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ABSTRACT This paper proposes a novel decentralized robust %, fixed-order dynamic output
feedback (DOF) controller design approach for discrete-time nonlinear large-scale systems via Takagi-
Sugeno fuzzy-affine models. By a state-input augmentation method and piecewise quadratic Lyapunov
functions, some sufficient conditions for decentralized fixed-order piecewise affine DOF controller synthesis
are given. It is shown that by some convexification techniques, the controller gains can be obtained by solving
a set of linear matrix inequalities. Two simulation examples are carried out to verify the effectiveness of the

proposed design method.

INDEX TERMS Large-scale systems, fuzzy-affine models, robust control, dynamic output feedback.

I. INTRODUCTION

Large-scale systems (LSSs), which consist of a group of
nonlinear subsystems with interconnections, widely exist in
practical applications such as industrial processes, space-
craft systems, communication networks, and electrical power
grids [1], [2]. The strong interconnections in LSSs bring
many difficulties in system analysis and control. During
the past years, a number of significant results have been
reported [3]-[9].

On another research frontier, last few decades have
witnessed fast developments of fuzzy logic control (FLC)
technique from academic studies to industrial applica-
tions [10], [11]. FLC has been recognized as a very
efficient approach to control highly complex nonlinear plants
or even nonanalytic systems. Among various fuzzy con-
trol strategies, the Takagi-Sugeno (T-S) fuzzy-model-based
method has attracted tremendous attention from the control
community [12]-[20]. Through fuzzy membership functions,
a set of local linear or affine models are smoothly con-
nected to approximate nonlinear systems to arbitrary degrees
of accuracy in any convex compact region [21], [22].
In recent years, there have appeared some results on analysis
and synthesis for fuzzy-model-based nonlinear large-scale
systems [23]-[29]. To mention a few, [25] designed
a decentralized parallel distributed compensation (PDC)

fuzzy controller based on a common Lyapunov function.
Liu and Zhang [28] studied the stability analysis of
continuous-time fuzzy large-scale systems with time-varying
delays and parameter uncertainties. In [29], a decentralized
fuzzy observer-based output feedback control method was
proposed for large-scale nonlinear systems.

It is worth mentioning that the aforementioned results
for fuzzy-model-based large-scale systems were mainly
derived in the framework of common quadratic Lyapunov
function (CQLF). To reduce the conservatism, more recently
there have also been some results on analysis and synthe-
sis for LSSs based on piecewise quadratic Lyapunov func-
tions (PQLFs). Zhang et al. [30] and Zhang and Feng [31]
addressed the problem of fuzzy state feedback controller
design for both continuous-time and discrete-time large-scale
systems on the basis of piecewise quadratic Lyapunov func-
tions. Nevertheless, these results were obtained based on
fuzzy systems with linear local models, while fuzzy dynamic
models with offset terms have been shown with substan-
tially enhanced function approximation competence [17].
Furthermore, most existing results on decentralized controller
design for fuzzy LSSs are in state feedback form while few
attention has been focused on the general output feedback
control case. To the authors’ best knowledge, the problem
of fixed-order dynamic output feedback controller design for
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fuzzy-affine-model-based large-scale nonlinear systems has
not been fully investigated and remains important and chal-
lenging, which motivates us for this study.

In this paper, we propose a decentralized robust 5%, fixed-
order dynamic output feedback (DOF) controller design
approach for discrete-time nonlinear large-scale systems
based on piecewise quadratic Lyapunov functions. Specifi-
cally, the nonlinear subsystems of LSSs are represented by
T-S fuzzy models with affine terms. Through utilizing a state-
input augmentation method, the closed-loop system is firstly
transformed into a descriptor fuzzy affine system, which
eliminates the couplings between the piecewise affine con-
troller gains and system matrices. Based on PQLFs and some
convexification techniques, sufficient conditions in terms of
a set of linear matrix inequalities (LMIs) are obtained.

The rest of this paper is organized as follows. The
large-scale fuzzy affine system model description and decen-
tralized DOF controller design problem formulation are given
in Section II. Section III presents the main results for con-
troller analysis and synthesis. Simulation examples are shown
in Section IV to verify the feasibility and effectiveness of
the proposed approach. Finally, the conclusions are given in
Section V.

Notations: The notations used throughout this paper are
standard. #Z" denotes the n-dimensional Euclidean space.
A real symmetric matrix P > 0(> 0) denotes P being
positive definite (positive semidefinite). I, and 0, are used
to denote the n x n identity matrix and m X n zero matrix,
respectively. The subscripts n and m x n are omitted when
the size is not relevant or can be determined from the context.
The short hand diag {X1, X>...... X;} denotes a block diagonal
matrix, with diagonal blocks being the matrices X1, X5...... X;.
Sym{A} is the shorthand notation for A + AT. The notation *
is used to indicate the terms that can be induced by symmetry.

Il. MODEL DESCRIPTION AND PROBLEM FORMULATION
A. T-S FUZZY AFFINE LARGE-SCALE DYNAMIC MODELS
Consider the following discrete-time nonlinear large-scale
system S consisting of N interconnected nonlinear subsys-
tems S;,i = 1,2, ---, N. Each nonlinear subsystem can be
represented by T-S fuzzy affine dynamic models as follows,

Plant Rule %’II IF ;1(¢) is ﬁfl and p(1) is ﬁilz and - - -
and g, (1) is ,%’(p, THEN

xi(t + 1) = Ayxi(t) + aj + Bjju;(t) + Dijywi(t)
N

+ Z Crixn(t)
i
yi(t) = Hyx;j(t) + Diywi(t)
zi(t) = Liyx;i(t) + Nyu;(t), | € £ :={1,2,--- , 1},

(H
where %ll denotes the [-th fuzzy inference rule for the
i-th nonlinear subsystem; r; is the number of inference
rules; Z{P(qb = 1,2,---,¢) are fuzzy sets; ¢i(t) :=
[g“,-](t), Cin(t), -, ;iw(t)] are the premise variables for the

1978

i-th subsystem S;; i € N = {1,2,---,N}; xi(t) €
N is the state; wu;(r) € N™ is the control input;
zi(t) € M™% is the regulated output; C,; represents the
interconnection terms between the n-th subsystem and
the i-th subsystem. The disturbance w;(f) is assumed to
be norm-bounded. (A, a;;, Bii, D;11, Cui, Hit, Doy, Lit, Ny7)
denotes the /-th fuzzy local model of the subsystem S;.

Remark 1: 1t can be seen that the system models described
in (1) are in fact affine systems rather than linear models.
An additional offset term a;; is involved. It is noted that
this type of model is more powerful for approximation of
nonlinear systems.

Then let wj[¢i(t)] denote the normalized membership

¢
function of the inferred fuzzy set ﬁil =11 ﬁil(p(t) and

15— e [Cip ()]
ilsiM] == = >0,
H Dt [Th=i tiag [Sio ()]

Y omalal=1, ()

=1

where pig [Lig(t)] is the grade of membership of gip()
in ﬁf‘p In the sequel, the argument of w;[¢;(¢)] will be
dropped for the situations without ambiguity, i.e., u;y =
wirlZi(®)] for brevity.

Through utilizing center-average defuzzifier, product-
fuzzy inference, and singleton fuzzifier, we obtain the
following global T-S fuzzy model,

xi(t + 1) = Ai(ui)xi(r) + ai(pi) + Bi(pi)ui(t)
N
+Di (uwi(t) + Y Cixa(t)
n=1 (3)
n#i
yi(t) = Hi(ui)xi(t) + Dip(pi)wi(?)
zi(t) = Li(ui)x (1) + Ni(piui(t),

where
ri ri
Ai(pi) = Z pitAir,  ai(pi) = Z Wirdit,
=1 1=1
ri ri
Bi(ui) =Y puBi. D) =Y _ maDju.
T i @)
Liu) =Y _waLi.  Ni(wi) = Y _ piaNi,
=1 =1

Ti Ti
Hi(ui) =Y puaHa, Do) =) pwaDi.
=1 =1

In this paper, we aim to deal with the fixed-order
dynamic output feedback controller design problem of fuzzy
large-scale system in (1) via piecewise quadratic Lyapunov
functions. Because the fuzzy rules induce a polyhedral parti-
tion of the system state-space, the global model in (3) can be
viewed as a convex combination of local models in individual
regions. Similar to [14], the premise-variable space can be
decomposed into two kinds of regions: crisp regions and
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fuzzy regions. The crisp region is the region that possesses
only one rule. That is, for some I, w;[¢i(t)] = 1 and all
other membership functions are zero. The system dynamics
in the crisp region are governed by the /-th fuzzy local model
of (1). The fuzzy regions denote the regions where 0 <
wilgi(®)] < 1 and the system dynamics are characterized
by a convex combination of some local models.

Thus, we denote {.#}j};c7; to be the premise variable space
partition for the i-th subsystem, where Z; stands for the set
of region indices. With the state-space partition, one can
reformulate the subsystem S; into the following piecewise
fuzzy affine model,

xi(t + 1) = Ayxi(t) + a;; + Bjjui(t) + Digjwi(t)
N
+ Z Chixn(t)

n=1
n#i
yi(t) = Hixi(t) + Digjwi(t)
zi(t) = Lyxi(t) + Nyjui(t), 5i(t) € Fj.je Li,i € N,

5
where
Ajj = Z WimAim, — ajj i= Z Heim@im»
meAi(j) me.A(j)
By = Z WimBim,  Dij = Z WimDitm,
me.A(j) me-A(j)
Lijj:= Z WimLim, — Njj = Z WimNim,
meAi(j) meAi(j)
MHij:= > WimHim. Dij= Y mDim.
meN(j) meN(j)
(6)
with 0 < wym < 1 and ZmeJi{(j) wim = 1. The set

NG = {mluimli®)] > 0, m € &£, §i(t) € S, j €
Z;, i € N'} describes the indices for the local models used in
the interpolation within each local region .%};. Furthermore,
Z; can be divided into two parts: one part is Z;y which refers
to the index set of regions containing the origin, while Z;; is
the index set of regions otherwise. Note that for all j € Z;,
a;; = 0. Itis easy to see that Z;y contains only one element for
a crisp region.

For future use, a new set £2; is introduced to describe all
possible region transitions for the i-th subsystem,

Q= {(,9)|¢i(t) € Fj, ¢t + 1) € S, j,s €L} ()

It is assumed in this paper that each polyhedral region .%;
can be outer approximated by an ellipsoid R;; [21], i.e., there
exist matrices Fj; and f;; such that

Sij SRy, Ry = {xi||Fyxi + fill < 1} (®)

This covering is very useful when .%}; are slab regions.
Because of this case, the parameters F; and f;; are guaran-
teed to exist, and the covering is exact, i.e.,”; € R; and
R;; € ;. Specifically, if the polyhedral regions .%}; are slabs
of the following form,

T
Sij = {xilayj < 6x; < Byl

<0} j €T, ©)
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where oy, B € %, 0;; € %™, and then each slab region can
be exactly described by a degenerate ellipsoid as in (9) with

T
20; Bt

Fl“ = =
ly y
Bij — ij’ Bij — i

(10)

Then we have the following relationship for each ellipsoid

region:
Fiifi [xi(f)} <0
/RN | AR

[x,»(r)T [FJFU
1 *

B. DECENTRALIZED FIXED-ORDER DYNAMIC OUTPUT
FEEDBACK CONTROLLER

For the fuzzy large-scale system (5) in each region, we
consider the following decentralized piecewise fixed-order
dynamic output feedback (DOF) controller,

jed.

(11)

Xei(t + 1) = Acijxci(t) + acij + Beijyi(t)
ui(t) = Keijjxei(t) + keij + Deijyi(t),j € Liy i € N,
(12)

where x.; € W', 0 < n, < ny is the controller states,
Acij € Rjftei X Mei B € Ojftei X Myi K. € Rftui XNei D.; €
R Mi g€ R and ke; € N™ are controller gains
to be determined. Note that a,; = 0 and k;; = 0 for
Jj € Zj. It is also worth mentioning that when n,; = ny,
(12) refers to a full-order dynamic output feedback (DOF)
controller. While a reduced-order controller is characterized
as ne; < ny. In particular, (12) reduces to a static output
feedback controller if n.; = 0.

Applying the DOF controller (12) to system (5), one can
obtain the following closed-loop system,

xi(t + 1) = Ajxi(t) + a;j + Bjjui(t) + Diyjwi(t)
N
+ Y Cuia(t)

7
Xei(t + 1) = Agjjxci(t) + acij + BeijHijxi(t)
+B.ijDpjwi(t)
0 ui(t + 1) = Kejjxei(t) + keij — ui(t) + DeijHeyxi(t)
+D.ijDijwi(t)
zi(t) = Lijxi(t) + Njui(t), §i(t) € S, j € L, i € N.
(13)

Define x;(t) = [xiT (t) chl.(t) uiT(t)]T and reformulate system
(13) into the following descriptor form,

E - %(t + 1) = Ay%(t) + a; + Dyjwi(t)
N

+J Z Chixn(1) (14)

n=1
B n#i
7i(t) = Lyxi(1), ¢i(t) € L. jeLiie N,

1979
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where
I 0 0
E=(0 I 0],
0 0 o
_ Ajj 0 B
Aj = | BejHyj Ay 0 |,
DM Ko —1 (15)
aij _ Dilj
aij = Acij | > Dij = Bcszi2j ,
keij D¢;jDiyj
Inx
J =1 Opxn, |, ﬁt/— [/.Zl] 0 Mj]
Onuxnx

and specifically, we have x;(t) = J - x;(¢).

It is worth mentioning that in this paper, through applying
the x-u augmentation approach, the controller gains have
been decoupled from the system matrices. It will be shown
in the sequel that this feature enables one to design the fixed-
order piecewise affine dynamic output feedback controller
in convex optimization framework based on linear matrix
inequalities.

The objective of this paper is to design a fixed-order DOF
controller in the form of (12) such that the resulting closed-
loop system is asymptotically stable with a guaranteed robust
H%o performance y. To be more specific, for a prescribed
disturbance attenuation level y > 0, design a DOF con-
troller (12) such that the induced l-norm of the operator
form w to the regulated output z is less than y,

z®ll2 < ylIw®ll2 (16)

under zero initial condition for all nonzero w,(t) € 1[0, o],
where the regulated output z() := [z} 1 ), 2, T®), -, ZITV(t)]T,
and the disturbance w(t) := [w (t) W, T@), - ,WN(t)]T.

IIl. MAIN RESULTS

In this section, based on piecewise Lyapunov functions
and some convexification techniques, some new results will
be proposed to the decentralized robust .77%, fixed-order
dynamic output feedback controller design for large-scale
system (1).

A. FIXED-ORDER DOF CONTROLLER ANALYSIS AND
SYNTHESIS

Theorem 2: Consider the large-scale fuzzy system in (1).
For a given scalar &9 > 0, the closed-loop system
in (14) is asymptotically stable with a guaranteed 7%,
robust performance y, if there exist matrices 0 < Pj; =
PT € RO Heitnui) X (i +eit+nui) Gijj1, Gojji € X,
G1,]2, Grpp € WM G, Gojz € R Gy €
(RHUXIZU Gl[/S c g}tnu,xnu, G4[/1 c g}tnmxnw AClJ c gﬁnuxnu
BC,] € ReiXMyi KCU € RhuiXNei DC,] € Wwixmi_forj € I,
Gyji € W™ gy € Wi, ky € Wi, for j € I, scalars
ginj > 0,i,n € ./\/, n # i,and A; < 0, j € Z;; such that the

1980

following linear matrix inequalities hold,

Ojjsm g,,J% -0
* i ’
me N, je€TLo,(G,s) €, ieN, (17)
* —.//,'j ’
me N(, jeTin,(.s) € ieN, (18)
where
r 12 13
Py—Guy—Gl, ey’ ey
2 23
Ojjm = « o @fmf :
* * @l(;z)
B T ~(12) 513) (14)
- Glij Glz] ®ljm ®t/m ®ljm
(22) 23) (24)
@4. _ * ®l]m ®t/m ®zjm
ysm = (33) [N I
* * @l]m @l]m
(44)
i * * * ®sz
[ G ﬁlGlij4 ﬁlzGlijs
Gij = | Gup 851G 0 ,
L Guij3 0 P1G1jjs
[ Gyt 32I:IIG1ij4 ,02I:I2G1ij5
Gj = | Gap 833G 0 ;
L Goij3 0 p3Giijs
Gyj=[Gyi 0 0], Gay=[Gyn 0 0],
= L . Hy= L ;
O(Vlri*nc[)xnc[ O(nxifnui)xnui

T
_ T T T
gij - I:Gly GZU G4U ’

T
5 T T T T
gij = [Gllj GZU G3U G4y] ’

©; = [Ci1 - -~ Cii—1), Cigi 1), - - - Civ ],
Mij = dlag{Eilj s =L gL -, el
(12) (121
®ljm = ®1jm GZI]’
121 Gijj1Aim + Hchin,-m_+ HyDiiHim
®Um = GIijZAim + 8chinim

G1i3Aim + 1DcijHim
HiAgj + HyKeij  GijjiBim — HaGhjjs

814“']' GlijZBim s
P1Kcij G1ij3Bim — p1G1ijs
(13) _ (13D
®Um - ®l]m G4lj7
1) G\ Ditm + H, BijDiom + H2DeijDiom
Ojj = GiijpDitm + 81BcijDiom ,
Glij3Di1m + 01D¢ijDiom
®f/2n21) = ETP!/E + LT Lim + go(N — JJT

ijm

4Sym {®<221>}
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Goij1Aim + 8, BejjHim + /OZI:IZDcinim

21 2
@l(.jm ) — G2ij2Aim + 33@cz'jHim
G2ij3Aim + p3DcijHim
32H1Acij + pZHZI_{cij G2ij1 Bim — p2H2Gjjs
83Acij GijpBim ,
p3Keij G2ij3Bim — p3Gijjs

(23) (231) (232)
o — 0@ 4 [ol]m ,

231) Goij1 Ditm + &H IBcijDi2n1 + pzﬁzbcijDizm
Ot]m = G2ij2Di1m + 83€cijDi2m )

G2ij3Di1m + ,03DcijDi2m

022 — [ GuitAim 0 GujiB

jm = [ GaijtAim 4ij1Bim | .

33

®Ejm) = _yzl + G4ij1 Ditm + Dl]mG4z]] s

12) (12
@Um = @l]m ,

13) _ =331 T
®ljm - ®ljm G3ij’

131 Guijiaim + Hakeij + Hideij
®ljm = Gijjpaim + Sl%cij )

G1ij3aim + p1keij
®(14) _ ®(13)

ijm ijm °
002 = —ETPyE + LY Lin + eoN — 17
T T (221)
+AGIFLFyd T+ 8 m{@l]m ]
(23) (231) (232)
O = AjJF i + O +{@Um } ,

Gojjiaim + 52H2kcij + pH 14
= Gaijpaim + 83acij :
G2ij3aim + p3kcij
232
®l(jm = = [Gsij1Ain 0 G3jj1Bin |,
524 _ @

ijm ijm >

(33) _
O = hif(fi fis —

62D

ijm

D+ G3ijlaim + a G3U1’

34

®l('jm) = G3ii1Dj1m + aiijGIijl’

~ (44

@Sj ) =—y 1 + Gyij1Ditm + DzlmG4t/l (19)

Moreover, the controller gains can be obtained as follows
1 = 15
Acj = Glij4ACU’ Bejj = G]ij4Ble/’
—1 p
Keij = GyjsKeijs
-1 7
keij = Grjskeij. (20)

Acjj = G1y4“cu’
Dejj = GyyjsDaij,

Proof: Note that the condition (17) for j € Zj is a
special case of the condition (18) for j € Z;;. Without loss
of generality, in the following, the proof of the more complex
case j € Z; is presented. Consider the following piecewise
Lyapunov function,

N N
V()= Vit) =Y X (OETPEX 1), 1)

i=1 i=1

where 0 < P;j = PT
i € N, are positive deflmte symmetric Lyapunov matrices.

@R(”xi“‘”ci"‘nm’)X(nxi+nci+nui) ] c Ill ,
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Based on (21), the closed-loop system in (14) is asymp-
totically stable with a robust /7%, performance y under zero
initial condition with nonzero disturbance w;(t) € [0, oc],
if the following inequality holds for (j,s) € i, j € Zj,
ieN,

N
Z{x} (t + DETPEX(t + 1) — ¥ () ETPyEX:(1)
i=1

+2; (Ozi(t) — Y w] (Owi(n)} < 0. (22)
Define the following augmented vector,

0 =¢+DEY o 1 wol', @23

and then inequality (22) holds with (j, s) € ;, if

Pis 0 0 0
T AT p
T *x  —E PiE + Eijﬁij 0 0 ‘
gol . o o |&O
* * T |
< 0. (24)

Based on the space partition (11) and utilizing S-procedure,
the following inequality (25) implies (24),

P; 0 0 0
x —ETP,E + LTL 0 0
g5 () v Ei(t)
* * 0 0
* i

* * —
x| FiFy  Fiy |0
] [ Pl |

with A;; < 0. Noticing x;(t) = J - x;(¢), then yields,
EXOAGE) <0, (o) eQjeTuieN, (26)

(25)

where
Py 0 0 0
) gpTe.
ag=| 0 Re El 0 )
* * )‘ij(fijfij -1 0
* * * e |
and Ay) = —ETPyE + L1L; + A FTFyI T,

On the basis of Lemma 8 and Tchebyshev s inequality
shown in the appendix, it follows from the closed-loop sys-
tem (14) that the following equality holds for any matrices
Gij

N
0= 225?0)91;{ — E -5t + 1)+ Ay%i(n) + 3
i=1 N
+Dywit) +J Z Cnixn(l‘)}
n=1

n#i

N
<2 Z gl (t)g',-,-{ —E Xt + 1)+ Agxi(t) +

i=1
+@ljwi(t)}

1981
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Mz

D)

{ £t & (DG CriCoid " GED)
i=1

=S
I
~—

+8nijx;{(t)xn(t) }

N N
<2 EWOGi g + Y eoN — D] (I xi(1)

i=1 i=1
+ Z Z e & (DGI Cin Cl T T GLED), (28)
i=1 n=1
n#i

where Jz{ij = [-I ./Zl,J aj;j ﬁij], and scalar parameters
ginj > 0,80 > €injn # i, for (j, s) € Qj,j € Ly, i,n e N.
Combining (26) and (28), yields,

N
> & (r){ My + sym{Gy /)

i=1

+ Zem, g,,fcchJTgT}g,m <0, (29)

n;ﬁz
where
Pjs 0 0 0
S BT Y 0
” * x«  N(fifi=bh 0 |
* * * e |
€] T AT A T T
M) = —E"PyE + LiLi+ Al Fy Fyl

+eo(N — DHJJT. (30)

Applying Schur complements, one has

s +sym{Gyo%}  GyJ6; <0, a1
* — M -1
where ‘é‘ = [Ci1---Ci-1), Ci(i+1)» --CiNl, A

diagfe;;I, gii—1yL siganyLs - - -, einil), with g5 > 0,
iineN,n 751 and G; = [G]; Ggu Gy Gul".

Expanding the fuzzy- ba51s functions, the following
inequality implies (31),

[Eijsm +sy*m{gijAzy‘m} _g%fl] <0, (32
where
Py 0 0 0
Eijsm = : Ezjlm A)E;{;:UTJ_CUI) 8 ’
iy Jij
* * * _7/21

=(1) T iTf T T
Eim = —E " PjE + Ly, Ly + A JF FiiJ

+eo(N — DJIJT,

1982

Aijm = [_I Aijm aijm Dijm] ’
i Aim 0 Bim
Bcinim Acij 0
_Dcinim Kcij |

Aijm =

Aim
Qjjm = | dcij | »
| Keij

Diim
BiiDipm |,
_DcijDi2m

D ijm =

Lim = [Lim 0 Nim]~ (33)

Note that the piecewise affine controller gains are not
involved in the first row of the closed-loop matrices A,-jm,
jjm, and Dl-jm. For the numerical tractability of the controller
synthesis conditions, the slack variable matrices Gy, Gajj,
G3jj, Gy;j are given as,

[ Gt ﬁlGuﬂ I:I2G1ij5
Gijj = | Gz 81G4 0 ,
| Giij3 0 P1Guijs
[ Gt 52ﬁ1Glg4 ,021:12(?1;75
Grj = | Gap 853G 0 ;
| Goj3 0 03Giijs
Gz = [Ggljl 0 0] ,
G4l [ G4lj1 0 0]
ﬁ — Nei ,
I:O(n)a_nu)xnu ]
- 34
I:O("\i_nm)xnm :| ( )

where 81, 82, 83, p1, P2, p3 are scalar parameters.
Define

Acij = GuijsAcij,  Beij = GjjaBeij,
cij = GijsKeij,

];cij = GlijSkcij- (35)

Elcij = Glij4acijv

Dcij = GlijSDcija

Substituting the matrices defined in (34) into (32), together
with consideration of (35), lead to (18). In addition,
the conditions in (18) imply that 8;Gys + 81GlTij4 —
Pisa > 0 and p1Gyj5 + plG]FijS — Piss > 0, which
implies that Gy;4 and Gyys are invertible. The controller
gains can be obtained via (20). The proof is completed.
|

Remark 3: Note that the results given in Theorem 2
are derived based on a piecewise-affine DOF controller as
in (12). However, to further reduce the design conservatism,
one should notice that the approach in this paper can be
extended to synthesize a piecewise-fuzzy-affine controller as
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follows,

Xt +1) = Z ,uimAcijmxci(t)
meAi(j)
+ Z MimQcijm
meAi(j)
+ Z WimBeijmyi(t)
meN(j)
ui(t) = Z Michijmxci(t) (36)
meA(j)
+ Z WimKeijm
meAi(j)
+ Z ,uichijm}’i(t)y
meAi(j)
jeTIL,ieN.

B. A SPECIAL RESULT FOR STATIC OUTPUT FEEDBACK
CONTROLLER DESIGN

Note that when n.; = 0, i.e., the controller order is zero, the
fixed-order controller (12) reduces to a decentralized static
output feedback (SOF) controller in the following form,

ui(t) = Dejyi(t) + keij, j € L i € N, (37

where D.;; € R"™>™i and k¢; € R™ are controller gains to
be determined. Note that k.;; = 0 for j € Zjp.

Define x;(t) [ xiT ®) uiT(t)]T and the corresponding
closed-loop system is

E - %(t + 1) = Ay%i(t) + a5 + Dyjwi(t)
N

+Ji Z Chixn(1) (38)

n=1
_ n#i
7i(t) = Lyxi(1), ¢i(t) € S je Liie N,

I 0
e=lo o)

where

Dcinij —I

5o | 5. — | DPiy
Y [’w} D= [DcijDizj] ’

Jl=[ b ] Lij=[L; Ny].

Onuxnx

(39)

Specifically, x;(t) = Jp - Xi(t). On the basis of Theorem 2,
the SOF controller synthesis conditions can be given in the
following corollary.

Corollary 4: Consider the large-scale fuzzy system in (1).
For a given scalar g9 > 0, the closed-loop system in (14) is
asymptotically stable with a robust 7%, disturbance atten-
uation level y, if there exist matrices 0 < P; = Pl.Tj €
9 (i) X (i) Giji, Goji € Wi Gy, Gz €
WX G5 € WX Gy € R Dy @ Rt

forj € T;, Gaji € RV, ky € R™i, for j € Ty, scalars
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iy > 0,i,n € N,n # i,and Ajj < 0, € Z;; such that the
following linear matrix inequalities hold,

Tijsm gij-h(gi
[ o —ty1] =0
me (), Jje€To,(G,s) e ieN, (40)
Tijsm g_z]«llcgl
|: * — M- 1 <0,
me N(), jeTu,(G,s)eQ ieN, (41)
where
T (12) (13)
[ Gll] Gll] T‘l]m szm
_ (22) (23)
Tijsm - * szm lem ’
(33)
i * * lem
B T (12) ~(13) (14)
GU/ Glij Tl/m Tijm lem
(22) - (23) (24)
T * Tum lem lem
ijsm = (33) G4 |-
* * Tum Tl]m
44)
i * * * Tum
Guij = [ Gujji flz&gs]
Y7 LGu  mGs |’
Goii = [ Gyt pzlflzGujs}
] — ’
/ Gz 03Guijs

Gyj=[Gyp 0], Gaj=[Guy 0],
1:12 = [ My O(nn'*nui)xnu[ ]T ’

T
Gij =[ 1ij ng/ GIU] ,

T
5 T T T T
gij [Glzj Gzzj G3zj G4zj] )
Cgi [Cll

My = dlag{«?ilj

Cii-1), Cigi+1) - - - Gin 1,
s i—1)iL girnyL, -+ -, e},

(12) (121)
Tl]m szm GZ:/’

~a2h _ |:G1ij1Aim + Hchinim Grij1 Bim — H2Gjj5 ]
um G1ij3Aim + P1DcijHim  G1i3Bim — p1Guys |’

T(IS) _ T(131) GIijf

ijm ijm

3D |:G1ij1Di1m + H2_Dci]'Di2mi|

ym G1ij3Ditm + p1DcijDiom |’
—E"PyE + Liy,Lim + eo(N — DJ1J|

m

woym [¥E),

ijm

v@2

ijm

@2 _ —GzylAim-i-,OzI:IgDcinim G2ij1 Bim —,021:1201175]
um L Goij3Aim+p3DcijHim  G2ij3Bim— p3G1ijs

(23) __ ~~(231) (232)
Tijm - lem +<Tl]m ) ’

@3 _ [ Gaiji Ditm + pzﬁgbcijDizm]
ym L GoijaDitm + p3DcijDizm
T(232) _ [G A G B: ]
ijm = 4ij1%0m 4ij1Bim | »
(33) 2
Tijm =—yI+ Gaij1 Ditm + DllmG4lJ1 ’
~(12) (12)
Tijm = ijm
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—(13) _ 2(131)

Tijm - Tijm

T3 _ [Gwlaim + H2]_€ciji|
Grij3aim + prkeij |’

T
_ G3ij’

ijm

+(14) (13)
Tijm = Tijm ’
- (22 I
Y02 = —E"PyE + Ly Lin + 8o(N — DJ1J]
T
221
gl FyFgd ]+ sym [0}
T
+(23) T ~(231) +(232)
Tijm = )":/‘llFl']' ij + Tijm + {Tijm ’

=231) _ | Gajjiaim + PZI:IZIECU
Yijm = v
J Gij3im + p3keij

(232

ng'm ) — [G3ij]Aim G3ileim]v
-(24) _ AA(23)

Tijm - Tijm K

=33
YOV = ni(ffii — 1) + Gaijidim +a;'l;nG§ijl’

ijm

=.(34) T ~T
im = G3ij1Ditm + a;,, Gyyj1.»
- (44
T;.m) = —y*1+ Gajj1 Ditm + DiTlmGIijl- (42)

Moreover, the controller gains can be obtained as follows,
Deij = G]_I.J.ISDC,], keij = G;;SIECU. (43)

Proof: Condition (40) is a special case of condition (41).
Without loss of generality, in the following, the more complex
case j € Z;; will be considered. Noticing that n,; = 0, and

- T
specify the matrix G;; = [GTU G;rij G;j G:{ij] with

G = |:G1,,1 I:IZGIijS]
v G mGujs |’
Gojt  p2H2Gujjs
Gojj = / / 44
v |:G2ij3 03G1ij5 “4
Gyj =[G 0],
Guy =[G 0].
~ T
where Hy = [Lu; Ouy—naxn, | » and pi, p2, p3 are

scalar parameters. Then rest derivation procedures can be
conducted in similar ways as the proof of Theorem 2.
|
Remark 5: Compared with conventional approach for
fixed-order DOF controller design, a descriptor system
approach has been proposed to deal with the difficulty that
strong couplings existing in piecewise affine controller gains
and fuzzy affine dynamic models with interconnections. With
the augmentation of system states and control inputs, this
decoupling feature enables one to synthesize the fixed-order
piecewise affine DOF controller in a unified framework based
on linear matrix inequalities.

IV. SIMULATION EXAMPLES
In this section, two examples are given to verify the effective-
ness of the proposed design method.

Example 6: Consider a discrete-time fuzzy-affine large-
scale system with two interconnected subsystems as follows,

1984

Plant Rule %!: IF x;(t) is .7}, THEN
xi(t + 1) = Ayx;(t) + ay + Byui(t) + Diyywi(t)
N
+ Z Crixn(t)

o
Yi(t) = Hyxi(t) + Dipywi(t)
zi(t) = Lyxi(t) + Nyu;(t), | = {1, 2,3}, i ={1, 2},

(45)
and the system matrices are given as,
subsystem Sy:
[1.001 —0.009| 0
[Anfan]=]0121  —o7 0.05]
[1.003 0.01 |0
[Anfan]=14179 05 o}’
[1.000 0.01| 0
[Anlas]=| 01720 06 —0.05]
0.05[0.1] 0.1
(B | B2 | Bis ] = [ 0.1 0.1 0.06]’
0.01 | 0.02 | 0.01
[Dun [ Pua | Dz ] = [0.01 0.01 0.02]’
0 0
Ca = [0.016 0]’
0.965|1]0.5
(o s =[O ]9,
[Diar | D1 | D1z ] = [0.02]0.02 | 0.03],
Ly;=[0.898 0],
Ny =05, [ ={1,2,3},
(46)
and subsystem S>:
[1.002 001 | 0
[Aor ] = o101 —o.67 0.03}’
[1.001 —0.013 |0
[42]a2]=] 005 03 0]’
[1.000 002 | 0
[As las]=| 017 Zos —0.03]
0.1 [0.08]0.1
[Bar 322323]2[0.080.06 0.1
0.01 | 0.01 [0.01
[Datr [ Dotz | Dotz | = [0.01 0.015 0.01]
0
C”:[o.ms 0]
0.9]0.8 0.6
[ [ [ Hs] = | 01 05 |02 |
[Dai | Doz | Doz ] =[0.03 | 0.01 J0.02],
Ly =[0.898 0], Ny =05, 1={1,2,3}.
(47)
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The normalized membership functions of subsystems S

and S, are demonstrated in Fig. 1. Through the space par-
tition, the premise-variable space in each subsystem can be
divided into three regions,

S = x| —dp < xp(t) < —da},
S = x| —djy <xp@t) <da},
i3 = x®ldi < xpt) < dn}, (48)

where d;; = 50, dpp = 300. It is noticed from Fig. 1 that .},
is a crisp region, and .%; and .¥;3 are fuzzy regions. Note

that QijT = [0 1],forj € Z;,i € N, and the parameters of the

degenerate ellipsoid are given as,

g _dotdn
YT dp—dy " T dp—dn’
1
Fpn=—, fn=0,
i2 dil fl2
20T din + d;
Fn=—Y% .:_u"e 1,2). (49
i3 di2_di] i3 di _dil l { } ( )

The aim is to develop a decentralized fixed-order dynamic

output feedback controller in the form of (12) such that the
corresponding closed-loop fuzzy-affine large-scale system
is asymptotically stable with a robust 7%, performance y.
Given the parameter &g = 1, and applying Theorem 2 with

= p3 = 1,0$p0 = 3,61 = 4856 = 1,and §35 =
—1, one obtains the feasible solution with 7%, performance

Ymin = 0.2483 for the full-order (2-order) DOF controller.
The corresponding controller gains are

[Act1 | a@ci1 | Benn |

T | —1.7982 —0.0912 | —0.4931 | —0.8517

Keii =[—1.2193  —0.1898], keiy = 0.0145,

D.11 = —3.2456,
[Aci2 | ac12 | Bez ]

_[ 0.6051  0.0549 | —0.1261 —0.2307]

| 0.2090 0.0213 |0 | —0.0700
~ | —0.7362 0.1813 |0 | —1.2717 |’

Kc2 =[0.8117 0.1410], k2 =0,

D.1» = —2.4837,
[Act3 | ac13 | Beis |

1 0.9034 0.2525| —0.2617 | —1.8325

Ke3 =[0.9847 0.1851], ka3 = —0.1423,
D13 = —2.4124,

_[0.0900 0.0098 | 0.0363 —0.0487}

(50)
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FIGURE 1. Membership functions in Example 6.

for subsystem S; and

[Ac21 | aca1 | Beat ]
0.2914 —0.0197 | —0.0745 | — 0.4349
—0.6207  0.3578 0.4868 —0.3689 |’
Ko1 =[0.7955 —0.0200], ke = —0.1180,
D.1 = —1.6087,
[Ac2 | ac2 | Bz |
[ 02795 —0.0168 |0 —0.4818}

T | —1.3648 0.4359 |0| —1.1873
Ko =[0.3963 0.0037], ke =0,
D = —2.1224,
[Ac \ ac3 \ B3 |

[ 04860 —0.0233| 0.0274 | —0.3159
~ | —0.8733  0.3068 | —0.4627 —0.8928]’
K3 =[0.1572 0.1615],  ke3 = —0.2632,
D3 = —2.8849,

(5D

for subsystem S».

The 7% performance iS Ymin = 0.2487 for the reduced-

order (1-order) DOF controller with gains given as follows,

[Actt | ac11 | Bein ]

= [0.4678|—0.1719|—0.2966 | ,
[Keit | kett | Dein |

=[-1.1186 | —0.0012 | —3.2089 ],
[Acl2 ‘ Ac12 ‘ Bch]
=[0.1014 | 0| —0.1104],

[Kei2 | ke12 | Dein ]
4pt =[0.8973 | 0| —2.4882],
[Acl3 ‘ ac13 ‘ Bcl3]

=[0.0700 | —0.0201 | —0.1072],
[Ke13 | ke13 | Dei3 |

=[1.0260 | —0.0012 | —2.4409],

(52)
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FIGURE 2. Trajectories of the closed-loop system states in Example 6.
for subsystem S; and
[Ac1 | acr | Bear |
—[0.3781 | —0.4407 | —0.3812],
[Keat | ket | Deat ]
=[0.9116 | —0.6669 | —1.3532],
[Ac22 | a2z | Bexa |
—[03688 | 0| —0.4384],
[Ke22 | keaa | Deaa |
=[0.4459] 0| —2.0195],
[Ac2s | a3 | Beas |
[0.4922 | 0.1117 | —0.2994],

[Ke23 | ks | Deas |
—[0.3863 | — 1.7521 | —2.8480],
(53)

for subsystem S.

In addition, via Corollary 4, we can obtain feasible solution
with ymin = 0.4956 for the static output feedback controller
with gains given as follows,

[ke11 | Derr | = [—0.0210 | —4.3453],

[kei2 | Dei2 ] =[0] —4.1588],

[ke13 | Dets | = [—0.0911 | —5.1514], 54
[ke21 | D1 | = [0.0049 | —2.4088],

[ke2 | Do | =[0| —3.3238],

[ke23 | Deaz ] =[0.0203 | —2.7442],

for subsystems S and S7, respectively.

It is easy to see that a better disturbance attenuation level
can be obtained with a higher order controller.

To verify the effectiveness of the designed controllers,
simulations are carried out. For brevity, we only demonstrate
the simulation results for the full-order controller case. Given
the initial condition x;0 = [1.0500 — 0.70001T, x»0 =
[0.7125 — 0.3750]T, and the external disturbances w; =
wy = 135e™% - sin(2t), the state trajectories of closed-loop

1986
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FIGURE 3. Response of the ratio VZeo? @20) in Example 6.

Vo wT Ow (o)

TABLE 1. Nominal parameters of CSTR system in Example 7.

parameter ‘ nominal value ‘ parameter ‘ nominal value

F 100L/min C, 0.2397/gK
Cuo Imol/L —-AH 5 x 10%J/mol
Tys 350K E/R 8750K

\ 100L ko 7.2 x 1010 1/min

P) 1000g/L UA 5 x 10* J/minK

subsystems S and S> are shown in Fig. 2. Under zero initial
conditions, the %%, performance is shown in Fig. 3. The

/SK T
ratio Z’O—ZTEZZ(E) is about 0.1357, which is lower than the
w(t

minimum disturbance attenuation level y,i, = 0.2483. Thus,
the obtained decentralized controller is able to stabilize the
fuzzy large-scale system with satisfactory performance.

To further validate the effectiveness of the proposed
approach, in the sequel, we consider another simulation
example.

Example 7: Consider a large-scale nonlinear continuous
stirred tank reactor (CSTR) system with two interconnected
subsystems as follows,

X1 = bO(Tfs —xi1) + blkOeXP(——)xz2
—b3xi1 + b3u; + bow; + (I)ll (55)
X2 = bo(Cap — Xi2) — kOeXP(_x_)xiZ + ®i,
il
where the system states x;; and x;» denote the reactor tempera-
ture and the concentration, respectively. u; is the temperature

of the coolant stream, which is system control input and w;
is external disturbance. The nominal plant parameters in this

simulation are given in Table I, and the parameters by = %,
_UA_
by = pC ,by = b3 VpC

D and [oF) represent the interconnected terms of the
two CSTR subsystems that ®1; = 0.1xp1 + 0.05x2;, ©12 =
0.1xpp, @21 = 0.1x12, and ®pp = 0.05x;; + 0.1x52. Each
CSTR subsystem shares one equilibrium states as x, =
[350, O.S]T, at steady input u, = 300K. Choose three
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FIGURE 4. Membership functions in Example 7.

operating points x,; = [324.4 0.8751%, x,2 = [350 0.5]7T,
Xp3 = [370.65 0.2]T, and then linearize the large-scale
system based on the change of coordinates X; = x; — x,, it; =
u; —u,. With sampling period 7" = 0.01s, the nonlinear large-
scale system can be represented by the following discrete-
time fuzzy-affine dynamic models,

Plant Rule %!: IF x; (t) is #},, THEN

Xi(t + 1) = ApXi(t) + aig + Bigui(1) + Djyywi(t)
N
+ Cm';cn(t)
r12=]: (56)
n#i
yi(t) = HyXi(t) + Dipywi(t)
zi(t) = Lixi(t) + Nau;i(t), 1 = {1, 2,3}, i = {1, 2},
where
(A | an] = [0.9902  0.2909 | —0.3589
A= —0.0001 0.9886| 0.0017 |’
[An | an] = [ 1.0438  2.0919 |0
2192171 -0.0004 0.9800 |0 |
(A | ] = [ 1.0764 8.4224| 0.9498 |
B3 I=] -0.0005 0.9497 | —0.0045 |
0.0209 ] 0.01
Bil=|: o | Dill=[ 0 :|
[1 0.5
Cn = 0.001x | 0'1]
[0 1
Ci2 = 0.001 x _0‘5 1i| ,
Hy=]10 0], Djp =0.02, N;=0.5,
Ly=[10 0], 1={1,2,3}, i={1,2}.
(7

The normalized membership functions for each CSTR sub-
system are shown in Fig. 4 with dj; = —50, dpp = —25.6,
dz = 20.65, and dis = 50. The premise-variable space can
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be decomposed into three regions:

S = {xi®ldin < xjp (@) < dp},
S = {xildp < x;1(t) < di},
i3 = (xi)ldi < xj1(t) < dia}. (58)

Note that .} and .¥}3 are crisp regions while .} is a fuzzy
region.

For brevity, only the full-order DOF controller is consid-
ered in this example. Based on Theorem 2, one obtains the
feasible solution with performance index i, = 0.3704, and
the controller gains are

[Act1 | @cit | Berr ]
|: 0.5901 —0.1578 | 0.2588 - 0.1205:|

—0.0190 0.6005 | —0.0016 | —0.0057

Ky = [—3.2475 67.8137], ket = 6.3415,
Do11 = —7.9001,
[Aci2 | ac12 | Ber2 ]

B [ 0.5691 0.1883 | 0 —0.1160]
—0.0238 0.5561 | 0| —0.0052 |’

Ko = [—3.0614 84.1099], k12 = 0,
D.1» = —8.1637,
[Act3 | ac13 | Beis ]

3 [ 0.1743  —0.4450 | —0.0467 | — 0.0505}

—0.0377  0.4492 —0.0061 | —0.0016 |’

Kei3 = [ —4.1898 170.5667],  kei3 = —14.1229,
D.13 = —9.5756,

(59)
for subsystem S; and
[Ac21 | ac21 | Beat ]
| 04722 —0.0469 | 0.0269 —0.1923i| I,

- [—0.0271 0.5918 | —0.0168 | —0.0106
Koo = [ —4.4432 662125 ], ko1 = 1.3006,
D1 = —8.9534,
[Ac2 | ac2 | Bex2 ]
_ [ 0.4690 0.2155 |0 —0.1964:|
—0.0250 0.4818 | 0| —0.0083 |’
Keop =[—4.9777 75.6530], k2o =0,

D> = —9.3838,
[Ac2s | ac23 | Beas |
| 05033 —0.7657 | —0.1461 | —0.1535
| —0.0240 0.4619 —0.0114 | —0.0066 |’

Koz = [—4.8554 202.7985] , ko3 = —16.6049,
D3 = —12.0188,

(60)

for subsystem S5.

With initial condition %9 = [20 0.2]T, and exter-
nal disturbance w;(f) = 450e=3 - sin(5t), Fig. 5 shows
the state responses for both subsystems S; and S>. Under
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FIGURE 5. Trajectories of the closed-loop system states in Example 7.
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h_owT (Owit)

zero initial condition, Fig. 6 shows that the response of
VX 00

JIE  wTow)

Yamin = 0.3704.

V. CONCLUSION

In this paper, a novel decentralized robust .73, fixed-
order dynamic output feedback (DOF) control approach has
been proposed for a class of discrete-time nonlinear large-
scale systems based on T-S fuzzy-affine models. Through a
descriptor system formulation and some convexification pro-
cedures, it is shown that the piecewise affine fixed-order DOF
controller gains can be obtained via convex optimization.
Two simulation examples have been presented to show the
effectiveness of the proposed approach.

ratio is about 0.28, which is lower than

APPENDIX
Lemma 8 [21]: For two real matrices M and N with appro-
priate dimensions, the inequality

M'N +N™ < eM™ + &7 'N'N
holds for a positive scalar €.

1988

Lemma 9 (Tchebyshev’s inequality): The following
inequality holds for arbitrary vectors x; € #",1 = 1,2, ..,N,

N Try N
2ou| | Dow| =Ny
=1 =1 =1
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