning
SMs.

In addition, we compare with the other two schemes in
the error rate for different numbers of malfunctioning SMs
and show them according to different values of b. As shown
in figure.10, figure.11 and figure.12, with the increase
in the number of malfunctioning SMs, the error rate of

FIGURE 10. The error rate to the ratio of malunctioning SM (b=1.533).

TABLE 10. Notions in performance evaluation.

FIGURE 11. Error rate to the ratio of malunctioning SM (b=0.132).

DG-APED keeps increasing and tends to 1 when the num-
ber of malfunctioning SMs tends to one hundred. However,
for our scheme and PPM-HDA, the error rate almost keeps
constant. When we set b = 1.533, which is the higher bound
of b, the error rate of our scheme tends to 0.2. When we set
b = 0.132, which is the lower bound of b, the error rate of
our scheme tends to zero. When we set b = 1.34, which is the
optimal value of b, the error rate of our scheme tends to 0.1.

Therefore, for the optimal value of b, our scheme has a
lower error rate comparing with DG-APED. Although the
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TABLE 11. Computational cost.

FIGURE 12. Error rate to the ratio of malunctioning SM (b=1.34).

error rate of our scheme is a little higher than PPM-HDA,
this doesn’t impact the data-utility shown at figure.7 and our
scheme has larger advantages than PPM-HDA in computa-
tional cost. Thus, our scheme has better performance than that
of other popular methods.

VIII. CONCLUSION
In this paper, we propose a utility-privacy tradeoff method
based on random data-obfuscation in Internet of Energy.
Random data-obfuscation is adopted to mask the real-time
data and realize the fault-tolerance. In addition, we use infor-
mation entropy to measure the level of privacy-preserving
and SNR to measure the level of data-utility. Based on
these two indicators, we calculate the optimal parameters of
Laplace distribution for balancing the utility-privacy tradeoff.
At last, we prove the feasibility of our scheme and compare
with other fault-tolerance schemes in computational cost and
error rate. As we consider less about security authentica-
tion in this paper. Therefore, in future, we will work on
resolving the tradeoff between privacy and authentication in
depth.
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